1
|
Mohammad A, Srivastava M, Ahmad I, Singh R, Deen PR, Rai A, Lal B, Srivastava N, Gupta VK. WITHDRAWN: Prospects of graphene quantum dots preparation using lignocellulosic wastes for application in photofermentative hydrogen production. CHEMOSPHERE 2024:142804. [PMID: 39029708 DOI: 10.1016/j.chemosphere.2024.142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024]
Abstract
This paper has been withdrawn.
Collapse
Affiliation(s)
- Akbar Mohammad
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Manish Srivastava
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Irfan Ahmad
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Rajeev Singh
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Prakash Ranjan Deen
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Ashutosh Rai
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Basant Lal
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Neha Srivastava
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Vijai Kumar Gupta
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| |
Collapse
|
2
|
Dashtian K, Afshar Gheshlaghi F, Zare-Dorabei R, Mahdavi M. Prussian Blue Analogues-Derived Molecularly Imprinted Nanozyme Array for Septicemia Detection. ACS APPLIED BIO MATERIALS 2024; 7:3346-3357. [PMID: 38695543 DOI: 10.1021/acsabm.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Septicemia, a severe bacterial infection, poses significant risks to human health. Early detection of septicemia by tracking specific biomarkers is crucial for a timely intervention. Herein, we developed a molecularly imprinted (MI) TiO2-Fe-CeO2 nanozyme array derived from Ce[Fe(CN)6] Prussian blue analogues (PBA), specifically targeting valine, leucine, and isoleucine, as potential indicators of septicemia. The synthesized nanozyme arrays were thoroughly characterized using various analytical techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscope, and energy-dispersive X-ray. The results confirmed their desirable physical and chemical properties, indicating their suitability for the oxidation of 3,3',5,5'-tetramethylbenzidine serving as a colorimetric probe in the presence of a persulfate oxidizing agent, further highlighting the potential of these arrays for sensitive and accurate detection applications. The MITiO2 shell selectively captures valine, leucine, and isoleucine, partially blocking the cavities for substrate access and thereby hindering the catalyzed TMB chromogenic reaction. The nanozyme array demonstrated excellent performance with linear detection ranges of 5 μM to 1 mM, 10-450 μM, and 10-450 μM for valine, leucine, and isoleucine, respectively. Notably, the corresponding limit of detection values were 0.69, 1.46, and 2.76 μM, respectively. The colorimetric assay exhibited outstanding selectivity, reproducibility, and performance in the detection of analytes in blood samples, including C-reactive protein at a concentration of 61 mg/L, procalcitonin at 870 ng/dL, and the presence of Pseudomonas aeruginosa bacteria. The utilization of Ce[Fe(CN)6]-derived MITiO2-Fe-CeO2 nanozyme arrays holds considerable potential in the field of septicemia detection. This approach offers a sensitive and specific method for early diagnosis and intervention, thereby contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Afshar Gheshlaghi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| |
Collapse
|
3
|
Miao Y, Xia M, Tao C, Zhang J, Ni P, Jiang Y, Lu Y. Iron-doped carbon nitride with enhanced peroxidase-like activity for smartphone-based colorimetric assay of total antioxidant capacity. Talanta 2024; 267:125141. [PMID: 37672985 DOI: 10.1016/j.talanta.2023.125141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
The facile detection of total antioxidant capacity (TAC) is limited by in-situ analysis, because it usually requires complex laboratory equipments. Here, a colorimetric assay for TAC detection is developed based on the peroxidase-like activity of iron-doped carbon nitride (Fe/NC) and the smartphone platform. The peroxidase-like activity of carbon nitride is greatly improved by the introduction of Fe atoms, and the active sites turn to Fe-Nx coordination groups in the Fe/NC. The inhibition mechanism of the chromogenic reaction for different kinds of antioxidants is also studied. The colorimetric assay is fabricated by the relationship of absorbance-color-antioxidant content and applied successfully to the TAC detection of several fruit juicesand commercial beverages. This work not only provides a promising approach for convenient in-situ TAC assay without the use of large instruments, but also expands the application of nanozymes in nutritional value assessment of foods.
Collapse
Affiliation(s)
- Yanrong Miao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Mingyuan Xia
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chenyu Tao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiqing Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
4
|
Das T, Das S, Kumar P, C A B, Mandal D. Coal waste-derived synthesis of yellow oxidized graphene quantum dots with highly specific superoxide dismutase activity: characterization, kinetics, and biological studies. NANOSCALE 2023; 15:17861-17878. [PMID: 37885430 DOI: 10.1039/d3nr04259f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The disintegration of coal-based precursors for the scalable production of nanozymes relies on the fate of solvothermal pyrolysis. Herein, we report a novel economic and scalable strategy to fabricate yellow luminescent graphene quantum dots (YGQDs) by remediating unburnt coal waste (CW). The YGQDs (size: 7-8 nm; M.W: 3157.9 Da) were produced using in situ "anion-radical" assisted bond cleavage in water (within 8 h; at 121 °C) with yields of ∼87%. The presence of exposed surface and edge groups, such as COOH, C-O-C, and O-H, as structural defects accounted for its high fluorescence with εmax ∼530 nm at pH 7. Besides, these defects also acted as radical stabilizers, demonstrating prominent anti-oxidative activity of ∼4.5-fold higher than standard ascorbic acid (AA). In addition, the YGQDs showed high biocompatibility towards mammalian cells, with 500 μM of treatment dose showing <15% cell death. The YGQDs demonstrated specific superoxide dismutase (SOD) activity wherein 15 μM YGQDs equalled the activity of 1-unit biological SOD (bSOD), measured using the pyrogallol assay. The Km for YGQDs was ∼10-fold higher than that for bSOD. However, the YGQDs retained their SOD activity in harsh conditions like high temperatures or denaturing reactions, where the activity of bSOD is completely lost. The binding affinity of YGQDs for superoxide ions, measured from isothermal calorimetry (ITC) studies, was only 10-fold lower than that of bSOD (Kd of 586 nM vs. 57.3 nM). Further, the pre-treatment of YGQDs (∼10-25 μM) increased the cell survivability to >75-90% in three cell lines during ROS-mediated cell death, with the highest survivability being shown for C6-cells. Next, the ROS-induced apoptosis in C6-cells (model for neurodegenerative diseases study), wherein YGQDs uptake was confirmed by confocal microscopy, showed ∼5-fold apoptosis alleviation with only 5 μM pretreatment. The YGQDs also restored the expression of pro-inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-6) and anti-inflammatory Th2 cytokines (IL-10) to their basal levels, with a net >3-fold change observed. This further explains the molecular mechanism for the antioxidant property of YGQDs. The high specific SOD activity associated with YGQDs may provide the cheapest alternative source for producing large-scale SOD-based nanozymes that can treat various oxidative stress-linked disorders/diseases.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| |
Collapse
|
5
|
Resculpting carbon dots via electrochemical etching. Sci Rep 2023; 13:3710. [PMID: 36878950 PMCID: PMC9988976 DOI: 10.1038/s41598-023-30547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Substantial efforts are directed into exploring the structure-properties relationships of photoluminescent Carbon dots (C-dots). This study unravels a resculpting mechanism in C-dots that is triggered by electrochemical etching and proceeds via extensive surface oxidation and carbon-carbon breakage. The process results in the gradual shrinkage of the nanoparticles and can enhance the quantum yield by more than half order of magnitude compared to the untreated analogues.
Collapse
|
6
|
A Review of Enhanced Electrocatalytic Composites Hydrogen/Oxygen Evolution Based on Quantum Dot. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Gulati S, Baul A, Amar A, Wadhwa R, Kumar S, Varma RS. Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:554. [PMID: 36770515 PMCID: PMC9920802 DOI: 10.3390/nano13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Arikta Baul
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Anoushka Amar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rachit Wadhwa
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
8
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Kurniawan D, Gholami A, Chiang WH. Bioresource-Functionalized Quantum Dots for Energy Generation and Storage: Recent Advances and Feature Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3905. [PMID: 36364683 PMCID: PMC9658778 DOI: 10.3390/nano12213905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The exponential increase in global energy demand in daily life prompts us to search for a bioresource for energy production and storage. Therefore, in developing countries with large populations, there is a need for alternative energy resources to compensate for the energy deficit in an environmentally friendly way and to be independent in their energy demands. The objective of this review article is to compile and evaluate the progress in the development of quantum dots (QDs) for energy generation and storage. Therefore, this article discusses the energy scenario by presenting the basic concepts and advances of various solar cells, providing an overview of energy storage systems (supercapacitors and batteries), and highlighting the research progress to date and future opportunities. This exploratory study will examine the systematic and sequential advances in all three generations of solar cells, namely perovskite solar cells, dye-sensitized solar cells, Si cells, and thin-film solar cells. The discussion will focus on the development of novel QDs that are economical, efficient, and stable. In addition, the current status of high-performance devices for each technology will be discussed in detail. Finally, the prospects, opportunities for improvement, and future trends in the development of cost-effective and efficient QDs for solar cells and storage from biological resources will be highlighted.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| |
Collapse
|
9
|
Lin X, Zhou Z, Li Q, Xu D, Xia S, Leng B, Zhai G, Zhang S, Sun L, Zhao G, Chen J, Li X. Direct Oxygen Transfer from H
2
O to Cyclooctene over Electron‐Rich RuO
2
Nanocrystals for Epoxidation and Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202207108. [DOI: 10.1002/anie.202207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiu Lin
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoyu Zhou
- School of Chemical Science and Engineering Shanghai Key Lab of Chemical Assessment and Sustainability Tongji University Shanghai 200092 P. R. China
| | - Qi‐Yuan Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dong Xu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Si‐Yuan Xia
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Bing‐Liang Leng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guang‐Yao Zhai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shi‐Nan Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu‐Han Sun
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering Shanghai Key Lab of Chemical Assessment and Sustainability Tongji University Shanghai 200092 P. R. China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xin‐Hao Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
10
|
Shi R, Wei S, Cheng S, Zeng J, Wang Y, Shu X. Colorimetric Detection of Glucose Using WO3 Nanosheets as Peroxidase-mimetic Enzyme. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lin X, Zhou Z, Li QY, Xu D, Xia SY, Leng BL, Zhai GY, Zhang SN, Sun LH, Zhao G, Chen JS, Li XH. Direct Oxygen Transfer from H2O to Cyclooctene over Electron‐Rich RuO2 Nanocrystals for Epoxidation and Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiu Lin
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 上海市闵行区上海交通大学建工楼513 200240 上海市 CHINA
| | - Zhaoyu Zhou
- Tongji University School of Chemical Science and Engineering CHINA
| | - Qi-Yuan Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Dong Xu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Si-Yuan Xia
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Bing-Liang Leng
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Guang-Yao Zhai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Shi-Nan Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Lu-Han Sun
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Guohua Zhao
- Tongji University School of Chemical Science and Engineering CHINA
| | - Jie-Sheng Chen
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xin-Hao Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering No.800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
12
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Kurniawan D, Gholami A, Rahmanian V, Omidifar N, Chiang WH. Recent Advances in Inflammatory Diagnosis with Graphene Quantum Dots Enhanced SERS Detection. BIOSENSORS 2022; 12:bios12070461. [PMID: 35884264 PMCID: PMC9313165 DOI: 10.3390/bios12070461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/08/2023]
Abstract
Inflammatory diseases are some of the most common diseases in different parts of the world. So far, most attention has been paid to the role of environmental factors in the inflammatory process. The diagnosis of inflammatory changes is an important goal for the timely diagnosis and treatment of various metastatic, autoimmune, and infectious diseases. Graphene quantum dots (GQDs) can be used for the diagnosis of inflammation due to their excellent properties, such as high biocompatibility, low toxicity, high stability, and specific surface area. Additionally, surface-enhanced Raman spectroscopy (SERS) allows the very sensitive structural detection of analytes at low concentrations by amplifying electromagnetic fields generated by the excitation of localized surface plasmons. In recent years, the use of graphene quantum dots amplified by SERS has increased for the diagnosis of inflammation. The known advantages of graphene quantum dots SERS include non-destructive analysis methods, sensitivity and specificity, and the generation of narrow spectral bands characteristic of the molecular components present, which have led to their increased application. In this article, we review recent advances in the diagnosis of inflammation using graphene quantum dots and their improved detection of SERS. In this review study, the graphene quantum dots synthesis method, bioactivation method, inflammatory biomarkers, plasma synthesis of GQDs and SERS GQD are investigated. Finally, the detection mechanisms of SERS and the detection of inflammation are presented.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
- Correspondence: (S.M.M.); (W.-H.C.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
- Correspondence: (S.M.M.); (W.-H.C.)
| |
Collapse
|
13
|
Marin D, Marchesan S. Carbon Graphitization: Towards Greener Alternatives to Develop Nanomaterials for Targeted Drug Delivery. Biomedicines 2022; 10:1320. [PMID: 35740342 PMCID: PMC9220131 DOI: 10.3390/biomedicines10061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon nanomaterials have attracted great interest for their unique physico-chemical properties for various applications, including medicine and, in particular, drug delivery, to solve the most challenging unmet clinical needs. Graphitization is a process that has become very popular for their production or modification. However, traditional conditions are energy-demanding; thus, recent efforts have been devoted to the development of greener routes that require lower temperatures or that use waste or byproducts as a carbon source in order to be more sustainable. In this concise review, we analyze the progress made in the last five years in this area, as well as in their development as drug delivery agents, focusing on active targeting, and conclude with a perspective on the future of the field.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
14
|
Zhang Y, Gao X, Ye Y, Shen Y. Fe-Doped polydopamine nanoparticles with peroxidase-mimicking activity for the detection of hypoxanthine related to meat freshness. Analyst 2022; 147:956-964. [PMID: 35170599 DOI: 10.1039/d1an02325j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rapid and accurate monitoring of food freshness to provide consumers with high-quality meat continues to be of tremendous importance to the food industry. In this report, an efficient Fe-doped polydopamine (Fe-PDA) nanozyme with peroxidase-mimicking activity was synthesized by a high-temperature hydrothermal method, and was applied to a spectrophotometric sensing system, which successfully reports the concentration of hypoxanthine (Hx) related to meat freshness. The Fe-PDA nanozyme showed excellent peroxidase simulation activity, which was primarily verified by steady-state kinetics experiments. In the presence of xanthine oxidase (XOD), Hx can react quantitatively with dissolved O2 to generate H2O2, which can be further catalyzed and produce hydroxyl radicals (•OH) under acidic conditions via the Fe-PDA nanozyme and oxidize colorless TMB to blue oxTMB with absorbance at 653 nm. The absorbance at 653 nm expressed a clear linear relationship with hypoxanthine concentration in the range of 5.13-200 μM, and the detection limit was 1.54 μM. This method was further assessed by measuring the recovery of Hx added to meat samples, which showed promising accuracy. Overall, the developed Fe-PDA nanozyme with excellent peroxidase-mimicking activity is cost-effective, high-performance and easy to produce, offering an efficient and low-cost sensing system based on spectrophotometry for meat freshness determination as an alternative to conventional methods.
Collapse
Affiliation(s)
- Yiyin Zhang
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
15
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Omidifar N, Bahrani S, Vijayakameswara Rao N, Babapoor A, Gholami A, Chiang WH. Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications. Polymers (Basel) 2022; 14:617. [PMID: 35160606 PMCID: PMC8839953 DOI: 10.3390/polym14030617] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Today, nanomedicine seeks to develop new polymer composites to overcome current problems in diagnosing and treating common diseases, especially cancer. To achieve this goal, research on polymer composites has expanded so that, in recent years, interdisciplinary collaborations between scientists have been expanding day by day. The synthesis and applications of bioactive GQD-based polymer composites have been investigated in medicine and biomedicine. Bioactive GQD-based polymer composites have a special role as drug delivery carriers. Bioactive GQDs are one of the newcomers to the list of carbon-based nanomaterials. In addition, the antibacterial and anti-diabetic potentials of bioactive GQDs are already known. Due to their highly specific surface properties, π-π aggregation, and hydrophobic interactions, bioactive GQD-based polymer composites have a high drug loading capacity, and, in case of proper correction, can be used as an excellent option for the release of anticancer drugs, gene carriers, biosensors, bioimaging, antibacterial applications, cell culture, and tissue engineering. In this paper, we summarize recent advances in using bioactive GQD-based polymer composites in drug delivery, gene delivery, thermal therapy, thermodynamic therapy, bioimaging, tissue engineering, bioactive GQD synthesis, and GQD green resuscitation, in addition to examining GQD-based polymer composites.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (S.B.)
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (M.Y.K.); (S.B.)
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabil, Ardabil 56199-11367, Iran;
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
16
|
Lee J, Liao H, Wang Q, Han J, Han J, Shin HE, Ge M, Park W, Li F. Exploration of nanozymes in viral diagnosis and therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210086. [PMID: 37324577 PMCID: PMC10191057 DOI: 10.1002/exp.20210086] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 06/15/2023]
Abstract
Nanozymes are nanomaterials with similar catalytic activities to natural enzymes. Compared with natural enzymes, they have numerous advantages, including higher physiochemical stability, versatility, and suitability for mass production. In the past decade, the synthesis of nanozymes and their catalytic mechanisms have advanced beyond the simple replacement of natural enzymes, allowing for fascinating applications in various fields such as biosensing and disease treatment. In particular, the exploration of nanozymes as powerful toolkits in diagnostic viral testing and antiviral therapy has attracted growing attention. It can address the great challenges faced by current natural enzyme-based viral testing technologies, such as high cost and storage difficulties. Therefore, nanozyme can provide a novel nanozyme-based antiviral therapeutic regime with broader availability and generalizability that are keys to fighting a pandemic such as COVID-19. Herein, we provide a timely review of the state-of-the-art nanozymes regarding their catalytic activities, as well as a focused discussion on recent research into the use of nanozymes in viral testing and therapy. The remaining challenges and future perspectives will also be outlined. Ultimately, this review will inform readers of the current knowledge of nanozymes and inspire more innovative studies to push forward the frontier of this field.
Collapse
Affiliation(s)
- Jiyoung Lee
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Hongwei Liao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qiyue Wang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jieun Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Jun‐Hyeok Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of Biological ScienceKorea UniversitySeoulRepublic of Korea
| | - Ha Eun Shin
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Minghua Ge
- Zhejiang Provincial People's Hospital HangzhouHangzhouP. R. China
| | - Wooram Park
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Fangyuan Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouP. R. China
| |
Collapse
|
17
|
Color-tunable fluorescent nitrogen-doped graphene quantum dots derived from pineapple leaf fiber biomass to detect Hg2+. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, van der Kuur C, Arjmand M. Synthesis, Applications, and Prospects of Graphene Quantum Dots: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102683. [PMID: 34549513 DOI: 10.1002/smll.202102683] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Indexed: 05/24/2023]
Abstract
Graphene quantum dot (GQD) is one of the youngest superstars of the carbon family. Since its emergence in 2008, GQD has attracted a great deal of attention due to its unique optoelectrical properties. Non-zero bandgap, the ability to accommodate functional groups and dopants, excellent dispersibility, highly tunable properties, and biocompatibility are among the most important characteristics of GQDs. To date, GQDs have displayed significant momentum in numerous fields such as energy devices, catalysis, sensing, photodynamic and photothermal therapy, drug delivery, and bioimaging. As this field is rapidly evolving, there is a strong need to identify the emerging challenges of GQDs in recent advances, mainly because some novel applications and numerous innovations on the ease of synthesis of GQDs are not systematically reviewed in earlier studies. This feature article provides a comparative and balanced discussion of recent advances in synthesis, properties, and applications of GQDs. Besides, current challenges and future prospects of these emerging carbon-based nanomaterials are also highlighted. The outlook provided in this review points out that the future of GQD research is boundless, particularly if upcoming studies focus on the ease of purification and eco-friendly synthesis along with improving the photoluminescence quantum yield and production yield of GQDs.
Collapse
Affiliation(s)
- Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ehsan Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Milad Kamkar
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ali Akbari Sehat
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sara Dordanihaghighi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Colin van der Kuur
- ZEN Graphene Solutions, 210-1205 Amber Dr., Thunder Bay, ON, P7B 6M4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
19
|
Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatic compounds (NACs) are two classifications of environmental pollutants that have become a source of health concerns. As a result, there have been several efforts towards the development of analytical methods that are efficient and affordable that can sense these pollutants. In recent decades, a wide range of techniques has been developed for the detection of pollutants present in the environment. Among these different techniques, the use of semiconductor nanomaterials, also known as quantum dots, has continued to gain more attention in sensing because of the optical properties that make them useful in the identification and differentiation of pollutants in water bodies. Reported studies have shown great improvement in the sensing of these pollutants. This review article starts with an introduction on two types of organic pollutants, namely polycyclic aromatic hydrocarbons and nitro-aromatic explosives. This is then followed by different quantum dots used in sensing applications. Then, a detailed discussion on different groups of quantum dots, such as carbon-based quantum dots, binary and ternary quantum dots and quantum dot composites, and their application in the sensing of organic pollutants is presented. Different studies on the comparison of water-soluble quantum dots and organic-soluble quantum dots of a fluorescence sensing mechanism are reviewed. Then, different approaches on the improvement of their sensitivity and selectivity in addition to challenges associated with some of these approaches are also discussed. The review is concluded by looking at different mechanisms in the sensing of polycyclic aromatic hydrocarbons and nitro-aromatic compounds.
Collapse
|
20
|
Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Sindhu RK, Najda A, Kaur P, Shah M, Singh H, Kaur P, Cavalu S, Jaroszuk-Sierocińska M, Rahman MH. Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5965. [PMID: 34683560 PMCID: PMC8539628 DOI: 10.3390/ma14205965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna St., 20-280 Lublin, Poland
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (R.K.S.); (P.K.); (H.S.); (P.K.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Monika Jaroszuk-Sierocińska
- Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| |
Collapse
|
22
|
Mili M, Jaiswal A, Hada V, Sagiri SS, Pal K, Chowdhary R, Malik R, Gupta RS, Gupta MK, Chourasia JP, Hashmi S, Rathore SKS, Srivastava AK, Verma S. Development of Graphene Quantum Dots by Valorizing the Bioresources – A Critical Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Medha Mili
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Ayushi Jaiswal
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
| | - Vaishnavi Hada
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
| | - Sai S. Sagiri
- Institute of Postharvest and Food Sciences Agricultural Research Organization, Volcani Center Rishon LeZion 7528809 Israel
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela India
| | - Rashmi Chowdhary
- All India Institute of Medical Sciences (AIIMS) Bhopal, M.P 462020 India
| | - Rajesh Malik
- All India Institute of Medical Sciences (AIIMS) Bhopal, M.P 462020 India
| | - Radha S. Gupta
- All India Institute of Medical Sciences (AIIMS) Bhopal, M.P 462020 India
| | - Manoj K. Gupta
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Jamana P. Chourasia
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Sar Hashmi
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Sanjai K. S. Rathore
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Avanish K. Srivastava
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| | - Sarika Verma
- Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute (AMPRI) Near Habibganj Naka, Hoshangabad Road Bhopal MP 462 026 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad (U.P.) 201002 India
| |
Collapse
|
23
|
Xu J, Xing Y, Liu Y, Liu M, Hou X. Facile in situ microwave synthesis of Fe 3O 4@MIL-100(Fe) exhibiting enhanced dual enzyme mimetic activities for colorimetric glutathione sensing. Anal Chim Acta 2021; 1179:338825. [PMID: 34535254 DOI: 10.1016/j.aca.2021.338825] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
In recent decades, artificial nanozymes with excellent stability, low cost and availability have been gradually explored to avoid the limits of natural enzymes such as poor stability, high cost and difficult preparation. Herein, for the first time, we investigated the capability of nanoscale Fe3O4@MIL-100(Fe) as a nanozyme, which was quickly synthesized in situ by a microwave-assisted method within 20 min using Fe3O4 as the metal precursor. The obtained Fe3O4@MIL-100(Fe) showed satisfactory intrinsic dual enzyme mimetic activities, including peroxidase (POD)- and catalase (CAT)-like activities. Moreover, a simple and effective colorimetric biosensor was fabricated to detect glutathione (GSH) based on its POD-like activity. The proposed measurement had a linear range of 1-45 μM and a limit of detection (LOD) of 0.26 μM (3.3 δ/S). It was proved that the established colorimetric sensing system could be successfully applied to detect GSH in actual biological samples. Importantly, the outstanding reusability and stability made it extremely valuable as a catalyst. The present work implied that Fe3O4@MIL-100(Fe) synthesized in situ by the microwave-assisted method was a very promising candidate for biocatalyst and biosensing.
Collapse
Affiliation(s)
- Jiabi Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yanyan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yutong Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Mingzhe Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
24
|
Saha JK, Dutta A. A Review of Graphene: Material Synthesis from Biomass Sources. WASTE AND BIOMASS VALORIZATION 2021; 13:1385-1429. [PMID: 34548888 PMCID: PMC8446731 DOI: 10.1007/s12649-021-01577-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/08/2021] [Indexed: 05/30/2023]
Abstract
Single-atom-thick graphene is a particularly interesting material in basic research and applications owing to its remarkable electronic, mechanical, chemical, thermal, and optical properties. This leads to its potential use in a multitude of applications for improved energy storage (capacitors, batteries, and fuel cells), energy generation, biomedical, sensors or even as an advanced membrane material for separations. This paper provided an overview of research in graphene, in the area of synthesis from various sources specially from biomass, advanced characterization techniques, properties, and application. Finally, some challenges and future perspectives of graphene are also discussed.
Collapse
Affiliation(s)
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Canada
| |
Collapse
|
25
|
Panyathip R, Sucharitakul S, Phaduangdhitidhada S, Ngamjarurojana A, Kumnorkaew P, Choopun S. Surface Enhanced Raman Scattering in Graphene Quantum Dots Grown via Electrochemical Process. Molecules 2021; 26:molecules26185484. [PMID: 34576956 PMCID: PMC8471654 DOI: 10.3390/molecules26185484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Graphene Quantum dots (GQDs) are used as a surface-enhanced Raman substrate for detecting target molecules with large specific surface areas and more accessible edges to enhance the signal of target molecules. The electrochemical process is used to synthesize GQDs in the solution-based process from which the SERS signals were obtained from GQDs Raman spectra. In this work, GQDs were grown via the electrochemical process with citric acid and potassium chloride (KCl) electrolyte solution to obtain GQDs in a colloidal solution-based format. Then, GQDs were characterized by transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy, respectively. From the results, SERS signals had observed via GQDs spectra through the Raman spectra at D (1326 cm-1) and G (1584 cm-1), in which D intensity is defined as the presence of defects on GQDs and G is the sp2 orbital of carbon signal. The increasing concentration of KCl in the electrolyte solution for 0.15M to 0.60M demonstrated the increment of Raman intensity at the D peak of GQDs up to 100 over the D peak of graphite. This result reveals the potential feasibility of GQDs as SERS applications compared to graphite signals.
Collapse
Affiliation(s)
- Rangsan Panyathip
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Sukrit Sucharitakul
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Surachet Phaduangdhitidhada
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Athipong Ngamjarurojana
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
| | - Pisist Kumnorkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Supab Choopun
- Center of Excellence in Physics and Astronomy, Department of Physics and Materials Science, Faculty of Science, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (S.S.); (S.P.); (A.N.)
- Correspondence: ; Tel.: +66-081-951-2669
| |
Collapse
|
26
|
Graphene Quantum Dots-Based Nanocomposites Applied in Electrochemical Sensors: A Recent Survey. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2030032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Graphene quantum dots (GQDs) have been widely investigated in recent years due to their outstanding physicochemical properties. Their remarkable characteristics allied to their capability of being easily synthesized and combined with other materials have allowed their use as electrochemical sensing platforms. In this work, we survey recent applications of GQDs-based nanocomposites in electrochemical sensors and biosensors. Firstly, the main characteristics and synthesis methods of GQDs are addressed. Next, the strategies generally used to obtain the GQDs nanocomposites are discussed. Emphasis is given on the applications of GQDs combined with distinct 0D, 1D, 2D nanomaterials, metal-organic frameworks (MOFs), molecularly imprinted polymers (MIPs), ionic liquids, as well as other types of materials, in varied electrochemical sensors and biosensors for detecting analytes of environmental, medical, and agricultural interest. We also discuss the current trends and challenges towards real applications of GQDs in electrochemical sensors.
Collapse
|
27
|
Iannazzo D, Espro C, Celesti C, Ferlazzo A, Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers (Basel) 2021; 13:3194. [PMID: 34206792 PMCID: PMC8269110 DOI: 10.3390/cancers13133194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (C.C.); (A.F.); (G.N.)
| | | | | | | | | |
Collapse
|
28
|
Bressi V, Ferlazzo A, Iannazzo D, Espro C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1120. [PMID: 33925972 PMCID: PMC8146976 DOI: 10.3390/nano11051120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
The continuous decrease in the availability of fossil resources, along with an evident energy crisis, and the growing environmental impact due to their use, has pushed scientific research towards the development of innovative strategies and green routes for the use of renewable resources, not only in the field of energy production but also for the production of novel advanced materials and platform molecules for the modern chemical industry. A new class of promising carbon nanomaterials, especially graphene quantum dots (GQDs), due to their exceptional chemical-physical features, have been studied in many applications, such as biosensors, solar cells, electrochemical devices, optical sensors, and rechargeable batteries. Therefore, this review focuses on recent results in GQDs synthesis by green, easy, and low-cost synthetic processes from eco-friendly raw materials and biomass-waste. Significant advances in recent years on promising recent applications in the field of electrochemical sensors, have also been discussed. Finally, challenges and future perspectives with possible research directions in the topic are briefly summarized.
Collapse
Affiliation(s)
| | | | | | - Claudia Espro
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Vill. S. Agata, I-98166 Messina, Italy; (V.B.); (A.F.); (D.I.)
| |
Collapse
|
29
|
Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf B Biointerfaces 2021; 198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
|
30
|
Shi R, He Q, Cheng S, Chen B, Wang Y. Determination of glucose by using MoS 2 nanosheets as a peroxidase mimetic enzyme. NEW J CHEM 2021. [DOI: 10.1039/d1nj03821d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of MoS2 nanosheets was achieved and the sensing of glucose was carried out using MoS2 nanosheets as enzyme mimics.
Collapse
Affiliation(s)
- Rui Shi
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Qiaoling He
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Shiqi Cheng
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Bolin Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
31
|
Tong Z, Xu M, Li Q, Liu C, Wang Y, Sha J. Polyelectrolyte-functionalized reduced graphene oxide wrapped helical POMOF nanocomposites for bioenzyme-free colorimetric biosensing. Talanta 2020; 220:121373. [PMID: 32928399 DOI: 10.1016/j.talanta.2020.121373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
For the sake of effective colorimetric sensing-pattern, a sensitive colorimetric sensor was conceived based on polyoxometalates based metal-organic frameworks (POMOFs) and polydiallyldimethylammonium chloride functionalized reduced graphene oxide (PDDA-rGO) for the first time, in which PDDA as a "glue" molecule turns rGO nanosheets into general platforms for bonding POMOFs nanoparticles. Herein, a new POMOF compound with fascinating helices-on-helices feature, [Ni4(Trz)6(H2O)2][SiW12O40].4H2O (Trz = 1,2,4-triazole) (abbreviated as Ni4SiW12), was synthesized and characterized, then PDDA-rGO sheet as dispersive and conductive material was successfully introduced to Ni4SiW12 fabricating new PDDA-rGO/Ni4SiW12-n nanocomposites, (abbreviated as PMPG-n). The resulting PMPG-n nanocomposites as peroxidase mimetic show excellent catalytic activities under extreme condition (pH value 2.5), attributed to the nature and synergies from POMs, MOFs and PDDA-rGOs. Note that the peroxidase-like activity of PMPG-1 (the mass ratio of Ni4SiW12 to PDDA-rGO is 1:1) exhibits higher sensitivity (1-60 μM), faster response (10 min) and the lowest limit of detection (2.07 μM) among all reported materials to citric acid (CA) to date. This work opens up new application prospects in colorimetric sensing system for food quality control and safety, biotechnology and clinical diagnosis.
Collapse
Affiliation(s)
- Zhibo Tong
- Department of Chemistry and Chemical Engineering, Jining University, ShanDong, Qufu, 273155, PR China; School of Pharmacy, Jiamusi University, HeilongJiang, Jiamusi, 154007, PR China
| | - Mingqi Xu
- Department of Chemistry and Chemical Engineering, Jining University, ShanDong, Qufu, 273155, PR China
| | - Qian Li
- Department of Chemistry and Chemical Engineering, Jining University, ShanDong, Qufu, 273155, PR China
| | - Chang Liu
- Department of Chemistry and Chemical Engineering, Jining University, ShanDong, Qufu, 273155, PR China
| | - Yunliang Wang
- School of Pharmacy, Jiamusi University, HeilongJiang, Jiamusi, 154007, PR China
| | - Jingquan Sha
- Department of Chemistry and Chemical Engineering, Jining University, ShanDong, Qufu, 273155, PR China.
| |
Collapse
|
32
|
Zhu L, Shen D, Wu C, Gu S. State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04760] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingli Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT7 1NN, U.K
| | - Sai Gu
- Faculty of Engineering and Physical Sciences, University of Surrey, Guilford GU2 7XH, U.K
| |
Collapse
|
33
|
Qian X, Nymann Westensee I, Brodszkij E, Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1683. [PMID: 33205632 DOI: 10.1002/wnan.1683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Artificial biology is an emerging concept that aims to design and engineer the structure and function of natural cells, organelles, or biomolecules with a combination of biological and abiotic building blocks. Cell mimicry focuses on concepts that have the potential to be integrated with mammalian cells and tissue. In this feature article, we will emphasize the advancements in the past 3-4 years (2017-present) that are dedicated to artificial enzymes, artificial organelles, and artificial mammalian cells. Each aspect will be briefly introduced, followed by highlighting efforts that considered key properties of the different mimics. Finally, the current challenges and opportunities will be outlined. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
|
35
|
Iannazzo D, Celesti C, Espro C. Recent Advances on Graphene Quantum Dots as Multifunctional Nanoplatforms for Cancer Treatment. Biotechnol J 2020; 16:e1900422. [PMID: 32618417 DOI: 10.1002/biot.201900422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/11/2020] [Indexed: 12/24/2022]
Abstract
Graphene quantum dots (GQDs), the latest member of the graphene family, have attracted enormous interest in the last few years, due to their exceptional physical, chemical, electrical, optical, and biological properties. Their strong size-dependent photoluminescence and the presence of many reactive groups on the graphene surface allow their multimodal conjugation with therapeutic agents, targeting ligands, polymers, light responsive agents, fluorescent dyes, and functional nanoparticles, making them valuable agents for cancer diagnosis and treatment. In this review, the very recent advances covering the last 3 years on the applications of GQDs as drug delivery systems and theranostic tools for anticancer therapy are discussed, highlighting the relevant factors which regulate their biocompatibility. Among these factors, the size, kind, and degree of surface functionalization have shown to greatly affect their use in biological systems. Toxicity issues, which still represent an open challenge for the clinical development of GQDs based therapeutic agents, are also discussed at cellular and animal levels.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, Messina, 98166, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, Messina, 98166, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada Di Dio, Messina, 98166, Italy
| |
Collapse
|
36
|
Sun H, Cai S, Wang C, Chen Y, Yang R. Recent Progress of Nanozymes in the Detection of Pathogenic Microorganisms. Chembiochem 2020; 21:2572-2584. [PMID: 32352212 DOI: 10.1002/cbic.202000126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/11/2020] [Indexed: 12/17/2022]
Abstract
Infectious diseases are among the world's principal health problems. It is crucial to develop rapid, accurate and cost-effective methods for the detection of pathogenic microorganisms. Recently, considerable progress has been achieved in the field of inorganic enzyme mimics (nanozymes). Compared with natural enzymes, nanozymes have higher stability and lower cost. More interestingly, their properties can be designed for various demands. Herein, we introduce the latest research progress on the detection of pathogenic microorganisms by using various nanozymes. We also discuss the current challenges of nanozymes in biosensing and provide some strategies to overcome these barriers.
Collapse
Affiliation(s)
- Huiyuan Sun
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China
| | - Chen Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China
| | - Yongxiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, UCAS, Beijing, 100190, P. R. China.,Sino-Danish College, UCAS, Sino-Danish Center for Education and Research, Beijing, 100190, P. R. China
| |
Collapse
|
37
|
Tade RS, Nangare SN, Patil AG, Pandey A, Deshmukh PK, Patil DR, Agrawal TN, Mutalik S, Patil AM, More MP, Bari SB, Patil PO. Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective. NANOTECHNOLOGY 2020; 31:292001. [PMID: 32176876 DOI: 10.1088/1361-6528/ab803e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene quantum dots (GQDs), impressive materials with enormous future potential, are reviewed from their inception, including different precursors. Considering the increasing burden of industrial and ecological bio-waste, there is an urgency to develop techniques which will convert biowaste into active moieties of interest. Amongst the various materials explored, we selectively highlight the use of potential carbon containing bioprecursors (e.g. plant-based, amino acids, carbohydrates), and industrial waste and its conversion into GQDs with negligible use of chemicals. This review focuses on the effects of different processing parameters that affect the properties of GQDs, including the surface functionalization, paradigmatic characterization, toxicity and biocompatibility issues of bioprecursor derived GQDs. This review also examines current challenges and s the ongoing exploration of potential bioprecursors for ecofriendly GQD synthesis for future applications. This review sheds further light on the electronic and optical properties of GQDs along with the effects of doping on the same. This review may aid in future design approaches and applications of GQDs in the biomedical and materials design fields.
Collapse
Affiliation(s)
- Rahul S Tade
- H R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ding X, Niu Y, Zhang G, Xu Y, Li J. Electrochemistry in Carbon-based Quantum Dots. Chem Asian J 2020; 15:1214-1224. [PMID: 32104980 DOI: 10.1002/asia.202000097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/31/2022]
Abstract
Electrochemistry belongs to an important branch of chemistry that deals with the chemical changes produced by electricity and the production of electricity by chemical changes. Therefore, it can not only act a powerful tool for materials synthesis, but also offer an effective platform for sensing and catalysis. As extraordinary zero-dimensional materials, carbon-based quantum dots (CQDs) have been attracting tremendous attention due to their excellent properties such as good chemical stability, environmental friendliness, nontoxicity and abundant resources. Compared with the traditional methods for the preparation of CQDs, electrochemical (EC) methods offer advantages of simple instrumentation, mild reaction conditions, low cost and mass production. In return, CQDs could provide cost-effective, environmentally friendly, biocompatible, stable and easily-functionalizable probes, modifiers and catalysts for EC sensing. However, no specific review has been presented to systematically summarize both aspects until now. In this review, the EC preparation methods of CQDs are critically discussed focusing on CQDs. We further emphasize the applications of CQDs in EC sensors, electrocatalysis, biofuel cells and EC flexible devices. This review will further the experimental and theoretical understanding of the challenges and future prospective in this field, open new directions on exploring new advanced CQDs in EC to meet the high demands in diverse applications.
Collapse
Affiliation(s)
- Xiaoteng Ding
- College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yusheng Niu
- College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Gong Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yuanhong Xu
- College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
39
|
Abstract
The tunable photoluminescent and photocatalytic properties of carbon dots (CDs) via chemical surface modification have drawn increased attention to this emerging class of carbon nanomaterials. Herein, we summarize the advances in CD synthesis and modification, with a focus on surface functionalization, element doping, passivation, and nanocomposite formation with metal oxides, transition metal chalcogenides, or graphitic carbon nitrides. The effects of CD size and functionalization on photocatalytic properties are discussed, along with the photocatalytic applications of CDs in energy conversion, water splitting, hydrogen evolution, water treatment, and chemical degradation. In particular, the enzyme-mimetic and photodynamic applications of CDs for bio-related uses are thoroughly reviewed.
Collapse
|
40
|
Wang P, Wang T, Hong J, Yan X, Liang M. Nanozymes: A New Disease Imaging Strategy. Front Bioeng Biotechnol 2020; 8:15. [PMID: 32117909 PMCID: PMC7015899 DOI: 10.3389/fbioe.2020.00015] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like properties. They can specifically catalyze substrates of natural enzymes under physiological condition with similar catalytic mechanism and kinetics. Compared to natural enzymes, nanozymes exhibit the unique advantages including high catalytic activity, low cost, high stability, easy mass production, and tunable activity. In addition, as a new type of artificial enzymes, nanozymes not only have the enzyme-like catalytic activity, but also exhibit the unique physicochemical properties of nanomaterials, such as photothermal properties, superparamagnetism, and fluorescence, etc. By combining the unique physicochemical properties and enzyme-like catalytic activities, nanozymes have been widely developed for in vitro detection and in vivo disease monitoring and treatment. Here we mainly summarized the applications of nanozymes for disease imaging and detection to explore their potential application in disease diagnosis and precision medicine.
Collapse
Affiliation(s)
- Peixia Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Juanji Hong
- Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Minmin Liang
- Experimental Center of Advanced Materials School of Materials Science & Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
41
|
|
42
|
Lin Z, Zheng L, Yao W, Liu S, Bu Y, Zeng Q, Zhang X, Deng H, Lin X, Chen W. A facile route for constructing Cu–N–C peroxidase mimics. J Mater Chem B 2020; 8:8599-8606. [DOI: 10.1039/d0tb01494j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu–N–C single-atom nanozymes were successfully designedviaa one-pot solvothermal method and their excellent peroxidase-mimicking activity has been investigated and applied for H2O2and glucose determination.
Collapse
|
43
|
Hu Y, Gao Z. Highly Photoluminescent Carbon Dots Derived from Discarded Chewing Gum: toward Multiple Sensing of pH, Ferric Ion, and Adenosine Triphosphate. ChemistrySelect 2019. [DOI: 10.1002/slct.201903614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yaoping Hu
- School of Materials Science and Chemical EngineeringNingbo University 818 Fenghua Road Ningbo 315211 China
| | - Zhijin Gao
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
| |
Collapse
|
44
|
Zhang B, Liu Y, Ren M, Li W, Zhang X, Vajtai R, Ajayan PM, Tour JM, Wang L. Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin. CHEMSUSCHEM 2019; 12:4202-4210. [PMID: 31328347 DOI: 10.1002/cssc.201901693] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Sustainable, inexpensive, and environmentally friendly biomass waste can be exploited for large-scale production of carbon nanomaterials. Here, alkali lignin was employed as a precursor to synthesize carbon quantum dots (CQDs) with bright green fluorescence through a simple one-pot route. The prepared CQDs had a size of 1.5-3.5 nm, were water-dispersible, and showed wonderful biocompatibility, in addition to their excellent photoluminescence and electrocatalysis properties. These high-quality CQDs could be used in a wide range of applications such as metal-ion detection, cell imaging, and electrocatalysis. The wide range of biomass lignin feedstocks provide a green, low-cost, and viable strategy for producing high-quality fluorescent CQDs and enable the conversion of biomass waste into high-value products that promote sustainable development of the economy and human society.
Collapse
Affiliation(s)
- Baohua Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Yijian Liu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P.R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Muqing Ren
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Weitao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, Hungary
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P.R. China
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
45
|
RETRACTED ARTICLE: Carbon Dots as Artificial Peroxidases for Analytical Applications. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00107-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Bhandari S, Mondal D, Nataraj SK, Balakrishna RG. Biomolecule-derived quantum dots for sustainable optoelectronics. NANOSCALE ADVANCES 2019; 1:913-936. [PMID: 36133200 PMCID: PMC9473190 DOI: 10.1039/c8na00332g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 05/06/2023]
Abstract
The diverse chemical functionalities and wide availability of biomolecules make them essential and cost-effective resources for the fabrication of zero-dimensional quantum dots (QDs, also known as bio-dots) with extraordinary properties, such as high photoluminescence quantum yield, tunable emission, photo and chemical stability, excellent aqueous solubility, scalability, and biocompatibility. The additional advantages of scalability, tunable optical features and presence of heteroatoms make them suitable alternatives to conventional metal-based semiconductor QDs in the field of bioimaging, biosensing, drug delivery, solar cells, photocatalysis, and light-emitting devices. Furthermore, a recent focus of the scientific community has been on QD-based sustainable optoelectronics due to the primary concern of partially mitigating the current energy demand without affecting the environment. Hence, it is noteworthy to focus on the sustainable optoelectronic applications of biomolecule-derived QDs, which have tunable optical features, biocompatibility and the scope of scalability. This review addresses the recent advances in the synthesis, properties, and optoelectronic applications of biomolecule-derived QDs (especially, carbon- and graphene-based QDs (C-QDs and G-QDs, respectively)) and discloses their merits and disadvantages, challenges and future prospects in the field of sustainable optoelectronics. In brief, the current review focuses on two major issues: (i) the advantages of two families of carbon nanomaterials (i.e. C-QDs and G-QDs) derived from biomolecules of various categories, for instance (a) plant extracts including fruits, flowers, leaves, seeds, peels, and vegetables; (b) simple sugars and polysaccharides; (c) different amino acids and proteins; (d) nucleic acids, bacteria and fungi; and (e) biomasses and their waste and (ii) their applications as light-emitting diodes (LEDs), display systems, solar cells, photocatalysts and photo detectors. This review will not only bring a new paradigm towards the construction of advanced, sustainable and environment-friendly optoelectronic devices using natural resources and waste, but also provides critical insights to inspire researchers ranging from material chemists and chemical engineers to biotechnologists to search for exciting developments of this field and consequently make an advance step towards future bio-optoelectronics.
Collapse
Affiliation(s)
- Satyapriya Bhandari
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - Dibyendu Mondal
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - S K Nataraj
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, JAIN (Deemed to be University) Jain Global Campus Bangalore 562112 India
| |
Collapse
|
47
|
Abstract
Background:
Graphene and its derivatives, as most promising carbonic nanomaterials have
been widely used in design and making electrochemical sensors and biosensors. Graphene quantum dots
are one of the members of this family which have been mostly known as fluorescent nanomaterials and
found extensive applications due to their remarkable optical properties. Quantum confinement and edge
effects in their structures also cause extraordinary electrochemical properties.
Objective:
Recently, graphene quantum dots besides graphene oxides and reduced graphene oxides have
been applied for modification of the electrodes too and exposed notable effects in electrochemical responses.
Here, we are going to consider these significant effects through reviewing some of the recent
published works.
Collapse
Affiliation(s)
- Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Afsaneh L. Sanati
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
48
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
49
|
Li Y, Liu Z, Bai L, Liu Y. Nitrogen-doped carbon dots derived from electrospun carbon nanofibers for Cu(ii) ion sensing. NEW J CHEM 2019. [DOI: 10.1039/c8nj06069j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-doped carbon dots were synthesized via the chemical breakdown of electrospun polyacrylonitrile-based carbon nanofibers and employed as a fluorescent sensing platform.
Collapse
Affiliation(s)
- Yang Li
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China
- Taiyuan 030051
- China
| | - Zhicheng Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China
- Taiyuan 030051
- China
- Department of Mechanical Engineering, National University of Singapore
- Singapore 117574
| | - Lu Bai
- School of Chemical Engineering and Technology, North University of China
- Taiyuan 030051
- China
| | - Yaqing Liu
- Shanxi Province Key Laboratory of Functional Nanocomposites, School of Materials Science and Engineering, North University of China
- Taiyuan 030051
- China
| |
Collapse
|
50
|
Sun H, Zhou Y, Ren J, Qu X. Kohlenstoff-Nanozyme: Enzymatische Eigenschaften, Katalysemechanismen und Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Science and Technology of China; Hefei Anhui 230026 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|