1
|
Gupta V, Saraswat V, Alagarasan G, Nallamilli T, Ramireddy E, K S M S R. Ultrasound-Assisted Extraction of Betalains from the Amaranthus Using Natural Deep Eutectic Solvents. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:15. [PMID: 39699691 DOI: 10.1007/s11130-024-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/20/2024]
Abstract
Due to increasing consumer awareness, there is a growing demand for healthy foods by replacing synthetic colorants with natural alternatives. Amaranthus is a sustainable rich source of one such natural colorant, namely, betalains. Conventional extraction methods have various challenges, such as high solvent requirements and low extraction yield. To overcome these problems, the present study aims at developing a green extraction method for betalains from Amaranth by ultrasound-assisted extraction (UAE) employing natural deep eutectic solvents (NADES). Of the three Amaranth species screened, the leafy Amaranth is found to have the highest betalains content (24.79 ± 2.88 mg/100 g FW). Among the five NADES screened, lactic acid: fructose was identified as the most efficient solvent with a betalains yield of 79.68 ± 4.81 mg/100 g FW. The Box-Behnken Design (BBD) was employed to identify the best combinations of extraction process parameters. This approach enabled optimization through a reduced number of experiments. Subsequently, a machine learning model was employed to predict yield for all possible process parameter combinations. On identifying the most effective combination process parameters that resulted in the highest possible yield (306.72 mg/100 g FW), the same is experimentally validated (297.28 ± 10.76 mg/100 g FW). UAE employing NADES has resulted in a 3.7-fold increase in the yield of betalains over extraction with NADES alone and a 12-fold increase over conventional extraction. HPLC analysis confirmed that the structure remained intact even after processing. Based on the results, UAE employing NADES was demonstrated to be an attractive extraction methodology for downstream processing of betalains in particular and biomolecules, in general.
Collapse
Affiliation(s)
- Vivek Gupta
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517619, India
| | - Vaishali Saraswat
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517619, India
| | - Ganesh Alagarasan
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517619, India
| | - Trivikram Nallamilli
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517619, India
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| | - Raghavarao K S M S
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| |
Collapse
|
2
|
Zhou C, Adeyanju AA, Nwonuma CO, Inyinbor AA, Alejolowo OO, Al-Hamayda A, Akinsemolu A, Onyeaka H, Olaniran AF. Physical field-assisted deep eutectic solvent processing: A green and water-saving extraction and separation technology. J Food Sci 2024; 89:8248-8275. [PMID: 39668112 DOI: 10.1111/1750-3841.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Extraction of organic and bioactive compounds from plant materials with the traditional organic solvents aided by water or oil bath heating is not sustainable, because it consumes a lot of energy, time, water/oil, solvents, and results in lower yield. This review discusses deep eutectic solvent (DES) as a green solvent, physical field technology (PFT) as a water-saving and green technology, and how the coupling of PFT (ultrasound [US], microwave [MW], infrared [IR]) to DES will improve the yield and quality of protein, polysaccharides, polyphenols, pectin, and terpenoids extracted from plant materials. Ultrasonication increases DES extraction efficiency via cavitation dislodgement and pores creation. IR coupling to DES enhances the extraction yield of polyphenols and the antioxidant and antiradical activity. MW improves DES extraction yield, reduces energy consumption, operational cost, and compound degradation, and is inferred to be the greenest technology.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Adeyemi Ayotunde Adeyanju
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Nigeria
| | | | - Asmaa Al-Hamayda
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, UAE
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Food Science and Nutrition Programme, Food Science and Microbiology Department, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
3
|
Yu T, Yang L, Shang X, Bian S. Recovery of Cembratrien-Diols from Waste Tobacco ( Nicotiana tabacum L.) Flowers by Microwave-Assisted Deep Eutectic Solvent Extraction: Optimization, Separation, and In Vitro Bioactivity. Molecules 2024; 29:1563. [PMID: 38611842 PMCID: PMC11013614 DOI: 10.3390/molecules29071563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Deep eutectic solvents (DESs) are novel solvents with physicochemical properties similar to those of ionic liquids, and they have attracted extensive attention for the extraction of bioactive compounds from different plant materials in the context of green chemistry and sustainable development. In this study, seven DESs with different polarities were explored as green extraction solvents for cembratrien-diols (CBT-diols) from waste tobacco flowers. The best solvent, DES-3 (choline chloride: lactic acid (1:3)), which outperformed conventional solvents (methanol, ethanol, and ethyl acetate), was selected and further optimized for microwave-assisted DES extraction using the response surface methodology. The maximum yield of CBT-diols (6.23 ± 0.15 mg/g) was achieved using a microwave power of 425 W, microwave time of 32 min, solid/liquid ratio of 20 mg/mL, and microwave temperature of 40 °C. Additionally, the isolated CBT-diols exhibited strong antimicrobial activity against Salmonella, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa and antitumor activity in the human liver cancer HepG2 and SMMC-7721 cell lines. This study highlights the feasibility of recovering CBT-diols from tobacco flower waste using DESs and provides opportunities for potential waste management using green technologies.
Collapse
Affiliation(s)
- Tao Yu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Xianchao Shang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Shiquan Bian
- Anhui Provincial Key Laboratory of Rice Genetics and Breeding, Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Djaoudene O, Bachir-Bey M, Schisano C, Djebari S, Tenore GC, Romano A. A Sustainable Extraction Approach of Phytochemicals from Date ( Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability. Antioxidants (Basel) 2024; 13:181. [PMID: 38397779 PMCID: PMC10886234 DOI: 10.3390/antiox13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The present study aimed to evaluate the efficacy of natural deep eutectic solvents (NADESs) on the extraction of phytochemicals from eight Algerian date fruit cultivars (Phoenix dactylifera L.). In this study, lactic acid/sucrose-based NADESs were used as an alternative to conventional chemical solvents using the ultrasound-assisted extraction (UAE) method. The obtained extracts were assessed for the determination of bioactive compound contents, phenolic composition, antioxidant activity, and enzyme inhibitory potential. The results showed a considerable variation in phytochemical compositions and related activities between cultivars, where the greatest contents of total phenolics (1288.7 mg GAE/100 g), total flavonoids (53.8 mg QE/100 g), proanthocyanidins (179.5 mg CE/g), and total triterpenoids (12.88 mg OAE/100 g) were detected in the fruits of the Ourous cultivar. The same cultivar displayed the highest antioxidant capacity against DPPH• free radical (595 mg AAE/100 g), ABTS•+ cation radical (839 mg TE/100 g), and ferric reducing antioxidant potential (704 mg AAE/100 g). All extracts manifested moderate antioxidant activities tested by phosphomolybdenum, NO•, and linoleic acid lipid peroxidation assays. These extracts also exhibited interesting levels of in vitro enzyme inhibition; the Ourous cultivar gave the best inhibitory activity against α-amylase and acetylcholinesterase with 45 and 37%, respectively. HPLC-DAD-MS detected a total of five compounds, with phenolic acids and flavonoids being the main phenolics identified in the extract. The phenolic composition exhibited significant variability among cultivars. Notably, the highest amounts were revealed in the Tazizaout cultivar, with the predominance of gallic acid. The results confirmed that the combination of UAE and NADESs provides a novel and important alternative to chemical solvents for sustainable and environmentally friendly extraction and can represent a good alternative in food and pharmaceutical industry applications.
Collapse
Affiliation(s)
- Ouarda Djaoudene
- Centre de Recherche en Technologies Agroalimentaires, Route de Targa Ouzemmour, Campus Universitaire, Bejaia 06000, Algeria
| | - Mostapha Bachir-Bey
- Laboratory of Applied Biochemistry, Department of Food Sciences, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Connie Schisano
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Sabrina Djebari
- Laboratory of Biomathematic, Biophysic, Biochemistry and Scientometry, Faculty of Natural and Life Sciences, University of Bejaia, Bejaia 06000, Algeria;
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (C.S.); (G.C.T.)
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| |
Collapse
|
5
|
Villa C, Caviglia D, Robustelli Della Cuna FS, Zuccari G, Russo E. NaDES Application in Cosmetic and Pharmaceutical Fields: An Overview. Gels 2024; 10:107. [PMID: 38391437 PMCID: PMC10888423 DOI: 10.3390/gels10020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Natural deep eutectic solvents (NaDES) represent a new generation of green, non-flammable solvents, useful as an efficient alternative to the well-known ionic liquids. They can be easily prepared and exhibit unexpected solubilizing power for lipophilic molecules, although those of a hydrophilic nature are mostly used. For their unique properties, they can be recommend for different cosmetic and pharmaceutical applications, ranging from sustainable extraction, obtaining ready-to-use ingredients, to the development of biocompatible drug delivery responsive systems. In the biomedical field, NaDES can be used as biopolymer modifiers, acting as delivery compounds also known as "therapeutic deep eutectic systems", being able to solubilize and stabilize different chemical and galenical formulations. The aim of this review is to give an overview of the current knowledge regarding natural deep eutectic solvents specifically applied in the cosmetic and pharmaceutical fields. The work could help to disclose new opportunities and challenges for their implementation not only as green alternative solvents but also as potential useful pathways to deliver bioactive ingredients in innovative formulations.
Collapse
Affiliation(s)
- Carla Villa
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Debora Caviglia
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| | | | - Guendalina Zuccari
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Eleonora Russo
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| |
Collapse
|
6
|
Fernandes RMN, Cardoso CAL, Alves DR, Morais SM, Scapin E. Parkia from Cerrado: phytochemical bioprospection, toxicity and in vitro bioactivities of bark and flower extracts. BRAZ J BIOL 2023; 83:e275733. [PMID: 38055580 DOI: 10.1590/1519-6984.275733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/11/2023] [Indexed: 12/08/2023] Open
Abstract
Parkia platycephala is the only species of the genus Parkia that is endemic to the brazilian Cerrado and the tree symbol of the state of Tocantins, but there are still few studies regarding its bioprospecting. In this study, we aimed to investigate the phytochemical composition, toxicity and bioactivities of the bark and flower of Parkia platycephala. Hot sequential extractions (Soxhlet) were performed using methanol and hydroethanolic solution (70%), after degreasing the sample (hexane). The presence of flavonoids, tannins, steroids and alkaloids was detected in the preliminary screening. Trilinolein, (Z)-9-octadecenamide, 3-O-methyl-d-glucose were detected by Gas Chromatography coupled to Mass Spectrometry (GC-MS). In the Liquid Chromatography with Diode Array Detector (LC-PDA) analysis, it was detected exclusively ferulic acid (bark) and ellagic acid (flower). The ethanolic extract of the bark (IC50=10.69 ± 0.35 µgmL-1) has an antioxidant potential (DPPH• radical) higher than that of the rutin standard (IC50=15.85 ± 0.08 µgmL-1). All extracts showed excellent anticholinesterase potential (Ellman), with emphasis on the ethanol extract of the flower (IC50 =5.34 ± 0.12 µgmL-1). Regarding toxicity (Artemia salina), the methanolic extract of the bark and the ethanolic extract of the flower presented high and moderate levels, respectively. Such results limit the concentrations of biological activities in this study, however, the antioxidant and anticholinesterase indices fall short of toxicity. The results demonstrated promising antioxidant and anticholinesterase activities of both the bark and the flower of Parkia platycephala.
Collapse
Affiliation(s)
- R M N Fernandes
- Universidade Federal do Tocantins - UFT, Programa de Pós-Graduação em Biodiversidade e Biotecnologia - BIONORTE, Palmas,TO, Brasil
- Universidade Federal do Tocantins - UFT, Curso de Engenharia Ambiental, Laboratório de Química, Palmas, TO, Brasil
| | - C A L Cardoso
- Universidade Estadual de Mato Grosso do Sul - UEMS, Centro de Estudos em Recursos Naturais, Dourados, MS, Brasil
| | - D R Alves
- Universidade Estadual do Ceará - UEC, Centro de Ciência e Tecnologia, Laboratório de Química de Produtos Naturais, Fortaleza, CE, Brasil
| | - S M Morais
- Universidade Estadual do Ceará - UEC, Centro de Ciência e Tecnologia, Laboratório de Química de Produtos Naturais, Fortaleza, CE, Brasil
| | - E Scapin
- Universidade Federal do Tocantins - UFT, Programa de Pós-Graduação em Biodiversidade e Biotecnologia - BIONORTE, Palmas,TO, Brasil
- Universidade Federal do Tocantins - UFT, Curso de Engenharia Ambiental, Laboratório de Química, Palmas, TO, Brasil
- Universidade Federal do Tocantins - UFT, Programa de Pós-Graduação em Ciências do Ambiente - CIAMB, Palmas, TO, Brasil
| |
Collapse
|
7
|
Schuh L, Reginato M, Florêncio I, Falcao L, Boron L, Gris EF, Mello V, Báo SN. From Nature to Innovation: The Uncharted Potential of Natural Deep Eutectic Solvents. Molecules 2023; 28:7653. [PMID: 38005377 PMCID: PMC10675409 DOI: 10.3390/molecules28227653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.
Collapse
Affiliation(s)
- Luísa Schuh
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Marcella Reginato
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Isadora Florêncio
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Luana Boron
- Inaturals BR, Rua Gerson Luís Piovesan 200, Concórdia 89701-012, Brazil;
| | - Eliana Fortes Gris
- Department of Bromatology, Faculty of Ceilândia, University of Brasília, Ceilândia 72220-275, Brazil;
| | - Victor Mello
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Nanocycle Group, Brasília 72622-401, Brazil
| |
Collapse
|
8
|
Ferreira RSB, Farias FO, de Araujo EJS, Martínez J, Batista EAC. Deep eutectic solvents as an alternative for extraction of flavonoids from soybean (Glycine max (L) Merrill) and okara: An experimental and computational approach based on COSMO-SAC model. Food Res Int 2023; 173:113266. [PMID: 37803579 DOI: 10.1016/j.foodres.2023.113266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
In this study, different Deep Eutectic Solvents based on choline chloride ([Ch]Cl) with carboxylic acids, sugars, and glycerol, were investigated as alternative solvents for the extraction of flavonoids from soybean and okara. Initially, the COSMO-SAC was investigated as a tool in solvent screening for the extraction of flavonoids. Experimental validation was performed using total flavonoid analysis with the solvents that showed greater interaction with the solutes. The extracts obtained from soybean and okara using the DES [Ch]Cl:acetic acid added with 30 % water showed the highest total flavonoid content, 1.05 mg eq. of catechin/g dry soybean and 0.94 mg eq. of catechin /g dry okara, respectively. For phenolic compound extraction, [Ch]Cl: acetic acid DES extracted approximately 1.16 mg GAE/g of soybean and 0.69 mg GAE/g of okara. For antioxidant activity, soybean and okara extracts obtained with [Ch]Cl: acetic acid showed FRAP results of 0.40 mg Trolox/mL of extract and 0.45 mg Trolox/mL of extract, respectively. In addition, the isoflavones daidzein, genistein, glycitein, daidzin, genistin, and glycitin were identified and quantified in the soybean and okara extracts obtained with DES [Ch]Cl: acetic acid with 30% water, totaling 1068.05 and 424.32 µg total isoflavones/g dry sample. Therefore, The COSMO-SAC model was a useful tool in solvent screening, saving time and costs. Also, DES can be an alternative solvent for extracting flavonoids to replace conventional organic solvents, respecting current environmental and human health concerns.
Collapse
Affiliation(s)
- Ramon S B Ferreira
- Laboratory of Extraction, Applied Thermodynamics and Equilibrium - EXTRAE, School of Food Engineering, University of Campinas, 80 Monteiro Lobato Street, 13083-062 Campinas, Brazil
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, PR, Brazil
| | - Erick J S de Araujo
- Laboratory of High Pressure in Food Engineering (LAPEA), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil
| | - Julian Martínez
- Laboratory of High Pressure in Food Engineering (LAPEA), School of Food Engineering, University of Campinas, R. Monteiro Lobato 80, 13083-862 Campinas, SP, Brazil
| | - Eduardo A C Batista
- Laboratory of Extraction, Applied Thermodynamics and Equilibrium - EXTRAE, School of Food Engineering, University of Campinas, 80 Monteiro Lobato Street, 13083-062 Campinas, Brazil.
| |
Collapse
|
9
|
Siddiqui SA, Ali Redha A, Salauddin M, Harahap IA, Rupasinghe HPV. Factors Affecting the Extraction of (Poly)Phenols from Natural Resources Using Deep Eutectic Solvents Combined with Ultrasound-Assisted Extraction. Crit Rev Anal Chem 2023; 55:139-160. [PMID: 37850880 DOI: 10.1080/10408347.2023.2266846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Replacing conventional solvents with deep eutectic solvents (DES) has shown promising effects on the extraction yield of (poly)phenols. DES can be combined with ultrasound-assisted extraction (UAE) to further increase the extraction efficiency of (poly)phenols from natural resources compared to conventional methods. This review discusses the factors associated with DES (composition, solvent-to-sample ratio, extraction duration, and temperature) and UAE (ultrasound frequency, power, intensity, and duty cycle) methods that influence the extraction of (poly)phenols and informs future improvements required in the optimization of the extraction process. For the optimum (poly)phenol extraction from natural resources, the following parameters shall be considered: ultrasound frequency should be in the range of 20-50 kHz, ultrasound intensity in the range of 60-120 W/cm2, ultrasound duty cycle in the range of 40-80%, ultrasound duration for 10-30 minutes, and ultrasound temperature for 25-50 °C. Among the reported DES systems, choline chloride with glycerol or lactic acid, with a solvent-to-sample mass ratio of 10-30:1 shown to be effective. The solvent composition and solvent-to-sample mass ratio should be selected according to the target compound and the source material. However, the high viscosity of DES is among the major limitations. Optimizing these factors can help to increase the yield of extracted (poly)phenols and their applications.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Ali Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, Kolkata, India
| | - Iskandar Azmy Harahap
- Research Organization for Health, National Research and Innovation Agency, Jakarta, Indonesia
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
10
|
Kulinowska M, Dresler S, Skalska-Kamińska A, Hanaka A, Strzemski M. Methodological Aspects of Green Extraction of Usnic Acid Using Natural Deep Eutectic Solvents. Molecules 2023; 28:5321. [PMID: 37513195 PMCID: PMC10383951 DOI: 10.3390/molecules28145321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Usnic acid (UA) is a compound with multiple biological activities that make it useful in various industries, e.g., pharmaceutical, cosmetic, dentistry, and agricultural sectors. Lichens are the primary source of UA, which is primarily extracted using acetone. This study aimed to investigate the solubility of UA in numerous natural deep eutectic solvents (NADESs) and use a mixture of thymol and camphor as a NADES in the optimization of the UA extraction process with the design of experiments method. For numerical optimization, the following parameters were employed in the experiment to confirm the model: a camphor-to-thymol ratio of 0.3, a liquid-to-solid ratio of 60, and a time of 30 min. The obtained experimental results aligned well with the predicted values, with the mean experimental value falling within the confidence interval, exhibiting deviations between 11.93 and 14.96. By employing this model, we were able to optimize the extraction procedure, facilitating the isolation of approximately 91% of the total UA content through a single extraction, whereas a single acetone extraction yielded only 78.4% of UA.
Collapse
Affiliation(s)
- Magdalena Kulinowska
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | | | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
11
|
Acidic natural deep eutectic solvents as dual solvents and catalysts for the solubilization and deglycosylation of soybean isoflavone extracts: Genistin as a model compound. Food Chem 2023; 406:134999. [PMID: 36459802 DOI: 10.1016/j.foodchem.2022.134999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This study investigated the possibility of using green solvent natural deep eutectic solvents (NADESs) as dual solvent-catalysts for the solubilization and deglycosylation of soybean isoflavones. The deglycosylation behavior of genistin as a model compound in NADESs was compared. Acidic NADESs showed moderate solubility for genistin and could hydrolyze it to form genistein. The onset temperature of deglycosylation in the choline chloride/malic acid (Ch-Ma) was 60 °C. The solubilities of genistin in the Ch-Ma system were modeled. The dissolution process was endothermic and mainly enthalpy-driven. The deglycosylation followed first-order kinetics with a half-life (t1/2) of 40 min at 90 °C. The method was validated using soybean isoflavone extracts as a substrate and the ratio of glycoside to aglycone in the extracts could be adjusted by changing the conditions. The methods have great potential in the extraction and preparation of ready-to-use isoflavone extracts from soybean and other legumes.
Collapse
|
12
|
From Foxtail Millet Husk (Waste) to Bioactive Phenolic Extracts Using Deep Eutectic Solvent Extraction and Evaluation of Antioxidant, Acetylcholinesterase, and α-Glucosidase Inhibitory Activities. Foods 2023; 12:foods12061144. [PMID: 36981072 PMCID: PMC10048580 DOI: 10.3390/foods12061144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Foxtail millet husk (FMH) is generally removed and discarded during the first step of millet processing. This study aimed to optimize a method using deep eutectic solvents (DESs) combined with ultrasonic-assisted extraction (UAE) to extract phenols from FMH and to identify the phenolic compositions and evaluate the biological activities. The optimized DES comprised L-lactic acid and glycol with a 1:2 molar ratio by taking the total flavonoid content (TFC) and total phenolic content (TPC) as targets. The extraction parameters were optimized to maximize TFC and TPC, using the following settings: liquid-to-solid ratio of 25 mL/g, DES with water content of 15%, extraction time of 41 min and temperature of 51 °C, and ultrasonic power at 304 W. The optimized UAE-DES, which produced significantly higher TPC, TFC, antioxidant activity, α-glucosidase, and acetylcholinesterase inhibitory activities compared to conventional solvent extraction. Through UPLC–MS, 12 phenolic compounds were identified, with 1-O-p-coumaroylglycerol, apigenin-C-pentosyl-C-hexoside, and 1-O-feruloyl-3-O-p-coumaroylglycerol being the main phenolic components. 1-O-feruloyl-3-O-p-coumaroylglycerol and 3,7-dimethylquercetin were identified first in foxtail millet. Our results indicated that FMH could be exploited by UAE-DES extraction as a useful source of naturally derived antioxidants, along with acetylcholinesterase and α-glucosidase inhibitory activities.
Collapse
|
13
|
IŞIK S, USMAN A. Applications of New Generation Solvents for Extraction of Herbal Products Prior to Atomic and Molecular Analysis. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2023. [DOI: 10.18596/jotcsa.1178753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
In this review, an up to date and current knowledge of some of the green solvents, which includes supercritical fluids extraction (SFE), switchable polarity solvents (SPS), and natural deep eutectic solvents (NADES) are discussed with more emphasis on the extraction of active components of herbal products. Different scientific articles and books have been researched and reviewed to explain the applications of new generation solvents for extraction of herbal products prior to atomic and molecular analysis from the past until now. Currently, the most of techniques used in processing herbal products involve the use of extraction methods. Therefore, trends in extraction methods focuses mainly on finding reasonable solutions that minimizes the use of toxic solvents and allows the usage of renewable and green solvents from natural products, which ensure high quality and safe extracts. In future, SFE is definitely going to be on the industrial scale due to its numerous applications in the large scale especially for herbal, food, cosmetics and pharmaceutical products etc.
Collapse
Affiliation(s)
- Selin IŞIK
- YAKIN DOĞU ÜNİVERSİTESİ, ECZACILIK FAKÜLTESİ
| | | |
Collapse
|
14
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Yang Z, Yue SJ, Gao H, Zhang Q, Xu DQ, Zhou J, Li JJ, Tang YP. Natural deep eutectic solvent-ultrasound assisted extraction: A green approach for ellagic acid extraction from Geum japonicum. Front Nutr 2023; 9:1079767. [PMID: 36698456 PMCID: PMC9868705 DOI: 10.3389/fnut.2022.1079767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction In China and other Asian nations, Geum japonicum (GJ) is used as functional vegetables or as a type of folk medicine. Ellagic acid (EA) is one of the main active ingredients in GJ and has been utilized in food, cosmetics, and medicinal goods worldwide. Natural deep eutectic solvents (NADESs) have gradually replaced organic solvents for efficient extraction of plant-derived active compounds due to its environmental protection, low toxicity, low solubility, reusability, etc. Methods NADES with the highest EA yield was selected and the extraction conditions were optimized by response surface methodology (RSM), the antioxidant activity of NADES extract was determined, and finally Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) were used to explain the mechanism for the increase of EA yield in GJ. Results In this work, several NADESs were tailored for the ultrasound assisted extraction (UAE) of EA from GJ, among which choline chloride-oxalic acid (ChCl:Oa) was the most effective. In optimal conditions, ChCl:Oa extract produced higher EA yields than common organic solvents including methanol, ethanol, and acetone. In vitro antioxidant experiments showed that ChCl:Oa extract had stronger DPPH radical scavenging ability than other solvent extracts. Mechanically, FT-IR results indicated that ChCl:Oa could form a hydrogen bonding with EA, which enhanced the stability of EA. Meanwhile, ChCl:Oa-UAE treatment could destroy the tissue structure of GJ, thereby improving EA yield. Discussion In conclusion, these results imply that the ChCl:Oa-UAE method might be an environmentally friendly approach for extracting EA from GJ.
Collapse
|
16
|
Extraction of Bioactive Compounds from C. vulgaris Biomass Using Deep Eutectic Solvents. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010415. [PMID: 36615604 PMCID: PMC9824854 DOI: 10.3390/molecules28010415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
C. vulgaris microalgae biomass was employed for the extraction of valuable bioactive compounds with deep eutectic-based solvents (DESs). Particularly, the Choline Chloride (ChCl) based DESs, ChCl:1,2 butanediol (1:4), ChCl:ethylene glycol (1:2), and ChCl:glycerol (1:2) mixed with water at 70/30 w/w ratio were used for that purpose. The extracts' total carotenoid (TCC) and phenolic contents (TPC), as well as their antioxidant activity (IC50), were determined within the process of identification of the most efficient solvent. This screening procedure revealed ChCl:1,2 butanediol (1:4)/H2O 70/30 w/w as the most compelling solvent; thus, it was employed thereafter for the extraction process optimization. Three extraction parameters, i.e., solvent-to-biomass ratio, temperature, and time were studied regarding their impact on the extract's TCC, TPC, and IC50. For the experimental design and process optimization, the statistical tool Response Surface Methodology was used. The resulting models' predictive capacity was confirmed experimentally by carrying out two additional extractions under conditions different from the experimental design.
Collapse
|
17
|
Cannavacciuolo C, Pagliari S, Frigerio J, Giustra CM, Labra M, Campone L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2022; 12:foods12010056. [PMID: 36613272 PMCID: PMC9818194 DOI: 10.3390/foods12010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Usual extraction processes for analyzing foods, supplements, and nutraceutical products involve massive amounts of organic solvents contributing to a negative impact on the environment and human health. In recent years, a new class of green solvents called natural deep eutectic solvents (NADES) have been considered a valid alternative to conventional solvents. Compared with conventional organic solvents, NADES have attracted considerable attention since they are sustainable, biodegradable, and non-toxic but also are easy to prepare, and have low production costs. Here we summarize the major aspects of NADEs such as the classification, preparation method physicochemical properties, and toxicity. Moreover, we provide an overview of novel extraction techniques using NADES as potential extractants of bioactive compounds from foods and food by-products, and application of NADEs in food analysis. This review aims to be useful for the further development of NAES and for broadening the knowledge of these new green solvents in order to increase their use for the extraction of bioactive compounds and in food analysis.
Collapse
|
18
|
Brahmi-Chendouh N, Piccolella S, Gravina C, Fiorentino M, Formato M, Kheyar N, Pacifico S. Ready-to-Use Nutraceutical Formulations from Edible and Waste Organs of Algerian Artichokes. Foods 2022; 11:3955. [PMID: 36553698 PMCID: PMC9777799 DOI: 10.3390/foods11243955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Edible, plant-derived foodstuffs are recognized as precious sources of polyphenol compounds, whose consumption has proven to have multiple beneficial effects on human health. However, the awareness that cooking processes are able to induce quali-quantitatively changes in their native occurrence and that their bioavailability after food ingestion is poor led the research to move toward the preparation of nutraceutical supplements aimed at maximizing their content by effective extractive techniques and protecting them from degradation. The present work fits into this context, proposing a green, ready-to-use formulation of capitula, stems, and leaves of Algerian artichokes, in which natural deep eutectic solvents were exploited as extracting solvents but not removed at the end of the process. MTT test on the Caco-2 cell line highlighted that mitochondrial redox activity inhibition was absent below the 50 µg/mL tested dose. Simulated in vitro digestion was used as a predictive model for formulation bioaccessibility, where the joint approach with UHPLC-HRMS techniques allowed to define the release of each polyphenol from the investigated matrices. The capitula-based sample was the richest one in flavonoids, especially luteolin and apigenin glycosides, which survived in the intestinal digesta. On the contrary, simple phenols characterized the stem sample, whose release was mainly in the gastric chyme.
Collapse
Affiliation(s)
- Nabila Brahmi-Chendouh
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marika Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Naoual Kheyar
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
19
|
Conventional vs. Green Extraction Using Natural Deep Eutectic Solvents—Differences in the Composition of Soluble Unbound Phenolic Compounds and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11112295. [DOI: 10.3390/antiox11112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the effect of the use of green solvents, natural deep eutectic solvents (NaDES), in comparison with conventional solvents on the extraction of free unbound phenolic compounds and the antioxidant activity of extracts of dried bilberry fruit, bilberry leaves and green tea leaves. After preparation of the extracts via ultrasound-assisted extraction using NaDES and conventional solvents (water and ethanol), spectrophotometric determination of total phenolic and flavonoid content, HPLC analysis of extracted polyphenols and antioxidant determination using FRAP, DPPH and ABTS assays were conducted. The results showed that NaDES have a great potential as agents for the extraction of phenolic compounds with potent antioxidant activity; the highest values of phenolic content and antioxidant activity were detected in the samples obtained by extraction using the NaDES combination betaine + urea. The bilberry leaves exhibited the highest flavonoid content among all extracts and turned out to be more active than bilberry fruits, to which they are often just a by-product during processing. The most active extract of all was the betaine-urea green tea leaves extract. Further research into the most active NaDES extracts should be performed.
Collapse
|
20
|
Plastiras OE, Samanidou V. Applications of Deep Eutectic Solvents in Sample Preparation and Extraction of Organic Molecules. Molecules 2022; 27:7699. [PMID: 36431799 PMCID: PMC9693881 DOI: 10.3390/molecules27227699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The use of deep eutectic solvents (DES) is on the rise worldwide because of the astounding properties they offer, such as simplicity of synthesis and utilization, low-cost, and environmental friendliness, which can, without a doubt, replace conventional solvents used in heaps. In this review, the focus will be on the usage of DES in extracting a substantial variety of organic compounds from different sample matrices, which not only exhibit great results but surpass the analytical performance of conventional solvents. Moreover, the properties of the most commonly used DES will be summarized.
Collapse
Affiliation(s)
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Coscueta ER, Pellegrini-Malpiedi L, Pintado MM, Nerli BB. Production of soy protein concentrate with the recovery of bioactive compounds: From destruction to valorization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zhou Y, Wu W, Zhang N, Soladoye OP, Zhang Y, Fu Y. Deep eutectic solvents as new media for green extraction of food proteins: Opportunity and challenges. Food Res Int 2022; 161:111842. [DOI: 10.1016/j.foodres.2022.111842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/07/2022]
|
23
|
Rodríguez-Martínez B, Ferreira-Santos P, Alfonso IM, Martínez S, Genisheva Z, Gullón B. Deep Eutectic Solvents as a Green Tool for the Extraction of Bioactive Phenolic Compounds from Avocado Peels. Molecules 2022; 27:molecules27196646. [PMID: 36235183 PMCID: PMC9572341 DOI: 10.3390/molecules27196646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Avocado peels are the main agro-industrial residue generated during the avocado processing, being a rich source of bioactive compounds like phenolic compounds. The growing demand for more sustainable processes requires the development of new and effective methods for extracting bioactive compounds from industrial waste. Deep eutectic solvents (DESs) are a new sustainable alternative to toxic organic solvents due to their non-toxicity and biocompatibility. In this study, five selected DESs were applied for the extraction of bioactive phenolic compounds from avocado peels. The extraction efficiency was evaluated by measuring the total phenolics and flavonoids content. The best extraction results were obtained with choline chloride-acetic acid and -lactic acid (92.03 ± 2.11 mg GAE/g DAP in TPC and 186.01 ± 3.27 mg RE/g DAP); however, all tested DESs show better extraction efficiency than ethanol. All the obtained NADES extracts have high antioxidant activity (FRAP: 72.5-121.1 mg TE/g; TAC: 90.0-126.1 mg AAE/g). The synthesized DESs and avocado peels DES extracts had activity against all tested bacteria (Staphylococcus aureus, Streptococcus dysgalactiae, Escherichia coli and Pseudomonas putida), and the extracts prepared with choline chloride-acetic acid and -lactic acid have the highest antibacterial activity against all microorganisms. These results, coupled with the non-toxic, biodegradable, low-cost, and environmentally friendly characteristics of DESs, provide strong evidence that DESs represent an effective alternative to organic solvents for the recovery of phenolic bioactive compounds from agro-industrial wastes.
Collapse
Affiliation(s)
- Beatriz Rodríguez-Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| | - Irene Méndez Alfonso
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Sidonia Martínez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Zlatina Genisheva
- Centre of Biological Engineering, Universidade do Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
24
|
Analysis of persistent contaminants and personal care products by dispersive liquid-liquid microextraction using hydrophobic magnetic deep eutectic solvents. J Chromatogr A 2022; 1681:463429. [DOI: 10.1016/j.chroma.2022.463429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
|
25
|
Mushtaq M, Butt FW, Akram S, Ashraf R, Ahmed D. Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges. Crit Rev Anal Chem 2022; 54:1634-1660. [PMID: 36148704 DOI: 10.1080/10408347.2022.2125284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Deep Eutectic Liquids (DELs) fall among the rapidly evolving discoveries of the 21st century, and these liquids are considered as alternative solvents to toxic and volatile organic liquids. Nevertheless, the emerging trend regarding the use of DELs in every field of physical and biological sciences, a lot of ambiguities and misconceptions exist about their formation, mechanism, and efficiencies observed or projected. A review of available technical data makes it obvious that these liquids have the potential to revolutionize the underdeveloped areas of analytical chemistry particularly the extraction/enrichment of analytes. To ensure the green and sustainable use of DELs, the researchers need to have a thorough understanding of DELs, their classification, chemistry, the nature and strength of molecular entanglements, and their tailorable features. Many researchers have declared these liquids recyclable but more attentive trials are needed to develop an authentic and straightforward DELs recycling methodology. The present review covers sound background knowledge and expert opinions about the technical definition of DELs, their classification, formation, recyclability, and tailorable features for their application as extraction solvent/sorbent in analytical chemistry.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
26
|
Bragagnolo FS, Socas-Rodríguez B, Mendiola JA, Cifuentes A, Funari CS, Ibáñez E. Pressurized natural deep eutectic solvents: An alternative approach to agro-soy by-products. Front Nutr 2022; 9:953169. [PMID: 36159477 PMCID: PMC9493435 DOI: 10.3389/fnut.2022.953169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Soybeans are mainly used for food and biodiesel production. It is estimated that soy crops worldwide will leave about 651 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2022/23. These by-products might serve as largely available and cheap source of high added-value metabolites, such as flavonoids, isoflavonoids, and other phenolic compounds. This work aimed to explore green approaches based on the use of pressurized and gas expanded-liquid extraction combined with natural deep eutectic solvents (NADESs) to achieve phenolic-rich extracts from soy by-products. The total phenolic and flavonoid contents of the generated extracts were quantified and compared with conventional solvents and techniques. Pressurized liquid extraction (PLE) with choline chloride/citric acid/water (1:1:11 – molar ratio) at 120°C, 100 bar, and 20 min, resulted in an optimized condition to generate phenolic and flavonoid-rich fractions of soy by-products. The individual parts of soy were extracted under these conditions, with their metabolic profile obtained by UHPLC-ESI-QToF-MS/MS and potential antioxidant properties by ROS scavenging capacity. Extracts of soy roots presented the highest antioxidant capacity (207.48 ± 40.23 mg AA/g), three times higher than soybean extracts (68.96 ± 12.30). Furthermore, Hansen solubility parameters (HSPs) were applied to select natural hydrophobic deep eutectic solvents (NaHDES) as substituents for n-heptane to defat soybeans. Extractions applying NaHDES candidates achieved a similar yield and chromatography profile (GC-QToF-MS) to n-heptane extracts.
Collapse
Affiliation(s)
- Felipe Sanchez Bragagnolo
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | | | - Jose A. Mendiola
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
| | - Cristiano Soleo Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC-UAM, Madrid, Spain
- *Correspondence: Elena Ibáñez,
| |
Collapse
|
27
|
Deniz S, Ünlü AE, Takaç S. Ultrasound-assisted natural deep eutectic solvent extraction of phenolic compounds from apple pomace. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Selin Deniz
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandoğan, Turkey
| | - Ayşe Ezgi Ünlü
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandoğan, Turkey
| | - Serpil Takaç
- Faculty of Engineering, Department of Chemical Engineering, Ankara University, Tandoğan, Turkey
| |
Collapse
|
28
|
Kaoui S, Chebli B, Ait Baddi G, Basaid K, Mir Y. Response surface modeling and optimization of the extraction conditions using lactic acid-based deep eutectic solvents as green alternative extraction media for Mentha pulegium. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:906-914. [PMID: 35707926 DOI: 10.1002/pca.3148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Most recurrently available organic solvents are toxic and inflammable and pose high risks to human health. Natural deep eutectic solvents (NADESs) have been developed as promising green alternatives. OBJECTIVE We aimed to extract polyphenolic compounds from Mentha pulegium using lactic acid-based deep eutectic solvents. Extraction parameters were optimized by response surface methodology. MATERIAL AND METHODS Combined with ultrasound-assisted extraction, three different lactic acid-based deep eutectic solvents were investigated for the extraction of polyphenols. Methanol (80%, v/v) was used for comparison. The optimized influencing factors were: water content in solvent, extraction time, and temperature. The design was adopted including 17 experiments with three center points. RESULTS All NADESs tested showed an excellent extraction efficacy compared to 80% methanol. Under the optimized conditions, with 45% of water, at 30°C, and for extraction 90 min, the highest extraction yields were recorded using lactic acid:sodium acetate (3:1), achieving 173.35 ± 0.02 mg gallic acid equivalents (GAE)/g dry weight (dw) of polyphenols and 95 ± 0.09% antioxidant activity. After extraction for 90 min at 80°C with 18% of water, we obtained 164.06 ± 0.01 mg GAE/g dw and 94 ± 0.02% antioxidant activity using lactic acid:glucose (5:1). Efficient recovery (64.92 ± 0.01 mg GAE/g dw and 97 ± 0.1% antioxidant activity) was achieved using lactic acid:glycine (3:1) with 31% of water, at 35°C, and extraction for 30 min. CONCLUSION Our results indicate that with optimized parameters, the proposed natural solvents are excellent alternatives to chemical ones for the extraction of phenolic compounds.
Collapse
Affiliation(s)
- Soukaina Kaoui
- Laboratory of Mechanic Process Energy and Environment, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| | - Bouchra Chebli
- Laboratory of Mechanic Process Energy and Environment, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| | - Ghita Ait Baddi
- Laboratoire des Sciences de l'Ingénieur et le Management de l'Energie (LASIME) Equipe Bioporcèdès et Environnement, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| | - Khadija Basaid
- Laboratory of Mechanic Process Energy and Environment, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco
| | - Youssef Mir
- MIBCM, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
29
|
Bossard E, Tsafantakis N, Aligiannis N, Fokialakis N. A Development Strategy of Tailor-made Natural Deep Eutectic Solvents for the Enhanced Extraction of Hydroxynaphthoquinones from Alkanna tinctoria Roots. PLANTA MEDICA 2022; 88:826-837. [PMID: 35021247 DOI: 10.1055/a-1738-5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural hydroxynaphthoquinone enantiomers (HNQs) are well-described pharmaceutical and cosmeceutical agents especially present in the roots of Alkanna tinctoria (L.) Tausch, a species native to the Mediterranean region. In this work, eco-friendly natural deep eutectic solvents (NaDESs) were developed for the selective extraction of these compounds. An extensive screening was performed using more than sixty tailor-made NaDESs. The impact of the intrinsic physicochemical properties on the HNQs extraction efficiency as well as the specificity towards the different enantiomeric pairs was thoroughly investigated. As a result of a multivariate analysis and of the one factor-a-time solvent optimization, the eutectic mixture composed of levulinic acid and glucose (LeG) using a molar ratio of 5 : 1 (molHBA : molHBD) and 20% of water (w/w) was found as the most appropriate mixture for the highest extraction efficiency of HNQs. Further optimization of the extraction process was attained by response surface methodology, using a temperature of 45 °C, a solid-to-liquid ratio of 30 mg/mL, and an extraction time of 50 min. A maximum extraction output of 41.72 ± 1.04 mg/g was reached for HNQs, comparable to that of the commonly used organic solvents. A solid-phase extraction step was also proposed for the recovery of HNQs and for NaDESs recycling. Our results revealed NaDESs as a highly customizable class of green solvents with remarkable capabilities for the extraction of HNQs.
Collapse
Affiliation(s)
- Elodie Bossard
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tsafantakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Fokialakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Batista MP, Fernández N, Gaspar FB, Bronze MDR, Duarte ARC. Extraction of Biocompatible Collagen From Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents. Front Chem 2022; 10:937036. [PMID: 35783202 PMCID: PMC9243641 DOI: 10.3389/fchem.2022.937036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The disposal of large amounts of skin waste resulting from the blue shark fishing industry presents several industrial and environmental waste management concerns. In addition, these marine subproducts are interesting sources of collagen, a fibrous protein that shows high social and economic interest in a broad range of biomedical, pharmaceutical, and cosmetic applications. However, blue shark wasted skins are a poorly explored matrix for this purpose, and conventional collagen recovery methodologies involve several pre-treatment steps, long extraction times and low temperatures. This work presents a new green and sustainable collagen extraction approach using a natural deep eutectic solvent composed of citric acid:xylitol:water at a 1:1:10 molar ratio, and the chemical characterization of the extracted collagen by discontinuous electrophoresis, thermogravimetric analysis, Fourier transformed infrared spectroscopy and circular dichroism. The extracted material was a pure type I collagen, and the novel approach presented an extraction yield 2.5 times higher than the conventional one, without pre-treatment of raw material and reducing the procedure time from 96 to 1 h. Furthermore, the in vitro cytotoxicity evaluation, performed with a mouse fibroblasts cell line, has proven the biocompatibility of the extracted material. Overall, the obtained results demonstrate a simple, quick, cheap and environmentally sustainable process to obtain marine collagen with promising properties for biomedical and cosmetic applications.
Collapse
Affiliation(s)
- Miguel P. Batista
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Frédéric B. Gaspar
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria do Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- FFULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- *Correspondence: Ana Rita C. Duarte,
| |
Collapse
|
31
|
Liu Z, Ma W, Chen B, Pan H, Zhu M, Pang X, Zhang Q. Deep eutectic solvents in the extraction of active compounds from Eucommia Ulmoides Oliv. leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Strzemski M, Dresler S, Podkościelna B, Skic K, Sowa I, Załuski D, Verpoorte R, Zielińska S, Krawczyk P, Wójciak M. Effectiveness of Volatile Natural Deep Eutectic Solvents (VNADESs) for the Green Extraction of Chelidonium majus Isoquinoline Alkaloids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092815. [PMID: 35566166 PMCID: PMC9101032 DOI: 10.3390/molecules27092815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
The Chelidonium majus plant is rich in biologically active isoquinoline alkaloids. These alkaline polar compounds are isolated from raw materials with the use of acidified water or methanol; next, after alkalisation of the extract, they are extracted using chloroform or dichloromethane. This procedure requires the use of toxic solvents. The present study assessed the possibility of using volatile natural deep eutectic solvents (VNADESs) for the efficient and environmentally friendly extraction of Chelidonium alkaloids. The roots and herb of the plant were subjected three times to extraction with various menthol, thymol, and camphor mixtures and with water and methanol (acidified and nonacidified). It has been shown that alkaloids can be efficiently isolated using menthol–camphor and menthol–thymol mixtures. In comparison with the extraction with acidified methanol, the use of appropriate VNADESs formulations yielded higher amounts of protopine (by 16%), chelidonine (35%), berberine (76%), chelerythrine (12%), and coptisine (180%). Sanguinarine extraction efficiency was at the same level. Additionally, the values of the contact angles of the raw materials treated with the tested solvents were assessed, and higher wetting dynamics were observed in the case of VNADESs when compared with water. These results suggest that VNADESs can be used for the efficient and environmentally friendly extraction of Chelidonium alkaloids.
Collapse
Affiliation(s)
- Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.)
- Correspondence: (M.S.); (M.W.)
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.)
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Beata Podkościelna
- Faculty of Chemistry, Institute of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.)
| | - Daniel Załuski
- Department of Pharmaceutical Botany and Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| | - Rob Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300RA Leiden, The Netherlands;
| | - Sylwia Zielińska
- Department of Pharmaceutical Biology and Biotechnology, Division of Pharmaceutical Biotechnology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Paweł Krawczyk
- Immunology and Genetics Laboratory, Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (S.D.); (I.S.)
- Correspondence: (M.S.); (M.W.)
| |
Collapse
|
33
|
Sustainable valorization of papaya peels for thrombolytic cysteine protease isolation by ultrasound assisted disruptive liquid phase microextraction with task specific switchable natural deep eutectic solvents. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Xing C, Cui WQ, Zhang Y, Zou XS, Hao JY, Zheng SD, Wang TT, Wang XZ, Wu T, Liu YY, Chen XY, Yuan SG, Zhang ZY, Li YH. Ultrasound-assisted deep eutectic solvents extraction of glabridin and isoliquiritigenin from Glycyrrhiza glabra: Optimization, extraction mechanism and in vitro bioactivities. ULTRASONICS SONOCHEMISTRY 2022; 83:105946. [PMID: 35151194 PMCID: PMC8844873 DOI: 10.1016/j.ultsonch.2022.105946] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 05/04/2023]
Abstract
Licorice (Glycyrrhiza glabra) is extensively used owing to the superior pharmacological effects. However, its maximum application potential has not been fully exploited due to the limitation of currently available extraction solvent and methods. In this study, an eco-friendly deep eutectic solvent (NADESs) based ultrasound-assisted extraction (DES-UAE) method was applied to prepare licorice extracts. The DES-UAE using choline chloride and lactic acid as solvent was optimized and modeled by using response surface methodology to maximize the extraction yields of glabridin (GLA) and isoliquiritigenin (ISL). The optimized extracts possessed higher contents of GLA and ISL than available extraction methods, and the enriched products showed superior pharmacological activities in vitro. Furthermore, scanning electron microscopy (SEM) and molecular dynamic simulation analyses were performed to deeply investigate the interaction between solvent and targeted compounds. This study not only provides an eco-friendly method for high-efficient extraction of GLA and ISL from licorice but also illustrates the mechanism of the increased extraction efficacy, which may contribute to the application of licorice and deep insight into extraction mechanism using DES.
Collapse
Affiliation(s)
- Chen Xing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Wen-Qiang Cui
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xin-Shu Zou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jing-You Hao
- Harbin Lvdasheng Animal Medicine Manufacture Co., Ltd, China
| | - Si-Di Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Ting-Ting Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xiao-Zhen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Yan-Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Shu-Guang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhi-Yun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China; Harbin Herb& Herd Bio-Technology Co., Ltd, China.
| |
Collapse
|
35
|
Liu K, Tan JN, Wei Y, Li C, Dou Y, Zhang Z. Application of choline chloride-based deep eutectic solvents for the extraction of dopamine from purslane (Portulaca oleracea L.). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
36
|
Abouheif SA, Sallam SM, El Sohafy SM, Kassem FF, Shawky E. Optimization of terpene lactones and ginkgolic acids extraction from Ginkgo biloba L. leaves by natural deep eutectic solvents using experimental design and HPTLC-MS analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|
38
|
Babu AS, Sangeetha A, Jaganmohan R. Green Solvents for Food Processing Applications. Food Chem 2021. [DOI: 10.1002/9781119792130.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Dong JN, Wu GD, Dong ZQ, Yang D, Bo YK, An M, Zhao LS. Natural deep eutectic solvents as tailored and sustainable media for the extraction of five compounds from compound liquorice tablets and their comparison with conventional organic solvents. RSC Adv 2021; 11:37649-37660. [PMID: 35496443 PMCID: PMC9043790 DOI: 10.1039/d1ra06338c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
An efficient and environmentally friendly ultrasound-assisted (UAE) natural deep eutectic solvent (NADES) extraction method was applied for the extraction of five bioactive compounds (liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin) from compound liquorice tablets (CPLTs), and the antioxidant activities of these compounds were evaluated. In this study, eighteen different NADES systems based on either two or three components were tested and a 1,4-butanediol–levulinic acid system (1 : 3 molar ratio) was selected as a topgallant solvent for maximizing analyte extraction yields. Various extraction parameters, such as water content, liquid/solid ratio, extraction time and temperature, were systematically optimized by single-factor and response surface methodology (RSM) experiments. The results indicated that the optimum extraction conditions for the analytes featured a water content of 17%, a liquid/solid ratio of 42 mL g−1 and an extraction time of 30 min. The extracted amounts of liquiritin, isoliquiritin, liquiritigenin, glycyrrhizic acid and isoliquiritigenin reached 5.60, 3.17, 1.27, 74.62 and 1.34 mg g−1, respectively, under optimized conditions, which were much higher than those extracted using conventional organic solvents. In addition, antioxidant tests revealed that the NADES extracts showed higher DPPH and hydroxyl radical-scavenging capacity than the conventional solvent extracts used for comparison. This study provides a suitable approach for efficiently extracting the bioactive compounds of CPLTs. Meanwhile, NADESs can be extended to other natural products as green extraction media. A 1,4-butanediol–levulinic acid system was selected as a topgallant solvent and extraction parameters were optimized. NADES extracts exhibited higher extraction efficiency and in vitro antioxidant activities than conventional solvent extracts.![]()
Collapse
Affiliation(s)
- Jia-Ni Dong
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Guo-Dong Wu
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Zhi-Qiang Dong
- The First Affiliated Hospital of Baotou Medical College Baotou Inner Mongolia 014010 China
| | - Dan Yang
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Yu-Kun Bo
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Ming An
- Baotou Medical College Baotou Inner Mongolia 014060 China +86 13847201181 +86 13514899325 +86 13474977691
| | - Long-Shan Zhao
- Shenyang Pharmaceutical University Shenyang Liaoning Province 110016 China +86 24 43520571
| |
Collapse
|
40
|
Ortega-Zamora C, González-Sálamo J, Hernández-Borges J. Deep Eutectic Solvents Application in Food Analysis. Molecules 2021; 26:6846. [PMID: 34833939 PMCID: PMC8617738 DOI: 10.3390/molecules26226846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Current trends in Analytical Chemistry are focused on the development of more sustainable and environmentally friendly procedures. However, and despite technological advances at the instrumental level having played a very important role in the greenness of the new methods, there is still work to be done regarding the sample preparation stage. In this sense, the implementation of new materials and solvents has been a great step towards the development of "greener" analytical methodologies. In particular, the application of deep eutectic solvents (DESs) has aroused great interest in recent years in this regard, as a consequence of their excellent physicochemical properties, general low toxicity, and high biodegradability if they are compared with classical organic solvents. Furthermore, the inclusion of DESs based on natural products (natural DESs, NADESs) has led to a notable increase in the popularity of this new generation of solvents in extraction techniques. This review article focuses on providing an overview of the applications and limitations of DESs in solvent-based extraction techniques for food analysis, paying especial attention to their hydrophobic or hydrophilic nature, which is one of the main factors affecting the extraction procedure, becoming even more important when such complex matrices are studied.
Collapse
Affiliation(s)
- Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n., 38206 San Cristóbal de La Laguna, Spain;
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n., 38206 San Cristóbal de La Laguna, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n., 38206 San Cristóbal de La Laguna, Spain
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n., 38206 San Cristóbal de La Laguna, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n., 38206 San Cristóbal de La Laguna, Spain
| |
Collapse
|
41
|
Novel hydrophobic deep eutectic solvents for ultrasound-assisted dispersive liquid-liquid microextraction of trace non-steroidal anti-inflammatory drugs in water and milk samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Makkliang F, Siriwarin B, Yusakul G, Phaisan S, Sakdamas A, Chuphol N, Putalun W, Sakamoto S. Biocompatible natural deep eutectic solvent-based extraction and cellulolytic enzyme-mediated transformation of Pueraria mirifica isoflavones: a sustainable approach for increasing health-bioactive constituents. BIORESOUR BIOPROCESS 2021; 8:76. [PMID: 38650188 PMCID: PMC10992110 DOI: 10.1186/s40643-021-00428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
The presence of specific gut microflora limits the biotransformation of Pueraria mirifica isoflavone (PMI) glycosides into absorbable aglycones, thus limiting their health benefits. Cellulolytic enzyme-assisted extraction (CAE) potentially solves this issue; however, solvent extraction requires recovery of the hydrophobic products. Here, we established the simultaneous transformation and extraction of PMIs using cellulolytic enzymes and natural deep eutectic solvents (NADESs). The NADES compositions were optimized to allow the use of NADESs as CAE media, and the extraction parameters were optimized using response surface methodology (RSM). The optimal conditions were 14.7% (v/v) choline chloride:propylene glycol (1:2 mol ratio, ChCl:PG) at 56.1 °C for the cellulolytic enzyme (262 mU/mL) reaction in which daidzin and genistin were extracted and wholly transformed to their aglycones daidzein and genistein. The extraction of PMIs using ChCl:PG is more efficient than that using conventional solvents; additionally, biocompatible ChCl:PG enhances cellulolytic enzyme activity, catalyzing the transformation of PMIs into compounds with higher estrogenicity and absorbability.
Collapse
Affiliation(s)
- Fonthip Makkliang
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat, Thailand
| | - Boondaree Siriwarin
- Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Suppalak Phaisan
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Attapon Sakdamas
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Natthapon Chuphol
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
43
|
van Lente J, Pazos Urrea M, Brouwer T, Schuur B, Lindhoud S. Complex coacervates as extraction media. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:5812-5824. [PMID: 34456626 PMCID: PMC8366913 DOI: 10.1039/d1gc01880a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 05/29/2023]
Abstract
Various solvents such as ionic liquids, deep eutectic solvents, and aqueous two phase systems have been suggested as greener alternatives to existing extraction processes. We propose to add macroscopic complex coacervates to this list. Complex coacervates are liquid-like forms of polyion condensates and consist of a complex of oppositely charged polyions and water. Previous research focussing on the biological significance of these polyion-rich phases has shown that polyion condensates have the ability to extract certain solutes from water and back-extract them by changing parameters such as ionic strength and pH. In this study, we present the distribution coefficients of five commonly used industrial chemicals, namely lactic acid, butanol, and three types of lipase enzymes in poly(ethylenimine)/poly(acrylic acid) complex coacervates. It was found that the distribution coefficients can vary strongly upon variation of tunable parameters such as polyion ratio, ionic strength, polyion and compound concentrations, and temperature. Distribution coefficients ranged from approximately 2 to 50 depending on the tuning of the system parameters. It was also demonstrated that a temperature-swing extraction is possible, with back-extraction of butanol from complex coacervates with a recovery of 21.1%, demonstrating their potential as extraction media.
Collapse
Affiliation(s)
- Jéré van Lente
- Department of Molecules & Materials, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
- Nanobiophysics group, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
- Membrane Science & Technology cluster, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Monica Pazos Urrea
- Department of Chemical Engineering, Norwegian University of Science and Technology NO-7491 Trondheim Norway
| | - Thomas Brouwer
- Sustainable Process Technology group, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Boelo Schuur
- Sustainable Process Technology group, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| | - Saskia Lindhoud
- Department of Molecules & Materials, University of Twente, MESA+ Institute for Nanotechnology, Faculty of Science and Technology Drienerlolaan 5 7522 NB Enschede The Netherlands
| |
Collapse
|
44
|
Altunay N. An optimization approach for fast, simple and accurate determination of indigo-carmine in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119791. [PMID: 33892249 DOI: 10.1016/j.saa.2021.119791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
This study report optimization of vortex-assisted natural deep eutectic solvent based liquid-phase microextraction (VA-NADES-LPME) for determination of indigo-carmine in some food samples by UV-Visible spectrophotometer. To ensure efficient extraction, nine different NADES were prepared and tested for the extraction of indigo-carmine. In order to increase extraction efficiency of indigo-carmine, the effects of VA-NADES-LPME variables and their interactions were optimized with central composite design. The optimized method exhibited a linear range between 10 and 900 ng mL-1. Limit of detection, limit of quantification and enrichment factor were determined as 3.3 ng mL-1, 10 ng mL-1 and 135-fold, respectively. The applicability of the optimized method was investigated in selected food samples using the matrix-matching calibration curve. Using optimised experimental conditions (pH of 3.2, 75 µL of NADES-4, 285 µL of THF, and 4 min vortexing), satisfactory recovery results were found in the range of 95.9-104.2% with 1.4-3.7% of relative standard deviation. Finally, the optimized method was economical, simple, green, requires less laborious sampling, and provides superior accuracy and precision in trace-level analysis.
Collapse
Affiliation(s)
- Nail Altunay
- Sivas Cumhuriyet University, Faculty of Sciences, Department of Biochemistry, TR-58140 Sivas, Turkey.
| |
Collapse
|
45
|
Zuo J, Geng S, Kong Y, Ma P, Fan Z, Zhang Y, Dong A. Current Progress in Natural Deep Eutectic Solvents for the Extraction of Active Components from Plants. Crit Rev Anal Chem 2021; 53:177-198. [PMID: 34324395 DOI: 10.1080/10408347.2021.1946659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the last decade, natural deep eutectic solvents (NADESs) have gained more and more attention due to their green, convenient preparation, low toxicity and biodegradability. It is widely used in various fields, especially in the extraction of active components from plants, formed by the combination of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) at a certain condition. In this article, six preparation methods of NADESs were summarized and the interactions that occur in the eutectic behavior of NADES including hydrogen bonding, electrostatic interaction and van der Waals force were also reviewed. What is more, its significant extraction capacity on flavonoids, phenols, alkaloids and plant pigments endows its extensive applications in the extraction of active components from medicinal plants. Extraction factors including solvents properties (viscosity, carbon chain length, number of hydroxyl groups), extraction condition (water content, extraction temperature, extraction time, solid-liquid ratio), extraction method and recycling method were discussed. In addition, NADESs can also be combined with other technologies, like molecular imprinting, monolithic column, to achieve efficient and specific extraction of active ingredients. Further systematic studies on the biodegradability and biotoxicity are put forward to be urgent.
Collapse
Affiliation(s)
- Jiale Zuo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Shuqin Geng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Zhaosheng Fan
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co.,Ltd, Tongzhou Dis, Beijing, China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| |
Collapse
|
46
|
Yu J, Zhao L, Sun X, Sun C, Wang X. Application of choline chloride deep eutectic solvents and high-speed counter-current chromatography to the extraction and purification of flavonoids from the thorns of Gleditsia sinensis Lam. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:457-465. [PMID: 32945032 DOI: 10.1002/pca.2993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Flavonoids are the most important and effective constituents in the thorns of Gleditsia sinensis Lam., which have been known to show antimicrobial, antiviral, anticancer, and anticoagulant activities. However, efficient extraction and separation methods for these flavonoids are not currently established. OBJECTIVE To develop an efficient method for efficient extraction and rapid separation of flavonoids from the thorns of G. sinensis using choline chloride deep eutectic solvents (DESs) and high-speed counter-current chromatography (HSCCC). METHODOLOGY As for extraction, DES composed of choline chloride and 1,4-butanediol at 1:4 mole ratio, at an extraction temperature of 55°C, 20% of water content, 1:30 mg/mL for solid-liquid ratio, and 45 min for extraction time were selected as the optimised extraction method for flavonoids from the thorns of G. sinensis. As for separation, dichloromethane-methanol-n-butanol-water (4:3:0.5:2, v/v) was applied to develop a successful strategy for purification of the flavonoids by HSCCC. RESULTS Totally, five flavonoids, including padmatin (1, 3.7 mg), isovitexin (2, 2.5 mg), 3',5,5',7-tetrahydroxyflavanonol (3, 11.2 mg), 7,4'-dihydroxy-5,3'-dimethoxyflavanonol (4, 4.1 mg), and quercetin (5, 3.8 mg), were successfully obtained from 250 mg of the extracted flavonoids by HSCCC. CONCLUSION Results demonstrated that the combination of DES and HSCCC is a powerful technique for the extraction, and isolation of flavonoids from the thorns of G. sinensis compared with conventional organic solvent extraction and column chromatography, which have been proven to provide higher extraction efficiency for flavonoids and rapidly obtain the quality control markers of flavonoids from the investigated plant.
Collapse
Affiliation(s)
- Jinqian Yu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Lei Zhao
- Reyoung Pharmaceutical Co., Ltd, Jinan, P. R. China
| | - Xiaowei Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
47
|
Oliveira G, Marques C, de Oliveira A, de Almeida dos Santos A, do Amaral W, Ineu RP, Leimann FV, Peron AP, Igarashi-Mafra L, Mafra MR. Extraction of bioactive compounds from Curcuma longa L. using deep eutectic solvents: In vitro and in vivo biological activities. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Polyphenolic Compounds Extracted and Purified from Buddleja Globosa Hope (Buddlejaceae) Leaves Using Natural Deep Eutectic Solvents and Centrifugal Partition Chromatography. Molecules 2021; 26:molecules26082192. [PMID: 33920316 PMCID: PMC8070204 DOI: 10.3390/molecules26082192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chemical profiling of Buddleja globosa was performed by high-performance liquid chromatography coupled to electrospray ionization (HPLC-DAD-ESI-IT/MS) and quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF/MS). The identification of 17 main phenolic compounds in B. globosa leaf extracts was achieved. Along with caffeoyl glucoside isomers, caffeoylshikimic acid and several verbascoside derivatives (β-hydroxyverbascoside and β-hydroxyisoverbascoside) were identified. Among flavonoid compounds, the presence of 6-hydroxyluteolin-7-O-glucoside, quercetin-3-O-glucoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside was confirmed. Campneoside I, forsythoside B, lipedoside A and forsythoside A were identified along with verbascoside, isoverbascoside, eukovoside and martynoside. The isolation of two bioactive phenolic compounds verbascoside and forsythoside B from Buddleja globosa (Buddlejaceae) was successfully achieved by centrifugal partition chromatography (CPC). Both compounds were obtained in one-step using optimized CPC methodology with the two-phase solvent system comprising ethyl acetate-n-butanol-ethanol-water (0.25:0.75:0.1:1, v/v). Additionally, eight Natural Deep Eutectic Solvents (NADESs) were tested for the extraction of polyphenols and compared with 80% methanol. The contents of verbascoside and luteolin 7-O-glucoside after extraction with 80% methanol were 26.165 and 3.206 mg/g, respectively. Among the NADESs tested in this study, proline- citric acid (1:1) and choline chloride-1, 2- propanediol (1:2) were the most promising solvents. With these NADES, extraction yields for verbascoside and luteolin 7-O-glucoside were 51.045 and 4.387 mg/g, respectively. Taken together, the results of this study confirm that CPC enabled the fast isolation of bioactive polyphenols from B. globosa. NADESs displayed higher extraction efficiency of phenolic and therefore could be used as an ecofriendly alternative to classic organic solvents.
Collapse
|
49
|
Mansinhos I, Gonçalves S, Rodríguez-Solana R, Ordóñez-Díaz JL, Moreno-Rojas JM, Romano A. Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants (Basel) 2021; 10:582. [PMID: 33918721 PMCID: PMC8069433 DOI: 10.3390/antiox10040582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed at evaluating the effectiveness of different natural deep eutectic solvents (NADES) on the extraction of phenolic compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco, on the antioxidant activity, and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase (Tyr) inhibitory capacities. Ten different NADES were used in this research and compared with conventional solvents. Ultrasound-assisted extraction (UAE) for 60 min proved to be the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts showed the highest total phenolic contents (56.00 ± 0.77 mgGAE/gdw) and antioxidant activity [64.35 ± 1.74 mgTE/gdw and 72.13 ± 0.97 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH) and 2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, respectively]. These extracts also exhibited enzymes inhibitory capacity particularly against Tyr and AChE. Even so, organic acid-based NADES showed to be the best extractants producing extracts with considerable ability to inhibit enzymes. Twenty-four phenolic compounds were identified by HPLC-HRMS, being rosmarinic acid, ferulic acid and salvianolic acid B the major compounds. The results confirmed that the combination of UAE and NADES provide an excellent alternative to organic solvents for sustainable and green extraction, and have huge potential for use in industrial applications involving the extraction of bioactive compounds from plants.
Collapse
Affiliation(s)
- Inês Mansinhos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.)
| | - Sandra Gonçalves
- MED—Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.)
| | - Raquel Rodríguez-Solana
- MED—Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.)
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (J.L.O.-D.); (J.M.M.-R.)
| | - José Luis Ordóñez-Díaz
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (J.L.O.-D.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (J.L.O.-D.); (J.M.M.-R.)
| | - Anabela Romano
- MED—Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (I.M.); (R.R.-S.)
| |
Collapse
|
50
|
Cui Z, Enjome Djocki AV, Yao J, Wu Q, Zhang D, Nan S, Gao J, Li C. COSMO-SAC-supported evaluation of natural deep eutectic solvents for the extraction of tea polyphenols and process optimization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|