1
|
Hang Q, Lou Y, Yin H, Yuan Y, Xiong Z. Preparation of deep eutectic solvent modified magnetic graphene oxide/metal organic framework nanocomposites for the extraction of three estrogens in cosmetics. Mikrochim Acta 2024; 191:474. [PMID: 39037586 DOI: 10.1007/s00604-024-06546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
A novel magnetic dispersive solid phase extraction (MDSPE) procedure based on the deep eutectic solvent (DES) modified magnetic graphene oxide/metal organic frameworks nanocomposites (MGO@ZIF-8@DES) was established and used for the efficient enrichment of estradiol, estrone, and diethylstilbestrol in cosmetics (toner, lotion, and cream) for the first time. Then, the three estrogens were separated and determined by UHPLC-UV analysis method. In order to study the features and morphology of the synthesized adsorbents, various techniques such as FT-IR, SEM, and VSM measurements were executed. The MGO@ZIF-8@DES nanocomposites combine the advantages of high adsorption capacity, adequate stability in aqueous solution, and convenient separation from the sample solution. To achieve high extraction recoveries, the Box-Behnken design and single factor experiment were applied in the experimental design. Under the optimum conditions, the method detection limits for three estrogens were 20-30 ng g-1. This approach showed a good correlation coefficient (r more than 0.9998) and reasonable linearity in the range 70-10000 ng g-1. The relative standard deviations for intra-day and inter-day were beneath 7.5% and 8.9%, respectively. The developed MDSPE-UHPLC-UV method was successfully used to determine three estrogens in cosmetics, and acceptable recoveries in the intervals of 83.5-95.9% were obtained. Finally, three estrogens were not detected in some cosmetic samples. In addition, the Complex GAPI tool was used to evaluate the greenness of the developed pretreatment method. The developed MDSPE-UHPLC-UV method is sensitive, accurate, rapid, and eco-friendly, which provides a promising strategy for determining hormones in different complex samples.
Collapse
Affiliation(s)
- Qian Hang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning, P. R. China
| | - Yanwei Lou
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning, P. R. China
| | - Huawen Yin
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning, P. R. China
| | - Yue Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning, P. R. China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, No. 26 Huatuo Rd, High & New Tech Development Zone, 117004, Benxi, Liaoning, P. R. China.
| |
Collapse
|
2
|
Guo P, Xu M, Zhong F, Liu C, Cui X, Zhang J, Zhao M, Yang Z, Jia L, Yang C, Xue W, Fan D. Molecularly imprinted solid-phase extraction combined with non-ionic hydrophobic deep eutectic solvents dispersed liquid-liquid microextraction for efficient enrichment and determination of the estrogens in serum samples. Talanta 2024; 269:125480. [PMID: 38039681 DOI: 10.1016/j.talanta.2023.125480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Hormonal drugs in biological samples are usually in low concentration and highly intrusive. It is of great significance to enhance the sensitivity and specificity of the detection process of hormone drugs in biological samples by utilizing appropriate sample pretreatment methods for the detection of hormone drugs. In this study, a sample pretreatment method was developed to effectively enrich estrogens in serum samples by combining molecularly imprinted solid-phase extraction, which has high specificity, and non-ionic hydrophobic deep eutectic solvent-dispersive liquid-liquid microextraction, which has a high enrichment ability. The theoretical basis for the effective enrichment of estrogens by non-ionic hydrophobic deep eutectic solvent was also computed by simulation. The results showed that the combination of molecularly imprinted solid-phase extraction and deep eutectic solvent-dispersive liquid-liquid microextraction could improve the sensitivity of HPLC by 33∼125 folds, and at the same time effectively reduce the interference. In addition, the non-ionic hydrophobic deep eutectic solvent has a relatively low solvation energy for estrogen and possesses a surface charge similar to that of estrogen, and thus can effectively enrich estrogen. The study provides ideas and methods for the extraction and determination of low-concentration drugs in biological samples and also provides a theoretical basis for the application of non-ionic hydrophobic deep eutectic solvent extraction.
Collapse
Affiliation(s)
- Pengqi Guo
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| | - Mingyang Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Fanru Zhong
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Chenming Liu
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Xia Cui
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, PR China
| | - Jing Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Min Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Ziwei Yang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Liru Jia
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Chuanming Yang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Daidi Fan
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| |
Collapse
|
3
|
Lu Y, He Y, Wang X, Wang H, Qiu Q, Wu B, Wu X. Screening, characterization, and determination of suspected additives bimatoprost and latanoprost in cosmetics using NMR and LC-MS methods. Anal Bioanal Chem 2023:10.1007/s00216-023-04744-1. [PMID: 37219580 DOI: 10.1007/s00216-023-04744-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Recently, many new types of cosmetic illegal additives have been screened in the market. Most of the new additives were new drugs or analogues with very similar structures to other prohibited additives, which were difficult to be identified by liquid chromatography-mass spectrometry (LC-MS) only. Therefore, a new strategy is proposed, which is chromatographic separation combined with nuclear magnetic resonance spectroscopy (NMR) structural identification. The suspected samples were screened by ultra-high-performance liquid chromatography tandem high-resolution mass spectrometry (UPLC-Q-TOF-MS), followed by purification and extraction through silica-gel column chromatography and preparative high-performance liquid chromatography (HPLC). Finally, the extracts were identified unambiguously by NMR as bimatoprost and latanoprost, which were identified to be new cosmetic illegal additives in eyelash serums in China. Meanwhile, bimatoprost and latanoprost were quantified by high-performance liquid chromatography tandem triple quadrupole mass spectrum (HPLC-QQQ-MS/MS). The quantitative method demonstrated good linearity in the range of approximately 0.25-50 ng/mL (R2 > 0.9992), with limit of detection (LOD) and limit of quantification (LOQ) values of 0.01 and 0.03 mg/kg, respectively. The accuracy, precision, and reproducibility were confirmed to be acceptable.
Collapse
Affiliation(s)
- Yong Lu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yu He
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xinran Wang
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Haiyan Wang
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qianqian Qiu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Baojin Wu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xianfu Wu
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
4
|
Zhang L, Shen L, Zhong Q, Zhou T. Diluting modulation-based two dimensional-liquid chromatography coupled with mass spectrometry for simultaneously determining multiclass prohibited substances in cosmetics. J Chromatogr A 2023; 1695:463954. [PMID: 37011524 DOI: 10.1016/j.chroma.2023.463954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Developing efficient and comprehensive screening methods for prohibited substances in cosmetics is critical for ensuring the quality and safety of cosmetics used in everyday life. This study proposed a heart-cutting two-dimensional liquid chromatography-mass spectrometry (2D-LC-MS) method based on online diluting modulation for detecting multiclass prohibited substances in cosmetics. The 2D-LC-MS method combines HILIC and RPLC techniques. Compounds near the dead time that the first dimensional HILIC could not separate were transferred to the second dimensional RPLC by valve switch, achieving good separation with a wide range of polarities. Moreover, the online diluting modulation solved the problem of mobile phase incompatibility, realizing an excellent column-head focusing effect and reducing the loss of sensitivity. Besides, the first dimensional analysis did not restrict the flow rate of the second dimensional analysis owing to the diluting modulation. We demonstrated the 2D-LC-MS system by determining 126 prohibited substances in cosmetic products, including hormones, local anesthetics, anti-infectives, adrenergic agents, antihistamines, pesticides, and other chemicals. All correlation coefficients of the compounds were above 0.9950. The LODs and the LOQs ranged from 0.000259 ng/mL to 16.6 ng/mL and 0.000864 ng/mL to 55.3 ng/mL, respectively. The RSDs% for intra-day and inter-day precision were within 6% and 14%, respectively. Compared with conventional one-dimensional liquid chromatography methods, the established method expanded the analytical coverage of cosmetics-prohibited substances with reduced matrix effects for most compounds and improved sensitivity for polar analytes. The results indicated that the 2D-LC-MS method was a powerful tool for screening multiclass prohibited substances in cosmetics.
Collapse
Affiliation(s)
- Liping Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Lingling Shen
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510010, China
| | - Qisheng Zhong
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou, 510010, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Guo P, Liu C, Zhong F, Xu M, Zhao Y, Xu X, Zhao Y, Xue W, Xu Y, Fan D. Dummy-template Pickering emulsion imprinted microspheres online pretreatment and analysis for the estrogens in cosmetics. J Chromatogr A 2023; 1691:463815. [PMID: 36709550 DOI: 10.1016/j.chroma.2023.463815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Estrogens are a class of steroid hormone with strong physiological activity. Due to the pronounced beauty effect, such drugs are highly susceptible to illegal addition and cause other adverse effects. To avoid template leakage and the negative impacts on the environment caused by the estrogens, diosgenin was selected as the dummy template due to its similar skeleton structure. The Pickering emulsion polymerization was used to obtain the dummy-template molecularly imprinted polymers (dt-MIPs). Scanning electron microscopy, optical microscopy, specific surface area testing, Fourier transform infrared spectroscopy and adsorption experiments were used to characterize the apparent morphology and the recognition performance of the microspheres. Then, the prepared microspheres and commercial fillers were used to construct an on-line solid phase extraction (on-line SPE) analytical system coupled with HPLC via a two-position switching valve. On-line solid phase extraction-HPLC analytical methods were established and verified, for the simultaneous determination of four estrogens in cosmetic samples. The accuracy and precision RSDs for the established methods using the imprinted sorbents were 92.00-104.02% and less than 9.12%, respectively. All four estrogens exhibited good linearity in the range of 0.05 to 5 µg/mL with a coefficient of determination R2 greater than 0.9810. The method comparison results suggest that the established analytical method is simple in pre-treatment, easy to automate, and has excellent sensitivity to meet the analytical requirements of complex samples.
Collapse
Affiliation(s)
- Pengqi Guo
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| | - Chenming Liu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Fanru Zhong
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Mingyang Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Yongze Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Xinya Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Yu Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Ying Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Daidi Fan
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| |
Collapse
|
6
|
Advances on Hormones in Cosmetics: Illegal Addition Status, Sample Preparation, and Detection Technology. Molecules 2023; 28:molecules28041980. [PMID: 36838967 PMCID: PMC9959700 DOI: 10.3390/molecules28041980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Owing to the rapid development of the cosmetic industry, cosmetic safety has become the focus of consumers' attention. However, in order to achieve the desired effects in the short term, the illegal addition of hormones in cosmetics has emerged frequently, which could induce skin problems and even skin cancer after long-term use. Therefore, it is of great significance to master the illegal addition in cosmetics and effectively detect the hormones that may exist in cosmetics. In this review, we analyze the illegally added hormone types, detection values, and cosmetic types, as well as discuss the hormone risks in cosmetics for human beings, according to the data in unqualified cosmetics in China from 2017 to 2022. Results showed that although the frequency of adding hormones in cosmetics has declined, hormones are still the main prohibited substances in illegal cosmetics, especially facial masks. Because of the complex composition and the low concentration of hormones in cosmetics, it is necessary to combine efficient sample preparation technology with instrumental analysis. In order to give the readers a comprehensive overview of hormone analytical technologies in cosmetics, we summarize the advanced sample preparation techniques and commonly used detection techniques of hormones in cosmetics in the last decade (2012-2022). We found that ultrasound-assisted extraction, solid phase extraction, and microextraction coupled with chromatographic analysis are still the most widely used analytical technologies for hormones in cosmetics. Through the investigation of market status, the summary of sample pretreatment and detection technologies, as well as the discussion of their development trends in the future, our purpose is to provide a reference for the supervision of illegal hormone residues in cosmetics.
Collapse
|
7
|
Wang L, Cui X, Xu J, Wang G, Guo M, Yu L, Yang K, Luo Z, Zeng A, Chen G, Zhang J, Fu Q. Highly efficient amino-functionalized aluminum-based metal organic frameworks mesoporous nanorods for selective extraction of hydrocortisone in pharmaceutical wastewater. J Pharm Biomed Anal 2022; 219:114933. [PMID: 35820249 DOI: 10.1016/j.jpba.2022.114933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Hydrocortisone (HC), as a common steroid hormone drug, is also one of the key intermediates involved in the synthesis of multiple steroid hormone drugs. Residual HC in pharmaceutical wastewater frequently pollutes environmental water as steroid hormone contaminant and possesses great threat to human health as well as sustainable development of the ecosystem. Herein, in order to develop a highly efficient adsorbent system for selective enrichment and detection of HC in pharmaceutical wastewater, a novel amino-functionalized aluminum-based metal organic frameworks (Al-MOFs@NH2) mesoporous nanorod is fabricated, in which 2-aminoterephthalic acid plays a dual role as organic linker and functional modification unit. The resultant Al-MOFs@NH2 not only exhibits stable mesoporous structure but also has large specific surface area (849.76 m2 g-1) and plentiful binding sites, which significantly increases the adsorption capacity for HC. Under the promotion of hydrogen bonding and hydrophobic interaction together, Al-MOFs@NH2 possesses high adsorption capacity (218.53 mg g-1) for HC, as well as shows satisfactory selectivity for HC and other steroid hormones. Moreover, a method using Al-MOFs@NH2 as solid phase extraction adsorbents combined with high performance liquid chromatography (HPLC) has been developed to specifically enrich and detect trace amount of HC in pharmaceutical wastewater. The developed method has a low limit of detection (LOD) (0.5×10-3 μg mL-1) and shows satisfactory recoveries for HC (75.9%-102.5%) with an acceptable relative standard deviation (RSD). These results demonstrate that the facile one-step preparation and excellent adsorption capacity makes Al-MOFs@NH2 attractive to capture and remove environmental steroid hormone pollutants. More importantly, the method proposed in this work is expected to provide a prospective solution for analysis of strong bioactive contaminants in pharmaceutical wastewater.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiameng Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Gege Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Miao Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liangwei Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ke Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Aiguo Zeng
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong 723000, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China; Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
8
|
Synthesis and application of magnetic surface molecularly imprinted polymers in selective solid-phase extraction of epoxy triglyceride from deep frying oil. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Thermosensitive molecularly imprinted polymer coupled with HPLC for selective enrichment and determination of matrine in traditional Chinese medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123130. [DOI: 10.1016/j.jchromb.2022.123130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
|
10
|
Liang L, Duan W, Zhao C, Zhang Y, Sun B. Recent Development of Two-Dimensional Liquid Chromatography in Food Analysis. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02190-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Wang L, Chen G, Shu H, Cui X, Luo Z, Chang C, Zeng A, Zhang J, Fu Q. Facile covalent preparation of carbon nanotubes / amine-functionalized Fe 3O 4 nanocomposites for selective extraction of estradiol in pharmaceutical industry wastewater. J Chromatogr A 2021; 1638:461889. [PMID: 33485030 DOI: 10.1016/j.chroma.2021.461889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
As a typical steroid hormone drug, estradiol (E2) is also one of the most frequently detected endocrine disrupting chemicals (EDCs) in the aquatic environment. Herein, in response to the potential risk of E2 in steroid hormone pharmaceutical industry wastewater to human and wildlife, a novel carbon nanotubes / amine-functionalized Fe3O4 (CNTs/MNPs@NH2) nanocomposites with magnetic responsive have been developed for the enrichment and extraction of E2 in pharmaceutical industry wastewater, where amino-functionalized Fe3O4 magnetic nanoparticles (MNPs@NH2) were used as a magnetic source. The resultant CNTs/MNPs@NH2 possessed both the features of CNTs and desired magnetic property, enabling to rapidly recognize and separate E2 from pharmaceutical industry wastewater. Meanwhile, the CNTs/MNPs@NH2 had good binding behavior toward E2 with fast binding kinetics and high adsorption capacity, as well as exhibited satisfactory selectivity to steroidal estrogen compounds. Furthermore, the change of pH value of aqueous phase in adsorption solvent hardly affected the adsorption of E2 by CNTs/MNPs@NH2, and the adsorption capacity of E2 ranged from 19.9 to 17.2 mg g-1 in the pH range of 3.0 to 11.0, which is a latent advantage of the follow-up development method to detect E2 in pharmaceutical industry wastewater. As a result, the CNTs/MNPs@NH2 serving as a solid phase extraction medium were successfully applied to efficiently extract E2 from pharmaceutical industry wastewater. Therefore, the CNTs/MNPs@NH2 nanocomposites could be used as a potential adsorbent for removing steroidal estrogens from water. More importantly, the developed method would provide a promising solution for the monitoring and analysis of EDCs in pharmaceutical industry wastewater.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hua Shu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chun Chang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aiguo Zeng
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong, 723000, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Drug Safety and Monitoring, Academy of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
12
|
Nunes da Silva D, Leijoto de Oliveira H, Borges KB, Pereira AC. Sensitive Determination of 17β‐Estradiol using a Magneto Sensor Based on Magnetic Molecularly Imprinted Polymer. ELECTROANAL 2020. [DOI: 10.1002/elan.202060223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniela Nunes da Silva
- Departamento de Ciências Naturais Universidade Federal de São João del-Rei (UFSJ) Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas 36301-160 São João del-Rei MG Brazil
| | - Hanna Leijoto de Oliveira
- Departamento de Ciências Naturais Universidade Federal de São João del-Rei (UFSJ) Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas 36301-160 São João del-Rei MG Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais Universidade Federal de São João del-Rei (UFSJ) Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas 36301-160 São João del-Rei MG Brazil
| | - Arnaldo César Pereira
- Departamento de Ciências Naturais Universidade Federal de São João del-Rei (UFSJ) Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas 36301-160 São João del-Rei MG Brazil
| |
Collapse
|
13
|
Preparation of biocompatible molecularly imprinted film on biowaste-derived magnetic pomegranate rind carbon for protein recognition in biological sample. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111063. [DOI: 10.1016/j.msec.2020.111063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 02/04/2023]
|
14
|
Zhao Z, Zhao J, Liang N, Zhao L. Deep eutectic solvent-based magnetic colloidal gel assisted magnetic solid-phase extraction: A simple and rapid method for the determination of sex hormones in cosmetic skin care toners. CHEMOSPHERE 2020; 255:127004. [PMID: 32417516 DOI: 10.1016/j.chemosphere.2020.127004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
A simple rapid and efficient deep eutectic solvent-based magnetic colloidal gel (DES-MCG) assisted magnetic solid-phase extraction (MSPE) method followed by high performance liquid chromatography with a diode array detector (HPLC-DAD) was established for determination of four sex hormones (including ethinylestradiol, norgestrel, megestrol acetate and medroxyprogesterone acetate) in cosmetic skin care toners. The DES-MCG with the desirable advantages of high adsorbing ability was prepared by combining choline chloride/urea deep eutectic solvent and magnetic multiwalled carbon nanotubes (MMWCNTs). The synthesized DES-MCG was characterized using fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The cosmetic skin care toners were concentrated by a rotary evaporator and the obtained solutions were further purified by DES-MCG assisted magnetic solid-phase extraction. Response surface methodology (RSM) was applied for efficient optimization of the main variables in the extraction procedure. Under the optimized conditions, method detection limits and method quantitation limits were in the range of 1.2-6.6 ng mL-1 and 4.4-26.6 ng mL-1, respectively. The recoveries of the four sex hormones in different cosmetic skin care toners ranged from 80.1% to 118.8% and the precisions were no more than 0.35%. The developed method was successfully applied for the determination of sex hormones in cosmetic skin care toners.
Collapse
Affiliation(s)
- Zexin Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Ning Liang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
15
|
Lv W, Shi X, Wang S, Xu G. Multidimensional liquid chromatography-mass spectrometry for metabolomic and lipidomic analyses. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Wang DD, Gao D, Huang YK, Xu WJ, Xia ZN. Preparation of restricted access molecularly imprinted polymers based fiber for selective solid-phase microextraction of hesperetin and its metabolites in vivo. Talanta 2019; 202:392-401. [DOI: 10.1016/j.talanta.2019.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/19/2019] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
|
18
|
Chen S, Fu J, Li Z, Zeng Y, Li Y, Su X, Jiang X, Yang H, Huang L, Zou L, He L, Liu S, Ao X, Yang Y. Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples. J Chromatogr A 2019; 1602:124-134. [PMID: 31230879 DOI: 10.1016/j.chroma.2019.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
A highly selective and effective method was successfully developed using magnetic molecular imprinted polymers (MMIPs) as solid-phase extraction (SPE) coupled with high performance liquid chromatography-ultraviolet detector (HPLC-UV) to rapidly determine cephalexin (CFX) in complex animal-derived food. MMIPs were creatively synthesized via suspension polymerization using Fe3O4 magnetic nanoparticles as supporter, CFX as template, acrylamide (AM) as functional monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. The MMIPs were characterized using X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The binding process fitted well with pseudo-second-order model with good selectivity. Scatchard plot analysis suggested that MMIPs have two types of binding sites with the Qmax of 24.18 mg g-1 and 40.25 mg g-1, respectively. And Langmuir model proved that the recognition sites were uniformly distributed in a monolayer on the surface of MMIPs. The methodological assessment showed good applicability of MMIPs with excellent recovery (85.5%-94.0%), precision (1.2%-2.4%), and stability (intra-day 1.3%-3.6%; inter-day 2.6%-4.3%) in determining CFX content. In addition, the linearity of the calibration curve was good in the range of 0.02-5.00 mg L-1, with a sensitive detection limit of 5.00 μg kg-1. The results above suggest that the obtained MMIPs exert good performance for separation of CFX in animal-derived food, and the proposed method is suitable for the reliable determination of CFX in complex samples.
Collapse
Affiliation(s)
- Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China.
| | - Jingxia Fu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Zengwei Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yue Zeng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yuzhu Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xin Su
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiongli Jiang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Hao Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Long Huang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, PR China
| |
Collapse
|
19
|
Preparation of molecularly imprinted polymers and application in a biomimetic biotin-avidin-ELISA for the detection of bovine serum albumin. Talanta 2019; 198:55-62. [DOI: 10.1016/j.talanta.2019.01.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 11/18/2022]
|
20
|
Yagishita M, Kubo T, Nakano T, Shiraishi F, Tanigawa T, Naito T, Sano T, Nakayama SF, Nakajima D, Otsuka K. Efficient extraction of estrogen receptor-active compounds from environmental surface water via a receptor-mimic adsorbent, a hydrophilic PEG-based molecularly imprinted polymer. CHEMOSPHERE 2019; 217:204-212. [PMID: 30415118 DOI: 10.1016/j.chemosphere.2018.10.194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
We report an efficient screening procedure for the selective detection of compounds that are actively bound to estrogen receptor (ER) from environmental water samples using a receptor-mimic adsorbent prepared by a molecularly imprinted polymer (MIP). To mimic the recognition ability of ER, we improved the typical MIP preparation procedure using a hydrophilic matrix with a polyethylene glycol (PEG)-based crosslinker and a hydrophobic monomer to imitate the hydrophobic pocket of ER. An optimized MIP prepared with methacrylic acid as an additional functional monomer and estriol (E3), an analogue of 17β-estradiol (E2), exhibited highly selective adsorption for ER-active compounds such as E2 and E3, with significant suppression of non-specific hydrophobic adsorption. The prepared MIP was then applied to the screening of ER-active compounds in sewage samples. The fraction concentrated by the MIP was evaluated by in vitro bioassay using the yeast two-hybrid (Y2H) method and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOFMS). Compared to an authentic adsorbent, styrene-divinylbenzene (SDB)-based resin, the fraction concentrated by the MIP had 120% ER activity in the Y2H assay, and only 25% peak volume was detected in LC-Q-TOFMS. Furthermore, a few ER-active compounds were identified only from the fraction concentrated by the MIP, although they could not be determined in the fraction concentrated by the SDB-based resin due to ion suppression along with high levels of hydrophobic compounds. These results indicated that the newly developed MIP effectively captured ER-active compounds and while allowing most non-ER-active compounds to pass through.
Collapse
Affiliation(s)
- Mayuko Yagishita
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tomohiko Nakano
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Fujio Shiraishi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tetsuya Tanigawa
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Toyohiro Naito
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Daisuke Nakajima
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
21
|
Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal Chem 2019; 91:240-263. [PMID: 30380827 PMCID: PMC6322149 DOI: 10.1021/acs.analchem.8b04841] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bob W. J. Pirok
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Peter J. Schoenmakers
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
22
|
Phungpanya C, Chaipuang A, Machan T, Watla-iad K, Thongpoon C, Suwantong O. Synthesis of prednisolone molecularly imprinted polymer nanoparticles by precipitation polymerization. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chalida Phungpanya
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Angkana Chaipuang
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Theeraphan Machan
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Kanchana Watla-iad
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Chalermporn Thongpoon
- Program of Chemistry, Faculty of Science and Technology; Pibulsongkram Rajabhat University; Phitsanulok 65000 Thailand
| | - Orawan Suwantong
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| |
Collapse
|
23
|
Fabrication of a novel magnetic mesoporous molecularly imprinted polymer based on pericarpium granati-derived carrier for selective absorption of bromelain. Food Chem 2018; 256:91-97. [DOI: 10.1016/j.foodchem.2018.02.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/26/2018] [Accepted: 02/21/2018] [Indexed: 01/19/2023]
|
24
|
Computer-aided design of magnetic dummy molecularly imprinted polymers for solid-phase extraction of ten phthalates from food prior to their determination by GC-MS/MS. Mikrochim Acta 2018; 185:373. [DOI: 10.1007/s00604-018-2892-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
|
25
|
Wang DD, Gao D, Xu WJ, Li F, Yin MN, Fu QF, Xia ZN. Magnetic molecularly imprinted polymer for the selective extraction of hesperetin from the dried pericarp of Citrus reticulata Blanco. Talanta 2018; 184:307-315. [DOI: 10.1016/j.talanta.2018.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
|
26
|
Fu N, Li L, Liu X, Fu N, Zhang C, Hu L, Li D, Tang B, Zhu T. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent. J Chromatogr A 2017; 1530:23-34. [DOI: 10.1016/j.chroma.2017.11.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/07/2023]
|
27
|
Meng X, Bai H, Guo T, Niu Z, Ma Q. Broad screening of illicit ingredients in cosmetics using ultra-high-performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry with customized accurate-mass database and mass spectral library. J Chromatogr A 2017; 1528:61-74. [DOI: 10.1016/j.chroma.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022]
|
28
|
Gao D, Wang DD, Fu QF, Wang LJ, Zhang KL, Yang FQ, Xia ZN. Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin. Talanta 2017; 178:299-307. [PMID: 29136826 DOI: 10.1016/j.talanta.2017.09.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
In present study, magnetic molecularly imprinted polymers (MMIPs) were successfully prepared for specific recognition and selective enrichment of phloridzin from the leaves of Malus doumeri (Bois) A. Chev and rats' plasma. The magnetic Fe3O4 were prepared by the solvothermal reaction method and followed by the modification of TEOS and functionalization with APTES. Using functionalized Fe3O4 particles as the magnetic cores, phloridzin as template, ethylene glycol dimethacrylate (EGDMA) as cross-linker and 2,2-azobisisobutyonnitrile (AIBN) as initiator, the MMIPs were prepared through APTES to associate the template on the surface of the magnetic substrate. The structural features and morphological characterizations of MMIPs were performed by FT-IR, SEM, TEM, XRD, TGA and VSM. The adsorption experiments revealed that the MMIPs presented high selective recognition property to phloridzin. The selectivity experiment indicated that the adsorption capacity and selectivity of polymers to phloridzin was higher than that of baicalin and 2,3,5,4'-ttrahydroxy stilbene-2-O-β-D-glucoside. Furthermore, the MMIPs were employed as adsorbents for extraction and enrichment of phloridzin from the leaves of M. doumeri and rats' plasma. The recoveries of phloridzin in the leaves of M. doumeri ranged from 81.45% to 90.27%. The maximum concentration (Cmax) of phloridzin in rats' plasma was detected as 12.19 ± 0.84μg/mL at about 15min after oral administration of phloridzin (200mg/kg). These results demonstrate that the prepared MMIPs are suitable for the selective adsorption of phloridzin from complex samples such as natural medical plants and biological samples.
Collapse
Affiliation(s)
- Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Dan-Dan Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qi-Feng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lu-Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kai-Lian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zhi-Ning Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
29
|
Guo P, Xu X, Chen G, Bashir K, Shu H, Ge Y, Jing W, Luo Z, Chang C, Fu Q. On-Line two dimensional liquid chromatography based on skeleton type molecularly imprinted column for selective determination of sulfonylurea additive in Chinese patent medicines or functional foods. J Pharm Biomed Anal 2017; 146:292-301. [PMID: 28903088 DOI: 10.1016/j.jpba.2017.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 11/25/2022]
Abstract
Substandard and counterfeit anti-diabetic medicines directly influence the health and impose a great danger to individual patients and to public health. Counterfeiting has become a serious and underreported problem in the pharmaceutical industry. There are a large number of counterfeit medicines flooded in anti-diabetic markets which effect human health directly and indirectly. Therefore, some novel analytical techniques are necessary to be established for detecting these counterfeit drugs. In this study, a novel skeleton type molecularly imprinted column was successfully prepared. Based on the column, a simple, fast and reliable two-dimensional chromatography analytical system was established for selective determination of the illegal sulfonylurea additive in traditional Chinese patent medicines and functional foods. The developed method was validated. The linearitiesof the method were tested with calibration curves using ten calibration points in the concentration range of 0.25-12.5μg/g. The LODs were 0.0125μg/g and 0.01μg/g for tolbutamide and glibenclamide respectively. The five batches of Chinese patent medicines and dietary supplements obtained from different markets and online websites were tested by the validated method. With good retention time and spectral confirmation, chemical anti-diabetic substances were identified and quantified in traditional Chinese medicine and in dietary supplements.
Collapse
Affiliation(s)
- Pengqi Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinya Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Guoning Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Kamran Bashir
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hua Shu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yanhui Ge
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wanghui Jing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zhimin Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Chun Chang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qiang Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
30
|
Ge Y, Guo P, Xu X, Chen G, Zhang X, Shu H, Zhang B, Luo Z, Chang C, Fu Q. Selective analysis of aristolochic acid I in herbal medicines by dummy molecularly imprinted solid-phase extraction and HPLC. J Sep Sci 2017; 40:2791-2799. [DOI: 10.1002/jssc.201700116] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Yanhui Ge
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Pengqi Guo
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Xinya Xu
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Guoning Chen
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Xuemei Zhang
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Hua Shu
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Bilin Zhang
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Zhimin Luo
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Chun Chang
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| | - Qiang Fu
- Faculty of Pharmacy; School of Medicine; Xi'an Jiaotong University; Xi'an Shaanxi P.R. China
| |
Collapse
|
31
|
Wang H, Xu T, Yuan J. The use of online heart-cutting high-performance liquid chromatography coupled with linear ion trap mass spectrometry in the identification of impurities in vidarabine monophosphate. J Sep Sci 2017; 40:1674-1685. [PMID: 28211639 DOI: 10.1002/jssc.201601320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 11/11/2022]
Abstract
It is difficult to identify unknown impurities in nucleotide analogues by mass spectrometry because mass-spectrometry-incompatible mobile phases need to be used to separate the major ingredient from impurities. In this study, vidarabine monophosphate was selected, and unknown impurities were identified by online heart-cutting two-dimensional high-performance liquid chromatography and linear ion trap mass spectrometry. The one-dimensional reversed-phase column was filled with a mobile phase containing nonvolatile salt. In two-dimensional high-performance liquid chromatography, we used an Acclaim Q1 column with volatile salt, and the detection wavelength was 260 nm. The mass spectrum was scanned in positive- and negative-ion mode. The online heart-cutting and online demineralization technique ensured that the mobile phase was compatible with mass spectrometry; seven impurities were identified by MS2 and MS3 fragments. The mass fragmentation patterns of these impurities were investigated. The two isomers were semiprepared and complemented by nuclear magnetic resonance. The results were further compared with those of normal-phase high-performance liquid chromatography with mass spectrometry. The online heart-cutting two-dimensional high-performance liquid chromatography with mass spectrometry was superior in identifying more impurities. The method solves the problem of incompatibility between the mobile phase and mass spectrometry, so it is suitable for identifying unknown impurities. This method may also be used for investigating impurities in other nucleotide analogues.
Collapse
Affiliation(s)
- Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Tongzhou Xu
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiaojian Yuan
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
32
|
Xu X, Guo P, Luo Z, Ge Y, Zhou Y, Chang R, Du W, Chang C, Fu Q. Preparation and characterization of surface molecularly imprinted films coated on multiwall carbon nanotubes for recognition and separation of lysozyme with high binding capacity and selectivity. RSC Adv 2017. [DOI: 10.1039/c6ra28063c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|