1
|
Ocaña-González JA, Aranda-Merino N, Pérez-Bernal JL, Ramos-Payán M. Solid supports and supported liquid membranes for different liquid phase microextraction and electromembrane extraction configurations. A review. J Chromatogr A 2023; 1691:463825. [PMID: 36731330 DOI: 10.1016/j.chroma.2023.463825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Liquid phase microextraction (LPME) and electromembrane microextraction (EME) can be considered as two of the most popular techniques in sample treatment today. Both techniques can be configurated as membrane-assisted techniques to carry out the extraction. These supports provide the required geometry and stability on the contact surface between two phases (donor and acceptor) and improve the reproducibility of sample treatment techniques. These solid support pore space, once is filled with organic solvents, act as a selective barrier acting as a supported liquid membrane (SLM). The SLM nature is a fundamental parameter, and its selection is critical to carry out successful extractions. There are numerous SLMs that have been successfully employed in a wide variety of application fields. The latter is due to the specificity of the selected organic solvents, which allows the extraction of compounds of a very different nature. In the last decade, solid supports and SLM have evolved towards "green" and environmentally friendly materials and solvents. In this review, solid supports implemented in LPME and EME will be discussed and summarized, as well as their applications. Moreover, the advances and modifications of the solid supports and the SLMs to improve the extraction efficiencies, recoveries and enrichment factors are discussed. Hollow fiber and flat membranes, including microfluidic systems, will be considered depending on the technique, configuration, or device used.
Collapse
Affiliation(s)
- Juan Antonio Ocaña-González
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - Noemí Aranda-Merino
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - Juan Luis Pérez-Bernal
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain.
| |
Collapse
|
2
|
On-chip electromembrane extraction of some polar acidic drugs in plasma samples by the development of an active and efficient polymeric support of liquid membrane based on electrospinning process. Anal Chim Acta 2022; 1238:340628. [DOI: 10.1016/j.aca.2022.340628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
|
3
|
Nylon Membrane-Based Electromembrane Extraction Coupled with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for the Determination of Insulin. SEPARATIONS 2022. [DOI: 10.3390/separations9100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A rapid and sensitive protein determination method that uses electromembrane extraction (EME) and is coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) is developed. A flat nylon membrane is used to collect proteins from an aqueous solution and is directly analyzed by MALDI/MS after the addition of the MALDI matrix. Insulin is used as a model protein to investigate the optimum extraction of the parameters. The optimum EME conditions are obtained at 12 V of voltage, 10 min of extraction time, 12 mL sample volume, and 400 rpm agitation rate. The linear dynamic range (LDR) of insulin in an aqueous solution is in the range of 1.0–100.0 nM. The limit of detection (LOD) for insulin in an aqueous solution is 0.3 nM with 103-fold signal-to-noise (S/N) ratio enhancement. Furthermore, the applicability of this method to determine insulin in complicated sample matrices is also investigated. The LDR of insulin in human urine samples is in the range of 5.0–100.0 nM, and the LOD of insulin in urine samples is calculated to be 1.5 nM. The precision and accuracy of this method are evaluated at three different concentration levels, and the coefficient of variation (CV) and relative error are less than 6%. This approach is time-efficient and economical, as the flat membrane mode of EME coupled with MALDI/MS is suitable.
Collapse
|
4
|
Quantum Dots and Double Surfactant-Co-modified Electromembrane Extraction of Polar Aliphatic Bioamines in Water Samples Followed by Capillary Electrophoresis with Contactless Conductivity Detection. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
|
6
|
Hoseininezhad-Namin MS, Rahimpour E, Ozkan SA, Jouyban A. An overview on nanostructure-modified supported liquid membranes for the electromembrane extraction method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:212-221. [PMID: 34988579 DOI: 10.1039/d1ay01833g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electromembrane extraction (EME) is an extraction method on the micro scale, in which charged compounds are extracted from a donor phase (sample solution) into an acceptor phase via a supported liquid membrane (SLM) containing a water-immiscible organic solvent. To enhance the extraction efficiency and selectivity in this method, some studies have focused on the modification of the SLM, and thus many strategies have been reported for this purpose. One of these techniques is the introduction of nanomaterials in the SLM structure, which can enhance the extraction efficiency. In the current study, the different nanostructures used for SLM modification in the EME method are reviewed. Furthermore, the related analytical parameters of the developed techniques are classified and tabulated. It is hoped that this review will motivate further research in this field using other nanostructures.
Collapse
Affiliation(s)
- Mir Saleh Hoseininezhad-Namin
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel Aysil Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| |
Collapse
|
7
|
Eie LV, Pedersen-Bjergaard S, Hansen FA. Electromembrane extraction of polar substances - Status and perspectives. J Pharm Biomed Anal 2022; 207:114407. [PMID: 34634529 DOI: 10.1016/j.jpba.2021.114407] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
In this article, the scientific literature on electromembrane extraction (EME) of polar substances (log P < 2) is reviewed. EME is an extraction technique based on electrokinetic migration of analyte ions from an aqueous sample, across an organic supported liquid membrane (SLM), and into an aqueous acceptor solution. Because extraction is based on voltage-assisted partitioning, EME is fundamentally suitable for extraction of polar and ionizable substances that are challenging in many other extraction techniques. The article provides an exhaustive overview of papers on EME of polar substances. From this, different strategies to improve the mass transfer of polar substances are reviewed and critically discussed. These strategies include different SLM chemistries, modification of supporting membranes, sorbent additives, aqueous solution chemistry, and voltage/current related strategies. Finally, the future applicability of EME for polar substances is discussed. We expect EME in the coming years to be developed towards both very selective targeted analysis, as well as untargeted analysis of polar substances in biomedical applications such as metabolomics and peptidomics.
Collapse
Affiliation(s)
- Linda Vårdal Eie
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
8
|
Dolatabadi R, Mohammadi A, Nojavan S, Yaripour S, Tafakhori A, Shirangi M. Electromembrane extraction‐high‐performance liquid chromatography‐ultraviolet detection of phenobarbital and phenytoin in human plasma, saliva, and urine. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Roshanak Dolatabadi
- Department of Drug and Food Control, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants Shahid Beheshti University Tehran Iran
| | - Saeid Yaripour
- Department of Drug and Food Control, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex Tehran University of Medical Sciences Tehran Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Daryanavard SM, Zolfaghari H, Abdel-Rehim A, Abdel-Rehim M. Recent applications of microextraction sample preparation techniques in biological samples analysis. Biomed Chromatogr 2021; 35:e5105. [PMID: 33660303 DOI: 10.1002/bmc.5105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Analysis of biological samples is affected by interfering substances with chemical properties similar to those of the target analytes, such as drugs. Biological samples such as whole blood, plasma, serum, urine and saliva must be properly processed for separation, purification, enrichment and chemical modification to meet the requirements of the analytical instruments. This causes the sample preparation stage to be of undeniable importance in the analysis of such samples through methods such as microextraction techniques. The scope of this review will cover a comprehensive summary of available literature data on microextraction techniques playing a key role for analytical purposes, methods of their implementation in common biological samples, and finally, the most recent examples of application of microextraction techniques in preconcentration of analytes from urine, blood and saliva samples. The objectives and merits of each microextration technique are carefully described in detail with respect to the nature of the biological samples. This review presents the most recent and innovative work published on microextraction application in common biological samples, mostly focused on original studies reported from 2017 to date. The main sections of this review comprise an introduction to the microextraction techniques supported by recent application studies involving quantitative and qualitative results and summaries of the most significant, recently published applications of microextracion methods in biological samples. This article considers recent applications of several microextraction techniques in the field of sample preparation for biological samples including urine, blood and saliva, with consideration for extraction techniques, sample preparation and instrumental detection systems.
Collapse
Affiliation(s)
| | - Hesane Zolfaghari
- Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Mohamed Abdel-Rehim
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
10
|
Khan WA, Arain MB, Yamini Y, Shah N, Kazi TG, Pedersen-Bjergaard S, Tajik M. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. J Pharm Anal 2020; 10:109-122. [PMID: 32373384 PMCID: PMC7192972 DOI: 10.1016/j.jpha.2019.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hollow-fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) are miniaturized extraction techniques, and have been coupled with various analytical instruments for trace analysis of heavy metals, drugs and other organic compounds, in recent years. HF-LPME and EME provide high selectivity, efficient sample cleanup and enrichment, and reduce the consumption of organic solvents to a few micro-liters per sample. HF-LPME and EME are compatible with different analytical instruments for chromatography, electrophoresis, atomic spectroscopy, mass spectrometry, and electrochemical detection. HF-LPME and EME have gained significant popularity during the recent years. This review focuses on hollow fiber based techniques (especially HF-LPME and EME) of heavy metals and pharmaceuticals (published 2017 to May 2019), and their combinations with atomic spectroscopy, UV-VIS spectrophotometry, high performance liquid chromatography, gas chromatography, capillary electrophoresis, and voltammetry.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | - Muhammad Balal Arain
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | - Tasneem Gul Kazi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | | | - Mohammad Tajik
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
11
|
Mahdavi P, Nojavan S, Asadi S. Sugaring-out assisted electromembrane extraction of basic drugs from biological fluids: Improving the efficiency and stability of extraction system. J Chromatogr A 2019; 1608:460411. [DOI: 10.1016/j.chroma.2019.460411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022]
|
12
|
Xia L, Yang J, Su R, Zhou W, Zhang Y, Zhong Y, Huang S, Chen Y, Li G. Recent Progress in Fast Sample Preparation Techniques. Anal Chem 2019; 92:34-48. [DOI: 10.1021/acs.analchem.9b04735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanjun Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanshu Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
13
|
Badiee H, Zanjanchi MA, Zamani A, Fashi A. Solvent stir bar microextraction technique with three-hollow fiber configuration for trace determination of nitrite in river water samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32967-32976. [PMID: 31512131 DOI: 10.1007/s11356-019-06336-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In this work, trace determination of nitrite in river water samples was studied using solvent stir bar microextraction system with three-hollow fiber configuration (3HF-SSBME) as a preconcentration step prior to UV-Vis spectrophotometry. The obtained results showed that the increase in the number of solvent bars can improve the extraction performance by increasing the contact area between acceptor and sample solutions. The extraction process relies on the well-known oxidation-reduction reaction of nitrite with iodide excess in acidic donor phase to form triiodide, and then its extraction into organic acceptor phase using a cationic surfactant. Various extraction parameters affecting the method were optimized and examined in detail. Detection limit of 1.6 μg L-1 and preconcentration factor of 282 can be attained after an extraction time of 8 min under the optimum conditions of this technique. The proposed method showed a linear response up to 1000 μg L-1 (r2 = 0.996) with relative standard deviation values less than 4.0%. The accuracy of the developed method was assessed using the Griess technique. Finally, the proposed method was successfully employed for quantification of nitrite in river water samples (Ghezelozan, Zanjan, Iran).
Collapse
Affiliation(s)
- Hamid Badiee
- Department of Chemistry, Faculty of Science, University of Guilan, University Campus 2, Rasht, Iran
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, Faculty of Science, University of Guilan, University Campus 2, Rasht, Iran
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran
| | - Abbasali Zamani
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Armin Fashi
- Environmental Science Research Laboratory, Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| |
Collapse
|
14
|
Yeh CS, Cheng PS, Chang SY. Solvent-free electromembrane extraction: A new concept in electro-driven extraction. Talanta 2019; 199:296-302. [DOI: 10.1016/j.talanta.2019.02.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/09/2023]
|
15
|
Current direction and advances in analytical sample extraction techniques for drugs with special emphasis on bioanalysis. Bioanalysis 2019; 11:313-332. [PMID: 30663327 DOI: 10.4155/bio-2018-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Analytical techniques may not be compatible or sufficiently sensitive to the analytes, unless it undergoes a specific sample extraction procedure. Sample extraction can be considered as one of the key steps in analysis. Analysis of a poorly treated sample may produce inferior quality of analytical data. Continuous advancement and development of newer sample extraction techniques such as solid phase microextraction, ultrasound, magnetically and microwave assisted magnetic extraction; electro-membrane extraction and dried blood spotting are to address the shortcomings of the existing techniques and to provide more automation, minimizing preparation time and make them high throughput. This review summarizes the suitability of application of the advanced sample preparation techniques available for chemical and bioanalysis in a comprehensive manner. This review also provides a scientific guidance for selecting the appropriate sample extraction technique based on sample type.
Collapse
|
16
|
Rahimi A, Nojavan S. Electromembrane extraction of verapamil and riluzole from urine and wastewater samples using a mixture of organic solvents as a supported liquid membrane: Study on electric current variations. J Sep Sci 2018; 42:566-573. [PMID: 30371989 DOI: 10.1002/jssc.201800741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022]
Abstract
In this study, the application of a mixture of organic solvents as a supported liquid membrane for improving the efficiency of the electromembrane extraction procedure was investigated. The extraction process was followed by high-performance liquid chromatography analysis of two model drugs (verapamil and riluzole). In this research, four organic solvents, including 1-heptanol, 1-octanol, 2-nitrophenyl octyl ether, and 2-ethyl hexanol, were selected as model solvents and different binary mixtures (v/v 2:1, 1:1 and 1:2) were used as the supported liquid membrane. The mixture of 2-ethyl hexanol and 1-otanol (v/v, 2:1) improved the extraction efficiency of model drugs by 1.5 to 12 times. It was found that extraction efficiency is greatly influenced by the level of electric current. In this study, for various mixtures of organic solvents, the electric current fluctuated between 50 and 2500 μA, and the highest extraction efficiencies were obtained with low and stable electric currents. Finally, the optimized extraction condition was validated and applied for the determination of model drugs in urine and wastewater samples.
Collapse
Affiliation(s)
- Atyeh Rahimi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
17
|
Tabani H, Nojavan S, Alexovič M, Sabo J. Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2018; 160:244-267. [DOI: 10.1016/j.jpba.2018.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/11/2023]
|
18
|
Direct coupling of electromembrane extraction to mass spectrometry - Advancing the probe functionality toward measurements of zwitterionic drug metabolites. Anal Chim Acta 2017; 983:121-129. [DOI: 10.1016/j.aca.2017.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 11/23/2022]
|
19
|
Pedersen-Bjergaard S, Huang C, Gjelstad A. Electromembrane extraction-Recent trends and where to go. J Pharm Anal 2017; 7:141-147. [PMID: 29404030 PMCID: PMC5790682 DOI: 10.1016/j.jpha.2017.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022] Open
Abstract
Electromembrane extraction (EME) is an analytical microextraction technique, where charged analytes (such as drug substances) are extracted from an aqueous sample (such as a biological fluid), through a supported liquid membrane (SLM) comprising a water immiscible organic solvent, and into an aqueous acceptor solution. The driving force for the extraction is an electrical potential (dc) applied across the SLM. In this paper, EME is reviewed. First, the principle for EME is explained with focus on extraction of cationic and anionic analytes, and typical performance data are presented. Second, papers published in 2016 are reviewed and discussed with focus on (a) new SLMs, (b) new support materials for the SLM, (c) new sample additives improving extraction, (d) new technical configurations, (e) improved theoretical understanding, and (f) pharmaceutical new applications. Finally, important future research objectives and directions are defined for further development of EME, with the aim of establishing EME in the toolbox of future analytical laboratories.
Collapse
Affiliation(s)
- Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.,Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Chuixiu Huang
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Astrid Gjelstad
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
20
|
Fashi A, Khanban F, Yaftian MR, Zamani A. Improved electromembrane microextraction efficiency of chloramphenicol in dairy products: the cooperation of reduced graphene oxide and a cationic surfactant. RSC Adv 2016. [DOI: 10.1039/c6ra20479a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cooperation effect of reduced graphene oxide in the SLM and CTAB in the donor solution improves the EME performance.
Collapse
Affiliation(s)
- Armin Fashi
- Phase Equilibria Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
| | - Fatemeh Khanban
- Phase Equilibria Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
| | - Mohammad Reza Yaftian
- Phase Equilibria Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
| | - Abbasali Zamani
- Environmental Science Research Laboratory
- Department of Environmental Science
- Faculty of Science
- University of Zanjan
- Zanjan
| |
Collapse
|