1
|
Golba S, Kubisztal J. The Influence of Roughness on the Properties of Electroactive Polypyrrole. Molecules 2024; 29:5436. [PMID: 39598824 PMCID: PMC11597700 DOI: 10.3390/molecules29225436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
This study describes the properties of electroactive polypyrrole and its applications, with a focus on the roughness of the material. This parameter is crucial as it influences the applicability of coated layers, leading to highly adherent coatings or programmed wettability. The first raised aspect covers the electrodeposition procedure, which can help tailor the desired smoothness determined by roughness parameters. Features such as the deposition method, synthetic solution components, potential boundaries, substrate type, and utilized additives are evaluated. In the following section, the application aspects are discussed with a focus on modern, currently developed subjects such as medical applications, including cell-adherent coatings, antibacterial coatings, and drug delivery modules, as well as more technological fields like improved adhesion to the substrate and the improved mechanical properties of the deposited coating.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland;
| | | |
Collapse
|
2
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
3
|
Golba S, Loskot J. The Alphabet of Nanostructured Polypyrrole. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7069. [PMID: 38004999 PMCID: PMC10672593 DOI: 10.3390/ma16227069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
This review is devoted to polypyrrole and its morphology, which governs the electroactivity of the material. The macroscopic properties of the material are strictly relevant to microscopic ordering observed at the local level. During the synthesis, various (nano)morphologies can be produced. The formation of the ordered structure is dictated by the ability of the local forces and effects to induce restraints that help shape the structure. This review covers the aspects of morphology and roughness and their impact on the final properties of the modified electrode activity in selected applications.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland
| | - Jan Loskot
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic;
| |
Collapse
|
4
|
Pulikkutty S, Manjula N, Chen TW, Chen SM, Lou BS, Siddiqui MR, Wabaidur SM, Ali MA. Fabrication of gadolinium zinc oxide anchored with functionalized-SWCNT planted on glassy carbon electrode: Potential detection of psychotropic drug (phenothiazine) in biotic sample. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Molecular Dynamic Study of Mechanism Underlying Nature of Molecular Recognition and the Role of Crosslinker in the Synthesis of Salmeterol-Targeting Molecularly Imprinted Polymer for Analysis of Salmeterol Xinafoate in Biological Fluid. Molecules 2022; 27:molecules27113619. [PMID: 35684555 PMCID: PMC9182462 DOI: 10.3390/molecules27113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The rational preparation of molecularly imprinted polymers (MIPs) in order to have selective extraction of salmeterol xinafoate (SLX) from serum was studied. SLX is an acting β-adrenergic receptor agonist used in the treatment of asthma and has an athletic performance-enhancing effect. Molecular dynamics were used for the simulation of the SLX-imprinted pre-polymerization system, to determine the stability of the system. The computational simulation showed that SLX as a template, 4-hydroxyethyl methacrylate (HEMA) as a monomer, and trimethylolpropane trimethacrylate (TRIM) as a crosslinker in mol ratio of 1:6:20 had the strongest interaction in terms of the radial distribution functional. To validate the computational result, four polymers were synthesized using the precipitation polymerization method, and MIP with composition and ratio corresponding with the system with the strongest interaction as an MD simulation result showed the best performance, with a recovery of 96.59 ± 2.24% of SLX in spiked serum and 92.25 ± 1.12% when SLX was spiked with another analogue structure. Compared with the standard solid phase extraction sorbent C-18, which had a recovery of 79.11 ± 2.96%, the MIP showed better performance. The harmony between the simulation and experimental results illustrates that the molecular dynamic simulations had a significant role in the study and development of the MIPs for analysis of SLX in biological fluid.
Collapse
|
6
|
Rebelo P, Pacheco JG, Voroshylova IV, Melo A, Cordeiro MND, Delerue-Matos C. A simple electrochemical detection of atorvastatin based on disposable screen-printed carbon electrodes modified by molecularly imprinted polymer: Experiment and simulation. Anal Chim Acta 2022; 1194:339410. [DOI: 10.1016/j.aca.2021.339410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022]
|
7
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
8
|
Lakshmi GBVS, Yadav AK, Mehlawat N, Jalandra R, Solanki PR, Kumar A. Gut microbiota derived trimethylamine N-oxide (TMAO) detection through molecularly imprinted polymer based sensor. Sci Rep 2021; 11:1338. [PMID: 33446682 PMCID: PMC7809026 DOI: 10.1038/s41598-020-80122-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Trimethylamine N-oxide (TMAO), a microbiota-derived metabolite has been implicated in human health and disease. Its early detection in body fluids has been presumed to be significant in understanding the pathogenesis and treatment of many diseases. Hence, the development of reliable and rapid technologies for TMAO detection may augment our understanding of pathogenesis and diagnosis of diseases that TMAO has implicated. The present work is the first report on the development of a molecularly imprinted polymer (MIP) based electrochemical sensor for sensitive and selective detection of TMAO in body fluids. The MIP developed was based on the polypyrrole (PPy), which was synthesized via chemical oxidation polymerization method, with and without the presence of TMAO. The MIP, NIP and the non-sonicated polymer (PPy-TMAO) were separately deposited electrophoretically onto the hydrolyzed indium tin oxide (ITO) coated glasses. The chemical, morphological, and electrochemical behavior of MIP, non-imprinted polymer (NIP), and PPy-TMAO were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and electrochemical techniques. The detection response was recorded using differential pulse voltammetry (DPV), which revealed a decrease in the peak current with the increase in concentration of TMAO. The MIP sensor showed a dynamic detection range of 1-15 ppm with a sensitivity of 2.47 µA mL ppm-1 cm-2. The developed sensor is easy to construct and operate and is also highly selective to detect TMAO in body fluids such as urine. The present research provides a basis for innovative strategies to develop sensors based on MIP to detect other metabolites derived from gut microbiota that are implicated in human health and diseases.
Collapse
Affiliation(s)
- G. B. V. S. Lakshmi
- grid.10706.300000 0004 0498 924XSpecial Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Amit K. Yadav
- grid.10706.300000 0004 0498 924XSpecial Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Neha Mehlawat
- grid.444644.20000 0004 1805 0217Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, Noida, India
| | - Rekha Jalandra
- grid.411524.70000 0004 1790 2262Department of Zoology, Maharshi Dayanand University, Rohtak, 124001 India ,grid.19100.390000 0001 2176 7428National Institute of Immunology, New Delhi, India
| | - Pratima R. Solanki
- grid.10706.300000 0004 0498 924XSpecial Center for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anil Kumar
- grid.19100.390000 0001 2176 7428National Institute of Immunology, New Delhi, India
| |
Collapse
|
9
|
Koseoglu TS, Durgut A. Development of a Novel Molecularly Imprinted Overoxidized Polypyrrole Electrode for the Determination of Sulfasalazine. ELECTROANAL 2020. [DOI: 10.1002/elan.202060036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tugba Sardohan Koseoglu
- Isparta University of Applied Sciences, Faculty of Technology Department of Biomedical Engineering 32260 Isparta Turkey
| | - Aybuke Durgut
- Isparta University of Applied Sciences, Faculty of Technology Department of Biomedical Engineering 32260 Isparta Turkey
| |
Collapse
|
10
|
A new molecularly imprinted polymer for selective extraction and pre‐concentration of guaifenesin in different samples: Adsorption studies and kinetic modeling. J Sep Sci 2020; 43:1164-1172. [DOI: 10.1002/jssc.201900940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 01/20/2023]
|
11
|
Deepa S, Kumara Swamy B, Vasantakumar Pai K. Voltammetric detection of anticancer drug Doxorubicin at pencil graphite electrode: A voltammetric study. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Bai X, Zhang B, Liu M, Hu X, Fang G, Wang S. Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox. Bioelectrochemistry 2019; 132:107398. [PMID: 31837616 DOI: 10.1016/j.bioelechem.2019.107398] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
In this paper, an advanced molecularly imprinted electrochemical sensor (MIECS) based on electropolymerized olaquindox (OLA) surface molecularly imprinted polymer thin film on a modified glassy carbon electrode (GCE) was developed for the detection of OLA. It was fabricated by coating dopamine@graphene (DGr) on GCE, then electropolymerizing pyrrole (Py) and molecularly imprinted polymers (MIPs). Graphene (Gr) was introduced for improving conductivity and sensitivity. Dopamine (DA) was used for dispersion and adhesion of Gr. Polypyrrole (PPy) could fix DGr and enhance the current response evidently. The established sensor could selectively recognize OLA but not the analogs of OLA. Some essential parameters controlling the performance of the developed sensor were investigated and optimized. Under optimal conditions, the linear relationship between the current intensity and OLA concentration was obtained from 50 nmol L-1 to 500 nmol L-1 with a limit of detection (LOD) of 7.5 nmol L-1. Analytical results of OLA based on the developed MIECS for fish and feedstuffs showed a good agreement with the results based on high performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Xiaoyun Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Miao Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuelian Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
13
|
Radi AE, Wahdan T, El-Basiony A. Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180501100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described. </P><P> Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given. </P><P> Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform. </P><P> Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.</P>
Collapse
Affiliation(s)
- Abd-Egawad Radi
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| | - Tarek Wahdan
- Department of Chemistry, Faculty of Science, Suez Canal University, El-Arish, Egypt
| | - Amir El-Basiony
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| |
Collapse
|
14
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Ganesh P, Kumara Swamy B, Fayemi OE, Sherif ESM, Ebenso EE. Poly(crystal violet) modified pencil graphite electrode sensor for the electroanalysis of catechol in the presence of hydroquinone. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
|
17
|
Zhang C, She Y, Li T, Zhao F, Jin M, Guo Y, Zheng L, Wang S, Jin F, Shao H, Liu H, Wang J. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Anal Bioanal Chem 2017; 409:7133-7144. [PMID: 29018930 DOI: 10.1007/s00216-017-0671-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023]
Abstract
An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL-1, with a detection limit of 0.27 ng mL-1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxin She
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tengfei Li
- Department of Food Science, College of Agriculture, Hebei University of Engineering, Handan, Hebei, 056021, China
| | - Fengnian Zhao
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Maojun Jin
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yirong Guo
- College of Agriculture and Biology Technology, Zhejiang University, Zhejiang, Hangzhou, 31000, China
| | - Lufei Zheng
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shanshan Wang
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fen Jin
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hua Shao
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijin Liu
- Tibet Testing Center of Quality and Safety for Agricultural and Animal Husbandry Products, Lhasa, Tibet, 850000, China
| | - Jing Wang
- Key Laboratory of Agro-product Quality and Food Safety, Ministry of Agriculture, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Nezhadali A, Mehri L, Shadmehri R. Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:225-232. [PMID: 29407151 DOI: 10.1016/j.msec.2017.05.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 11/18/2022]
Abstract
Preparation of a molecularly imprinted polymer (MIP) film and its recognition property for methimazole (MMZ) was investigated. The polypyrrole (PPy) film was prepared by the cyclic voltammetric deposition of pyrrole in the presence of a supporting electrolyte (NaClO4·H2O) with and without MMZ through on a pencil graphite electrode (PGE). A computational study based on density functional theory was developed to evaluate the template-monomer geometry and interaction energy in the prepolymerization mixture. The performance of MIP sensor and non-imprinted polymer (NIP) film was evaluated by differential pulse voltammetry (DPV). The most important parameters controlling the performance of sensor were investigated and optimized. The prepared electrode was used for MMZ measurement by a three-step procedure, including analyte extraction in the electrode, electrode washing and electrochemical measurement of MMZ. The molecularly imprinted film exhibited a high selectivity and sensitivity toward methimazole in the experimental conditions. The calibration curve demonstrated linearity over a concentration range of 0.007-6mM with a correlation coefficient (r2) of 0.9808. The accuracy of the method was studied through spiking blank samples showed recovery of 98% with precision of 4%. Limit of detection based on S/N=3 was obtained 3×10-6M. The proposed sensor was applied successfully to determine MMZ in biological model samples and pharmaceuticals.
Collapse
Affiliation(s)
- Azizollah Nezhadali
- Department of Chemistry, Payame Noor University (PNU), Mashhad, Iran; Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran 19569, Iran.
| | - Leili Mehri
- Department of Chemistry, Payame Noor University (PNU), Mashhad, Iran
| | - Raham Shadmehri
- Department of Chemistry, Payame Noor University (PNU), Mashhad, Iran
| |
Collapse
|
19
|
David IG, Popa DE, Buleandra M. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1905968. [PMID: 28255500 PMCID: PMC5307002 DOI: 10.1155/2017/1905968] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 05/05/2023]
Abstract
Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed.
Collapse
Affiliation(s)
- Iulia Gabriela David
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Dana-Elena Popa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90–92, District 5, 050663 Bucharest, Romania
| |
Collapse
|
20
|
Rao H, Chen M, Ge H, Lu Z, Liu X, Zou P, Wang X, He H, Zeng X, Wang Y. A novel electrochemical sensor based on Au@PANI composites film modified glassy carbon electrode binding molecular imprinting technique for the determination of melamine. Biosens Bioelectron 2017; 87:1029-1035. [DOI: 10.1016/j.bios.2016.09.074] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/14/2016] [Accepted: 09/21/2016] [Indexed: 11/16/2022]
|
21
|
Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors – A review. Anal Chim Acta 2016; 936:62-74. [DOI: 10.1016/j.aca.2016.07.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023]
|
22
|
Nezhadali A, Mojarrab M. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes. Anal Chim Acta 2016; 924:86-98. [DOI: 10.1016/j.aca.2016.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
|