1
|
Paisuwan W, Srithadindang K, Kodama T, Sukwattanasinitt M, Tobisu M, Ajavakom A. Cu(II) detection by a fluorometric probe based on thiazoline-amidoquinoline derivative and its application to water and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124706. [PMID: 38972095 DOI: 10.1016/j.saa.2024.124706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Two novel fluorescent probes for Cu2+ detection have been developed based on thiazoline-quinoline conjugates bearing a 4-ethynyl-N,N-dimethylaniline unit (QT1 and QT2). QT2 exhibits instantaneous fluorescence quenching of Cu2+ with an emissive change from bright orange to arctic blue under UV light irradiation (365 nm). The plots of I0/I against Cu2+ concentrations show a good linear relationship that ranges from 0 to 50 µM with a coefficient of determination (R2) = 0.9906 and a limit of detection (LOD) of 76 nM, which is considered low (4.84 ppb). A 1:1 complexation between QT2 and Cu2+ was confirmed by UV-Vis titration, ESI-MS, and SC-XRD. The QT2·Cu2+ complex was dissociated by the addition of EDTA. The fluorescence quenching mechanism involves the ligand-to-metal charge transfer (LMCT) of a paramagnetic Cu2+ complex. The QT2 probe on a paper-based strip was used to determine the amount of Cu2+ in water and food samples (shiitake mushrooms and oysters).
Collapse
Affiliation(s)
- Waroton Paisuwan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Futuristic Science Research Center, School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Kavisara Srithadindang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Mongkol Sukwattanasinitt
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Anawat Ajavakom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Yuan YY, Hao YT, Zeng D, Pan P, Lu JX, Zhang B, He SN, Xing AP, Chen SQ, Yuan J. A near-infrared fluorescent probe for the detection of Cu 2+ in Chinese herbal medicine and imaging in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124407. [PMID: 38723466 DOI: 10.1016/j.saa.2024.124407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Copper is one of the common among the heavy metal pollution in Chinese herbal medicine (CHM). So, it is essential to develop rapid and accurate testing method to quantify the Cu2+ content in CHM. Herein, we prepared a coordination-based near-infrared fluorescent probe (NRh6G-FA) by introducing a hemicyanine dye in rhodamine 6G scaffold. NRh6G-FA had a high sensitivity, anti-interference performance, fast response (within 60 s), visualization (from light yellow to green) for Cu2+ and excellent sensing performance for the detection of Cu2+ at low concentrations (LOD = 0.225 μM). The most likely mechanism was verified on the basis of Job's plot, ESI-HRMS and DFT calculations. NRh6G-FA could be successfully applied for the detection and "naked eye" recognition of Cu2+ in CHM samples. Moreover, NRh6G-FA was used to visualize Cu2+ in living MCF-7 cells by confocal fluorescence imaging.
Collapse
Affiliation(s)
- Yao-Yao Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ya-Ting Hao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Dai Zeng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Pan Pan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jia-Xing Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Bin Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shu-Ni He
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Ai-Ping Xing
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Sui-Qing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Juan Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
3
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Chuan H, Li B, Wang Z, Li J, Xie P, Liu Y. Visualization Tools for Detecting Microcystin-LR in the Biological System via Near-Infrared Fluorescent Probes. Anal Chem 2023; 95:14219-14227. [PMID: 37703515 DOI: 10.1021/acs.analchem.3c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Numerous toxicological and epidemiological studies have shown that microcystin-LR (MC-LR) could cause a variety of toxicity to humans and animals. However, the absence of effective methods to trace MC-LR in biological systems has hindered the in-depth understanding of the mechanism of MC-LR toxicity. Near-infrared (NIR) fluorescent probes are crucial tools for accurate visualization and in-depth study of specific molecules in biological systems. Due to the lack of effective design strategies, NIR fluorescent probes for imaging MC-LR specifically in biological systems have not been reported yet. In order to address this pressing issue, herein, we have introduced a new and facile strategy to improve MC-LR detection and imaging in biological systems, and based on this design strategy, three NIR fluorescence probes (MC-RdTPA1, MC-RdTPA2, and MC-RdTPE1) have been constructed. These probes have several advantages: (i) have long emission wavelength and large Stokes shifts, which have great potential in vivo imaging applications; (ii) could selectively visualize MC-LR in cells; and (iii) showed stable fluorescence intensity in the pH range of 5.0-7.0. This work may provide a new avenue for the detection of MC-LR in biological systems and new tool to advance our knowledge of the mechanism of MC-LR toxicity.
Collapse
Affiliation(s)
- Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Jing Li
- Yunnan International Joint R&D Center of Smart Agriculture and Water Security; School of Water Conservancy, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
5
|
Akarasareenon W, Chanmungkalakul S, Xiaogang L, Rashatasakhon P. Selective Fluorescent Sensors for Copper(II) ion from Julolidine Hydrazone Derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Jiang D, Zheng M, Yan X, Huang B, Huang H, Gong T, Liu K, Liu J. A "turn-on" ESIPT fluorescence probe of 2-(aminocarbonyl)phenylboronic acid for the selective detection of Cu(ii). RSC Adv 2022; 12:31186-31191. [PMID: 36349016 PMCID: PMC9620781 DOI: 10.1039/d2ra04348c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we report a highly selective fluorescent probe for the detection of Cu(ii). The detection mechanism relies on the Cu(ii)-catalyzed oxidative hydroxylation of 2-(aminocarbonyl)phenylboronic acid into salicylamide, thus recovering the excited-state intramolecular proton transfer (ESIPT) effect and inducing more than 35-fold fluorescence enhancement. The simple structure and readily available fluorescent probe give a novel method for quantitatively detecting Cu(ii) in the linear range of 0-22 μM, with a limit of detection down to 68 nM, and exhibiting high selectivity for Cu(ii) over 16 other metal ions.
Collapse
Affiliation(s)
- Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Minghao Zheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Xiaoyang Yan
- Jiaxing Hospital of TCM. ICUZhongshan East Road 1501Jiaxing 314001China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Hui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Tianhao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Jinbiao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| |
Collapse
|
7
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Ali M, Memon N, Ali M, Chana AS, Gaur R, Jiahai Y. Recent development in fluorescent probes for copper ion detection. Curr Top Med Chem 2022; 22:835-854. [DOI: 10.2174/1568026622666220225153703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Copper is the third most common heavy metal and an indispensable component of life. Variations of body copper levels, both structural and cellular, are related to a number of disorders; consequently, pathophysiological importance of copper ions demands the development of sensitivity and selective for detecting these organisms in biological systems. In recent years, the area of fluorescent sensors for detecting copper metal ions has seen revolutionary advances. Consequently, closely related fields have raised awareness of several diseases linked to copper fluctuations. Further developments in this field of analysis could pave the way for new and innovative treatments to combat these diseases. This review reports on recent progress in the advancement of three fields of fluorescent probes; chemodosimeters, near IR fluorescent probes, and ratiometric fluorescent probes. Methods used to develop these fluorescent probes and the mechanisms that govern their reaction to specific analytes and their applications in studying biological systems, are also given.
Collapse
Affiliation(s)
- Mukhtiar Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Najma Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Manthar Ali
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Sami Chana
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering Science and Technology, Pakistan
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ye Jiahai
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing China
| |
Collapse
|
9
|
Zeng X, Gao S, Jiang C, Duan Q, Ma M, Liu Z, Chen J. Rhodol-derived turn-on fluorescent probe for copper ions with high selectivity and sensitivity. LUMINESCENCE 2021; 36:1761-1766. [PMID: 34250703 DOI: 10.1002/bio.4118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/30/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
A new rhodol-derived fluorescent probe 1 with picolinate as the recognition receptor was designed and simply synthesized using a one-step reaction. With the concentration of added Cu2+ increases, it gradually turns pink, so the effect of naked eye detection can be achieved. The detection limit of probe 1 for Cu2+ is 42 nM, and the linear detection range was 0-2 μM. The experimental results showed that 1 was a fluorescent probe with high selectivity, good water solubility, and high sensitivity to Cu2+ . Probe 1 was successfully applied in cell imaging experiments and can detect the concentration of Cu2+ in water samples. All these indicate that probe 1 has the potential to be applied to the detection of Cu2+ concentration in the real environment.
Collapse
Affiliation(s)
- Xiaodan Zeng
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Song Gao
- Wuchang University of Technology, Wuhan, People's Republic of China
| | - Cheng Jiang
- Calcium Carbide Factory of Jilin Petrochemical Company, Jilin, People's Republic of China
| | - Qingxia Duan
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Mingshuo Ma
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Zhigang Liu
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Jie Chen
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| |
Collapse
|
10
|
Nan X, Huyan Y, Li H, Sun S, Xu Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213580] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Wan M, Zhu Y, Zou J. Novel near-infrared fluorescent probe for live cell imaging. Exp Ther Med 2020; 19:1213-1218. [PMID: 32010291 PMCID: PMC6966234 DOI: 10.3892/etm.2019.8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/06/2019] [Indexed: 12/02/2022] Open
Abstract
Near infrared (NIR) fluorescent probes play a crucial role in biological system imaging. A novel NIR fluorescent probe, IR787, was designed in the present study. Compared with indocyanine green (ICG), IR787 showed lower background fluorescent interference and higher fluorescence enhancement. Fluorescence intensities were detected by a Cary Eclipse fluorescence spectrophotometer. The interference of intracellular ions (Cu2+, Ca2+, Mg2+ and Zn2+) on the measurement was negligible, which indicated a good photostability of IR787. MTT assay demonstrated that cell viability of human lung adenocarcinoma epithelial cell line A549 was not significantly affected by the use of the IR787 probe compared with the ICG probe. This result suggested that the IR787 probe was safe for in vitro cell imaging. In vitro NIR optical imaging experiments further revealed cellular uptake and strong intracellular NIR fluorescence of the IR787 probe in A549 cells. The excitation wavelength was 787 nm for IR787. Compared with the previously reported NIR fluorescent probe ICG, the IR787 NIR fluorescent probe had improved prospects for intracellular imaging. IR787 may play a pivotal role in the understanding cell biology, pharmacology and disease diagnosis.
Collapse
Affiliation(s)
- Meng Wan
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
12
|
Yin P, Niu Q, Wei T, Li T, Li Y, Yang Q. A new thiophene-based dual functional chemosensor for ultrasensitive colorimetric detection of Cu2+ in aqueous solution and highly selective fluorimetric detection of Al3+ in living cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Gong J, Liu C, Jiao X, He S, Zhao L, Zeng X. A near-infrared fluorescent probe based on a novel rectilinearly π-extended rhodamine derivative and its applications. J Mater Chem B 2020; 8:2343-2349. [DOI: 10.1039/c9tb02739d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel NIR fluorescent probe RQNA based on a π-extended rhodamine derivative RQN for the specific detection of mitochondrial Cu2+ has been synthesized.
Collapse
Affiliation(s)
- Jin Gong
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials and Photoelectric Devices
- Ministry of Education
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin
| | - Liancheng Zhao
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Xianshun Zeng
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin
- China
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials and Photoelectric Devices
| |
Collapse
|
14
|
Li NN, Ma YQ, Sun XJ, Li MQ, Zeng S, Xing ZY, Li JL. A dual-function probe based on naphthalene for fluorescent turn-on recognition of Cu 2+ and colorimetric detection of Fe 3+ in neat H 2O. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 210:266-274. [PMID: 30466032 DOI: 10.1016/j.saa.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
A simple naphthalene derivative, 6-hydroxy-2-naphthohydrazide (NAH), was designed and synthesized through two facile steps reactions with the 6-hydroxy-2-naphthoic acid (NCA) as the starting material. In neat H2O (10% 0.01 M HEPES buffer, v/v, pH = 7.4), probe NAH showed a highly selective and sensitive response towards Fe3+ via perceptible color change and displayed "turn-on" dual-emission fluorescence response for Cu2+. The binding stoichiometry ratio of NAH/Cu2+ and NAH/Fe3+ were all confirmed as 1:1 by the method of fluorescence job's plot and UV-Vis job's plot, respectively. Probe NAH can be used over a wide pH range for the determination of Fe3+ (2.0-10.0) and Cu2+ (6.0-10.0) without interference from other co-existing metal ions. A possible detection mechanism was the hydrolysis of NAH upon the addition of Fe3+ or Cu2+, thereby leading to the formation of 6-hydroxy-naphthalene-2-carboxylic acid (NCA) which was further confirmed by the various spectroscopic techniques including FT-IR, 1H NMR titration and HRMS. Moreover, NAH was successfully applied to the detection of Cu2+ and Fe3+ in tap water, ultrapure water and BSA.
Collapse
Affiliation(s)
- Na-Na Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qing Ma
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Jiao Sun
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Qiang Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuang Zeng
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Yong Xing
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| |
Collapse
|
15
|
A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore. Talanta 2019; 194:452-460. [DOI: 10.1016/j.talanta.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/01/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022]
|
16
|
Jiao Y, Liu X, Zhou L, He H, Zhou P, Duan C, Peng X. A fluorescein derivative-based fluorescent sensor for selective recognition of copper(II) ions. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sun T, Niu Q, Li T, Guo Z, Liu H. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu 2+ in ~100% aqueous media and application to real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:411-417. [PMID: 28755639 DOI: 10.1016/j.saa.2017.07.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu2+ was developed. Sensor ADA showed high selectivity and sensitivity toward Cu2+ in ~100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu2+ recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8nM, which is much lower than the allowable level of Cu2+ in drinking water set by U.S. Environmental Protection Agency (~20μM) and the World Health Organization (~30μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu2+ with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field.
Collapse
Affiliation(s)
- Tao Sun
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China.
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Zongrang Guo
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| | - Haixia Liu
- Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, People's Republic of China
| |
Collapse
|
18
|
Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.06.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Zhu D, Ren A, He X, Luo Y, Duan Z, Yan X, Xiong Y, Zhong X. A novel ratiometric fluorescent probe for selective and sensitive detection of Cu2+ in complete aqueous solution. SENSORS AND ACTUATORS B: CHEMICAL 2017; 252:134-141. [DOI: 10.1016/j.snb.2017.05.141] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
|
20
|
Wu C, Wang J, Shen J, Zhang C, Wu Z, Zhou H. A colorimetric quinoline-based chemosensor for sequential detection of copper ion and cyanide anions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Seo H, An M, Kim BY, Choi JH, Helal A, Kim HS. Highly selective fluorescent probe for sequential recognition of copper(II) and iodide ions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Cu 2+ -selective turn-on fluorescence signaling based on metal-induced hydrolysis of pyrenecarbohydrazide. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Lv L, Diao Q. A highly selective and sensitive rhodamine-derived fluorescent probe for detection of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:221-226. [PMID: 28246050 DOI: 10.1016/j.saa.2017.02.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
A novel water-soluble and reversible fluorescent probe was designed and synthesized based on a rhodamine B derivative. It was used for detection of Cu2+ in drinking water and in living cells with high sensitivity and excellent selectivity. The tested concentration range and the limit of detection (LOD) of the probe were 0-15.00μmolL-1 and 0.085μmolL-1, respectively. In addition, the mode of binding and mechanism of interaction between the probe and Cu2+ were analyzed by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Linlin Lv
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China
| | - Quanping Diao
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China.
| |
Collapse
|
24
|
Diao H, Niu W, Liu W, Feng L, Xie J. Design, properties and application of a facile fluorescence switch for Cu(II). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:65-68. [PMID: 27419639 DOI: 10.1016/j.saa.2016.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
A facile fluorescence switch based on Schiff base 2,2'-[1,3-phenylenbis- (methylidynenitrilo)]bis[benzenethiol] (PMBB) has been developed and used to sensing metal ions. UV-vis absorption and fluorescence emission spectra show that the PMBB receptor has high selectivity and sensitivity for Cu(II) ions. Based on the photoinduced electron transfer (PET) and chelation enhanced fluorescence (CHEF) mechanisms, the receptor exhibits an fluorescence "turn-on" switch signal for Cu(II). The 1:1 binding mode of PMBB and Cu (II) ions can be obtained by the Job-plot and ESI-Mass spectra data. Noticeably, the color changes (from colorless to yellow) of PMBB solutions for Cu(II) sensing can be observed by naked eyes in the sunlight. The detection limit of the receptor for Cu(II) may reach 10(-7)mol/L with a good linear relation in the lower concentrations of Cu(II). To develop the practical application, the Cu(II) ions in swimming pool water samples were detected. Results show that PMBB receptor as a fluorescent probe can use to detect the trace level of Cu(II) in the environmental samples. This work contributes to providing a facile strategy for designing efficient probes and developing their practical application value.
Collapse
Affiliation(s)
- Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Weiping Niu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China; Shanxi Station for Plant Protection and Quarantine, Taiyuan 030001, PR China
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | - Jun Xie
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
25
|
Study of Fluorescent Imaging of Se (IV) in Living Cells Using a Turn-on Fluorescent Probe Based on a Rhodamine Spirolactame Derivative. J Fluoresc 2016; 27:611-618. [PMID: 27981405 DOI: 10.1007/s10895-016-1989-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/25/2016] [Indexed: 02/05/2023]
Abstract
A highly selective fluorescent probe 2-(2-(2-aminoethylamino)ethyl)-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (ABDO) for Se (IV) had been synthesized in our earlier report. In this study, this fluorescent sensor is applied on analysis fluorescent imaging of Se (IV) in Hela cells. The experiment conditions, such as the MTT assay, different concentration of saline, incubated time of Hela cells with ABDO and Se (IV), and intracellular action position of Se (IV), are investigated. Through a series of experiments, the fluorescent image of Se (IV) in Hela cells can be observed when the cells cultured by 2 μM ABDO and 2 μM Se (IV) for 210 min. And the intracellular action position of Se (IV) is verified after the co-localization experiments are done. It is mitochondria. These experimental results show that ABDO will be an eagerly anticipated sensor for fluorescent imaging analysis of selenium ion in living cells. Besides, we also can use the complexes of ABDO-Se to observe morphology and distribution of mitochondria in cells like JG-B.
Collapse
|
26
|
A novel near-infrared fluorescent probe for H2O2 in alkaline environment and the application for H2O2 imaging in vitro and in vivo. Biomaterials 2016; 100:162-71. [DOI: 10.1016/j.biomaterials.2016.05.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
|
27
|
Liu H, Zhang B, Tan C, Liu F, Cao J, Tan Y, Jiang Y. Simultaneous bioimaging recognition of Al 3+ and Cu 2+ in living-cell, and further detection of F - and S 2- by a simple fluorogenic benzimidazole-based chemosensor. Talanta 2016; 161:309-319. [PMID: 27769411 DOI: 10.1016/j.talanta.2016.08.061] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/16/2022]
Abstract
A simple Schiff base (BMSA) prepared from salicylaldehyde and 2-(1H-benzo[d]imidazol-2-yl)aniline was evaluated as an efficient fluorescent chemosensor for the selective recognition of Al3+and Cu2+ over other common metal ions. This sensor could detect Al3+ in CH3OH/PBS with distinct emission red-shift (the detection limit 0.31μM)and Cu2+in CH3OH/Tris-HCL (the detection limit 0.54μM) with obvious fluorescence quenching. The obtained BMSA-Al3+ and BMSA-Cu2+ complexes could act as cascade sensors for detecting F- and S2-, respectively. The recognizing behavior of BMSA toward Al3+and Cu2+ has been investigated in detail through Job's Plot, FT-IR NMR, and HRMS analysis. Moreover, this chemosensor was verified to be of low cytotoxicity and good imaging characteristics for the detection of Al3+ and Cu2+, and further for the recognition of F- and S2- in living cells, suggesting that BMSA was proved to be a useful tool for tracking Al3+/Cu2+and F-/S2- ions in vivo.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Bibo Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Chunyan Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Feng Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Jiakun Cao
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, Guangdong, China
| | - Ying Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China.
| | - Yuyang Jiang
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
28
|
Liu H, Wu F, Zhang B, Tan C, Chen Y, Hao G, Tan Y, Jiang Y. A simple quinoline-derived fluorescent sensor for the selective and sequential detection of copper(ii) and sulfide ions and its application in living-cell imaging. RSC Adv 2016. [DOI: 10.1039/c6ra15938a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
29
|
Xiao JW, Zhu WJ, Sun R, Xu YJ, Ge JF. Evaluation of electron or charge transfer processes between chromenylium-based fluorophores and protonated–deprotonated aniline. RSC Adv 2016. [DOI: 10.1039/c6ra19831g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PET and ICT processes in chromenylium hybrid fluorescent dyes.
Collapse
Affiliation(s)
- Jin-Wei Xiao
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Wei-Jin Zhu
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection
- Medicine College of Soochow University
- Suzhou 215123
- China
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| |
Collapse
|