1
|
Muniandy Y, Mohamad S, Raoov M. Green and efficient magnetic micro-solid phase extraction utilizing tea waste impregnated with magnetic nanoparticles for the analysis of ibuprofen in water samples by using UV-vis spectrophotometry. RSC Adv 2024; 14:11977-11985. [PMID: 38623288 PMCID: PMC11017375 DOI: 10.1039/d4ra00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
A green method based on magnetic micro-solid phase extraction (MNP-TW-μ-SPE) of tea waste impregnated with magnetic nanoparticles (MNP-TW) was developed for the extraction of ibuprofen (IBP) in water samples prior to UV-Vis spectrophotometric analysis. Experimenting parameters that affect the extraction efficiency of IBP, such as pH of the sample solution, sorbent dosage, extraction time, ionic strength, volume of the sample, type of desorption solvent, desorption time, and desorption volume, were studied and optimized in detail. The characterization studies for the MNP-TW were carried out by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectrometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, a vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Under the optimum conditions, the linearity ranges from 30 to 700 μg L-1 for IBP, with determination coefficients (R2) of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) were 9.40 μg L-1 and 28.50 μg L-1, respectively. The method also demonstrated good precision in reproducibility (RSD ≤ 1.53%), repeatability (RSD ≤ 1.48%), and recovery (86-115%). This method represents the advantages of low solvent consumption, flexibility, and better sensitivity compared to other studies employing spectrophotometric analysis. The usage of tea waste in the extraction process presents many advantages, as it is biodegradable, versatile, and contributes to an intelligent and sustainable economic strategy projected toward a circular economy approach.
Collapse
Affiliation(s)
- Yagulan Muniandy
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
2
|
Lu T, Li D, Feng J, Zhang W, Kang Y. Efficient extraction performance and mechanisms of Cd 2+ and Pb 2+ in water by novel dicationic ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119767. [PMID: 38109826 DOI: 10.1016/j.jenvman.2023.119767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Ten novel hydrophobic dicationic ionic liquids (DILs) were synthesized and applied for the extraction of heavy metals in aqueous solutions. Their physicochemical properties were measured at ambient temperature, and the leaching behaviors of the as-prepared DILs in water were assessed by TOC analysis. Metal extraction experiments were carried out to evaluate the extraction performances of the DILs. It was found that the extraction rates of up to 0.45 and 0.53 mg·(g·min)-1 were achieved with 100 mg DILs for 5 mL of 5 mg/L Cd2+ and Pb2+ solutions. Besides, the extraction efficiencies of Cd2+ and Pb2+ were respectively up to 95.48% and 98.46%, when the volumes of the simulated wastewater were expanded by a factor of 20 at a constant extraction phase ratio (1000 mg DILs for 50 mL of 5 mg/L Cd2+ or Pb2+ solutions). The reusability of the novel DILs was successfully proved by the back-extraction experiments with 0.5 M HNO3. Finally, taking Cd2+ extraction as an example, the extraction mechanism based on FTIR analysis and quantum chemical calculations showed that both S and O atoms in the anions of DILs had physical and quasi-chemical interactions with Cd2+, which were stronger than the electrostatic attraction.
Collapse
Affiliation(s)
- Tangzheng Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Dan Li
- Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiayi Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenlong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Bahiraei A, Abbasi S, Tavakkoli Yaraki M. Ultrasound-assisted adsorption approach for desulfurization of n-heptane using nitrogen-doped magnetic carbon dot nanocomposite. CHEMOSPHERE 2023; 342:140176. [PMID: 37714486 DOI: 10.1016/j.chemosphere.2023.140176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Desulfurization is an important process that not only affects the quality and performances of fuels but also is of great importance from environmental aspects. In this research, nitrogen-doped magnetic carbon dots nanocomposite was synthesized and characterized, and it's potential in adsorptive removal of thiophenes (i.e., thiophene, benzothiophene, and dibenzothiophene) from n-heptane (i.e., as model fuel) was investigated. After optimization of adsorption process, the removal efficiency was obtained above 95% for all of studied thiophenes. Besides that, it was concluded that using ultrasound during the adsorption process could enhance the maximum adsorption capacity. Langmuir model was able to appropriately describe the adsorption isotherm data, where the maximum equilibrium adsorption capacities for thiophene, benzothiophene and dibenzothiophene were obtained as 90.22, 96.51 and 100.38 mgg-1, respectively. The analysis of kinetic data also revealed that all thiophenes were being adsorbed following Pseudo-second-order model. To regenerate the adsorbent, the desorption process was also investigated using different solvents under different conditions, methanol was found as effective solvent for regeneration. The proposed adsorbent was used successfully for the removal of pollutants in a gasoline sample.
Collapse
Affiliation(s)
- Atousa Bahiraei
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Shahryar Abbasi
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Song F, Ma L, Gao L, Han Y, Zong S, He L, Zhang S, Zhao W. Green preparation of magnetic pyrene-based hyper-cross-linked polymer using dual-purpose ferric chloride reagent for extraction of polycyclic aromatic hydrocarbons from natural water bodies. J Chromatogr A 2023; 1711:464462. [PMID: 39491081 DOI: 10.1016/j.chroma.2023.464462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
A magnetic hyper-cross-linked polymer Fe3O4/HCPPYR was prepared using pyrene as the monomer and formaldehyde dimethyl acetal (FDA) as the cross-linking agent. The objective of green chemistry was achieved by employing FeCl3 during the synthesis, as it played a dual role of a catalyst for the Friedel-Crafts reaction and an iron source for the synthesis of magnetic Fe3O4, thus maximizing efficiency and minimizing waste. Fe3O4/HCPPYR was applied as a sorbent for magnetic solid-phase extraction (MSPE) to extract fifteen polycyclic aromatic hydrocarbons (PAHs) from water. The effects of different parameters such as the quantity of adsorbent, the extraction time, the desorption conditions, the pH value and the effect of the salt concentration on the extraction efficiency were optimized. A simple and efficient method in combination with gas chromatography-mass spectrometry (GC-MS) (Fe3O4/HCPPYR-MSPE/GC-MS) was developed and successfully applied for the detection of PAHs in environmental water samples The analytical method showed LODs in the range of 0.004-0.06 µg L-1, which proved to be adequate for the detection all 15 PAHs at trace concentration. Spiked recoveries of PAHs in actual water samples ranged from 85.2 % to 118.5 % with relative standard deviations (RSDs) below 10.2%. These results indicate that the method has a good potential for reusability and possesses excellent sensitivity. This study showcased the potential of Fe3O4/HCPPYR composites in effectively removing organic pollutants from the aqueous environments, demonstrating their ability for water treatment applications.
Collapse
Affiliation(s)
- Fang Song
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Li Gao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yiwen Han
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuai Zong
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
5
|
Peng X, Liu L, Hu X, Yan W, Zheng D, Xia Z, Yu Q, Zhou Y, Xia H, Peng L. Facile fabrication of naphthalene-functionalized magnetic nanoparticles for efficient extraction of polycyclic aromatic hydrocarbons from environmental water and fish samples. J Chromatogr A 2023; 1706:464229. [PMID: 37506458 DOI: 10.1016/j.chroma.2023.464229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, naphthalene-modified magnetic nanoparticles (Fe3O4@Nap) were simply prepared based on specific chelation interaction between phosphate groups and metal ions on Fe3O4 surface. The resultant Fe3O4@Nap were characterized by FTIR, BET, SEM, TEM, NAM, TGA, and VSM techniques. With Fe3O4@Nap as adsorbent, the polycyclic aromatic hydrocarbons (PAHs) were efficiently extracted by magnetic solid-phase extraction (MSPE) from environmental water and fish samples through the π-π interaction between modified naphthalene groups and PAHs, followed by their determination by GC-MS/MS. The key parameters influencing the extraction efficiency were investigated. Under the optimized conditions, the Fe3O4@Nap-based MSPE/GC-MS/MS method proposed in this paper was evaluated and applied for analyzing PAHs in environmental water and fish samples. And the proposed MSPE/GC-MS/MS method exhibited good linearities for water samples (in the range of 0.1-10 ng/mL, R2 >0.9945) and for fish samples (in the range of 1-100 ng/g, R2 > 0.9905). The limits of detection (LODs) for water and fish samples were 0.004-0.031 ng/mL and 0.07-0.28 ng/g, respectively. Additionally, this method exhibited desirable accuracy and precision. The PAH recovery values from water and fish samples ranged from 81.5% to 109.6% with inter- and intra-day relative standard deviations (RSDs) of less than 12.8%. The MSPE/GC-MS/MS method was successfully applied to the analysis of real environmental water and fish samples. Overall, the newly synthesized Fe3O4@Nap exhibited high sensitivity, specificity, reusability, repeatability, and it could efficiently extract PAHs from environmental water and fish samples by MSPE.
Collapse
Affiliation(s)
- Xitian Peng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Li Liu
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Xizhou Hu
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Wei Yan
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Dan Zheng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Zhenzhen Xia
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Qiongwei Yu
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Youxiang Zhou
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| | - Hong Xia
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| | - Lijun Peng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| |
Collapse
|
6
|
Zhao X, Feng X, Chen J, Zhang L, Zhai L, Lv S, Ye Y, Chen Y, Zhong T, Yu X, Xiao Y. Rapid and Sensitive Detection of Polycyclic Aromatic Hydrocarbons in Tea Leaves Using Magnetic Approach. Foods 2023; 12:foods12112270. [PMID: 37297514 DOI: 10.3390/foods12112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
A rapid and efficient method using an alkyl-functionalized magnetic nanoparticles-based extraction technique combined with Ultra-High Performance Liquid Chromatography was developed for the detection of trace amounts of polycyclic aromatic hydrocarbons in tea leaves. As a popular coating for chromatographic column packing materials, C18-alkyl has been demonstrated to be effective in separating polycyclic aromatic hydrocarbons. Additionally, the magnetism of the nanomaterials accelerates the extraction process while their high surface ratio enables desirable dispersity in the sample matrix. Meanwhile, the adsorbents can be washed and reused 30 times without compromising recovery, which greatly reduces the budget. The effects of various parameters were investigated and optimized, and the recoveries for five analytes were in the range of 84.8-105.4%. The RSD of intra-day and inter-day were below 11.9% and 6.8%, respectively. The limits of detection and limits of quantification ranged from 1.69-9.97 ng g-1 and 5.12-30.21 ng g-1, indicating satisfactory sensitivity. Thus, the proposed methodology is rapid, highly efficient, and economical, and it expands the application of magnetic cleanup approaches in complex food matrices.
Collapse
Affiliation(s)
- Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Xiao Feng
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jingwen Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Lanxin Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Lingzi Zhai
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Sizhe Lv
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd., Blk 11, International Health Port, No. 628, Airport West Road, Jinwan District, Zhuhai 519040, China
| | - Yongqi Chen
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd., Blk 11, International Health Port, No. 628, Airport West Road, Jinwan District, Zhuhai 519040, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| |
Collapse
|
7
|
Ochoa GS, Synovec RE. Investigating analyte breakthrough under non-linear isotherm conditions during solid phase extraction facilitated by non-targeted analysis with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Talanta 2023; 259:124525. [PMID: 37031541 DOI: 10.1016/j.talanta.2023.124525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023]
Abstract
Solid phase extraction (SPE) sample preparation for the analysis of complex organic mixtures is often applied assuming all analytes of interest will preconcentrate on the stationary phase. This assumption ignores the reality that extraction is a dynamic interactive process and a diverse range of affinities for the stationary phase will result in equally diverse breakthrough volumes due to competitive sorption processes. To study this dynamic interactive process, and further to take advantage of it, we extracted a JP-8 jet fuel spiked with 40 ppm of a polar compound mix with silica and alumina SPE cartridges and analyzed sequential extracted fractions of the fuel to both assess the shifting chemical landscape present in the extraction and the impact of both SPE stationary phases on this process. Tile-based 1v1 comparative analysis (a recently reported extension of tile-based Fisher ratio analysis) was used to discover the (polar) compounds whose concentrations change between extracted fractions, discovering 21 compounds extracted with silica and 27 compounds extracted with alumina with at least a 2-fold change in concentration from the neat sample relative to the first 1 mL pass fraction sample. These compounds were quantified in each fraction to construct concentration ratio profiles, defined as the concentration ratio for a given SPE fraction per analyte compound relative to the analyte concentration in the neat fuel, for which the extraction behavior for each analyte could be assessed. These analyte compounds were found to breakthrough at different rates, with some analytes remaining on the column indefinitely (until extracted with a subsequent polar solvent) and other analytes eluting before the extraction is complete. Furthermore, in a comparison of the effect of selected stationary phase, alumina was found to retain oxygen-containing phenolic compounds to a greater extent than silica. Principal component analysis (PCA) was used to analyze the concentration ratio profiles of the various trace analytes in the JP8 fuel (phenols, indoles, etc.) in the context of their stationary phase affinity (silica or alumina) and competitive sorption behavior.
Collapse
Affiliation(s)
- Grant S Ochoa
- Department of Chemistry, University of Washington, Seattle, Box 351700, WA, 98195, USA
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Seattle, Box 351700, WA, 98195, USA.
| |
Collapse
|
8
|
Poly-(MMA-IL) filter paper: A new class of paper-based analytical device for thin-film microextraction of multi-class antibiotics in environmental water samples using LC-MS/MS analysis. Talanta 2023; 254:124188. [PMID: 36521327 DOI: 10.1016/j.talanta.2022.124188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
A paper-based polymeric ionic liquid (p-Poly-(MMA-IL)) was successfully developed by grafting the polymeric ionic liquid on the surface of commercial filter paper (FP) by using the dipping method, presenting a new cost-effective film. The newly developed p-Poly-(MMA-IL) FP was then applied as a paper-based thin-film microextraction (p-TFME) analytical device to extract 14 compounds as representative of five groups of antibiotic drugs, which were sulfonamides, tetracyclines, fluoroquinolones, penicillin and macrolides in environmental water samples. Besides, p-Poly-(MMA-IL) FP, p-Poly-(MMA) FP, and unmodified filter paper were successfully characterised by FTIR, NMR, FESEM, TGA, and XRD techniques. They underwent significant parameters optimisation, which affected the extraction efficiency. Under optimal conditions, the proposed (p-Poly-(MMA-IL) FP-TFME) device method was evaluated and applied to analyse multi-class antibiotic drugs in environmental water samples by using a liquid chromatography-mass spectrometry (LC-MS). The validation method showed that a good linearity (0.1 μg L-1 - 500 μg L-1) was noted (R2 > 0.993, n = 3). Detection and quantification limits were within 0.05 μg L-1 - 4.52 μg L-1 and 0.15 μg L-1 - 13.6 μg L-1, respectively. The relative standard deviation (RSD) values ranged at 1.4%-12.2% (intra-day, n = 15) and 4.4%-11.0% (inter-day, n = 10). The extraction recoveries of environmental water samples ranged from 79.1% to 126.8%, with an RSD of less than 15.4% (n = 3). The newly developed paper-based polymeric ionic liquid (p-Poly-(MMA-IL) FP) for analysis of multi-class antibiotic drugs under the p-TFME analytical device procedure was successfully achieved with limited sample volume and organic solvent, fast extraction, and feasible in daily analysis. The detection concentration and relative RSD of multi-class antibiotics determined in various environmental water samples by the proposed method (n = 5) were within 0.44 μg L-1 - 54.41 μg L-1 and 0.69%-15.56%, respectively. These results signified the potential of the p-Poly-(MMA-IL) FP-TFME device as an efficient, sensitive and environmentally friendly approach for analysing antibiotics.
Collapse
|
9
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
10
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
11
|
Separation and Enrichment of Selected Polar and Non-Polar Organic Micro-Pollutants—The Dual Nature of Quaternary Ammonium Ionic Liquid. Processes (Basel) 2022. [DOI: 10.3390/pr10081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the dual nature of quaternary ammonium ionic liquid–didecyldimethylammonium perchlorate, [DDA][ClO4], was evaluated. A novel and sensitive in situ ionic liquid dispersive liquid–liquid microextraction method (in situ IL-DLLME) combined with magnetic retrieval (MR) was applied to enrich and separate selected organic micro-pollutants, both polar and non-polar. The magnetic support relied on using unmodified magnetic nanoparticles (MNPs) prepared by the co-precipitation of Fe2+/Fe3+ (Fe3O4). The separation technique was on-lined with high-performance liquid chromatography (HPLC–DAD) verified by inverse gas chromatography. An anion exchanger, NaClO4, was added to form an in situ hydrophobic IL. The fine droplets of [DDA][ClO4], molded in aqueous samples, functioned as an extractant for isolating the studied compounds. Then the carrier MNPs were added to separate the IL from the water matrix. The supernatant-free sample was desorbed in acetonitrile (MeCN) and injected into the HPLC system. The applicability of [DDA][ClO4] as an extraction solvent in the MR in situ IL-DLLME method was checked by the selectivity parameters (Sij∞) at infinite dilution. The detection limit (LOD) ranged from 0.011 to 0.079 µg L−1 for PAHs and from 0.012 to 0.020 µg L−1 for benzophenones. The method showed good linearity with correlation coefficients (r2) ranging from 0.9995 to 0.9999.
Collapse
|
12
|
Kang JY, Shi YP. Recent advances and application of carbon nitride framework materials in sample preparation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Elencovan V, Yahaya N, Raoov M, Zain NNM. Exploring a novel silicone surfactant-based deep eutectic solvent functionalized magnetic iron particles for the extraction of organophosphorus pesticides in vegetable samples. Food Chem 2022; 396:133670. [PMID: 35853378 DOI: 10.1016/j.foodchem.2022.133670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/25/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
The current study discussed the use of silicone surfactant-based deep eutectic solvent as a surface modifier for magnetic iron particles (Fe3O4) to produce a novel adsorbent and its application for the extraction of organophosphorus pesticides (OPPs) in vegetable samples. A deep eutectic solvent (DES) was prepared using low toxic and inexpensive substances such as silicone surfactant (SS) and dodecanoic acid (DoAc). This new eco-friendly SS:DoAc based DES was explored as a substitution to traditional organic reagents for surface modification of Fe3O4 to increase the adsorption capacity and to reduce the matrix interferences, hazardous waste generation and environmental pollution. The newly synthesized SS:DoAc@Fe3O4 adsorbent was successfully characterized and applied in magnetic solid phase extraction (MSPE). Under optimized conditions, the proposed approach exhibited excellent linearity ranging from 0.1 to 200 µg/kg (R2 ≥ 0.9970), low detection limit (0.03-0.1 µg/kg) and acceptable relative recovery (80-119 %) for the studied OPPs.
Collapse
Affiliation(s)
- Vasagee Elencovan
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
14
|
Azari A, Abtahi M, Saeedi R, Yari AR, Vaziri MH, Mohammadi G. Integrated ultrasound-assisted magnetic solid-phase extraction for efficient determination and pre-concentration of polycyclic aromatic hydrocarbons from high-consumption soft drinks and non-alcoholic beers in Iran. J Sep Sci 2022; 45:3139-3149. [PMID: 35789060 DOI: 10.1002/jssc.202200365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022]
Abstract
In the present research, an ultrasound-assisted magnetic solid-phase extraction coupled with a gas chromatography-mass spectrometry hybrid system was developed for extraction/determination of trace amounts of polycyclic aromatic hydrocarbons in high-consumption soft drinks and non-alcoholic beers in Iran using magnetite graphene oxide adsorbent. The magnetite graphene oxide was characterized by scanning electron microscope, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and vibrating-sample magnetometer techniques. The highest extraction recovery (73.05 to 95.56%) and enrichment factor (90.65 to 106.38) were obtained at adsorbent mass: 10 mg, adsorption time: 30 min, salt addition: sodium chloride 10% w/v, desorption time: 20 min, eluent type: hexane: acetone (1:1, v/v), and desorption solvent volumes: 200 μL. Under optimum conditions, the linearity range for polycyclic aromatic hydrocarbons determination was 0.2-200 ng mL-1 with coefficient of determination> 0.993, limit of detection = 0.09-0.21 ng mL-1 , limit of quantitation = 0.3-0.7 ng mL-1 , and relative standard deviation < 8.1%, respectively. Relative recoveries in spiked real samples ranged from 94.67 to 109.45 % with standard deviation < 6.05%. The proposed method is effective, sensitive, reusable and it is promising for the analysis of polycyclic aromatic hydrocarbons residues in environmental samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Azari
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Health, Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Yari
- Research Center for Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Hossein Vaziri
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Health, Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
15
|
Nanomaterials with Excellent Adsorption Characteristics for Sample Pretreatment: A Review. NANOMATERIALS 2022; 12:nano12111845. [PMID: 35683700 PMCID: PMC9182308 DOI: 10.3390/nano12111845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment in analytical chemistry is critical, and the selection of materials for sample pretreatment is a key factor for high enrichment ability, good practicality, and satisfactory recoveries. In this review, the recent progress of the sample pretreatment methods based on various nanomaterials (i.e., carbon nanomaterials, porous nanomaterials, and magnetic nanomaterials) with excellent adsorption efficiency, selectivity, and reproducibility, as well as their applications, are presented. Due to the unique nanoscale physical–chemical properties, magnetic nanomaterials have been used for the extraction of target analytes by easy-to-handle magnetic separation under a magnetic field, which can avoid cumbersome centrifugation and filtration steps. This review also highlights the preparation process and reaction mechanism of nanomaterials used in the sample pretreatment methods, which have been applied for the extraction organophosphorus pesticides, fluoroquinolone antibiotics, phenoxy carboxylic acids, tetracycline antibiotics, hazardous metal ions, and rosmarinic acid. In addition, the remaining challenges and future directions for nanomaterials used as sorbents in the sample pretreatment are discussed.
Collapse
|
16
|
Ionic liquid-based magnetic nanoparticles for magnetic dispersive solid-phase extraction: A review. Anal Chim Acta 2022; 1201:339632. [PMID: 35300789 DOI: 10.1016/j.aca.2022.339632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Due to their highly tunable nature and outstanding physicochemical properties, ionic liquids (ILs) have been widely reported for use in the synthesis of multitudinous magnetic nanoparticles (MNPs). IL-based magnetic nanoparticles (IL-MNPs) have great potential in magnetic dispersive solid-phase extraction (MDSPE). At present, IL-MNPs have been successfully applied in the pretreatment of MDSPE samples from medicines, pesticides, veterinary drugs, heavy metals, dyes, additives, and proteins in agricultural products, foods and beverages, environmental water, and biological samples. In this review, the preparation of IL-MNPs and their application in MDSPE are comprehensively summarized. The structural characteristics of the introduced ILs used to prepare the IL-MNPs and the synthetic routes employed to obtain the IL-MNPs are described, including physical coating and chemical bonding methods. The IL-MNPs are then classified and described according to different modified materials, including silica-based materials, carbon-based materials, metal-organic frameworks, molecularly imprinted polymers and other interesting large/small molecules. Finally, the research prospects and development directions of IL-MNPs in the context of MDSPE are further identified.
Collapse
|
17
|
Chen X, Guo Z, Wei L, Liu Q, Zhao J. Use of a temperature-responsive polymer micelle in microextraction method combined with gas chromatography-mass spectrometry for the determination of seven polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
|
19
|
Shahriman MS, Mohamad S, Mohamad Zain NN, Alias Y, Chandrasekaram K, Raoov M. Paper-based polymeric ionic liquid for thin film micro extraction of sulfonamides in environmental water samples prior to HPLC-DAD analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Erdem P, Tağaç AA, Bozkurt SS, Merdivan M. Chitosan and dicationic ionic liquid intercalated clay-coated solid-phase microextraction fiber for determination of sixteen polycyclic aromatic hydrocarbons in coffee and tea samples. Talanta 2021; 235:122764. [PMID: 34517625 DOI: 10.1016/j.talanta.2021.122764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022]
Abstract
In the present study, solid-phase microextraction (SPME) fiber was prepared by coating clay (MMT)-chitosan (CH) and dicationic ionic liquid (DIL) onto the stainless-steel wire step by step. The characterization of fibers was performed by Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction analysis, and scanning electron microscopy. The prepared fibers were evaluated for separation and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in coffee and tea samples in headspace- and direct immersion-SPME by coupling with gas chromatography/mass spectrometry. The analytical performance of MMT/CH/DIL fibers was carried out for the extraction of PAHs and compared with the performance of carboxen/polydimethylsiloxane (CAR/PDMS) and divinylbenzene/CAR/PDMS (DVB/CAR/PDMS) fibers under optimized conditions. The wider linear ranges between 0.001 and 25 μg L-1 with a coefficient of determination above 0.9962, low limits of detection between 0.0001 and 0.05 μg L-1 and good intra-day repeatability from 2.45 to 6.48 % and fiber-to-fiber reproducibility from 3.19 % to 8.82 % were obtained for all PAHs in both methods with MMT/CH/octyl (O)-DIL fiber. The extraction recoveries of coffee and tea samples ranged from 87.5 to 112 % using the MMT/CH/O-DIL fiber in both SPME methods.
Collapse
Affiliation(s)
- Pelin Erdem
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Aylin Altınışık Tağaç
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Serap Seyhan Bozkurt
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Melek Merdivan
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey.
| |
Collapse
|
21
|
Altınışık Tağaç A, Erdem P, Seyhan Bozkurt S, Merdivan M. Utilization of montmorillonite nanocomposite incorporated with natural biopolymers and benzyl functionalized dicationic imidazolium based ionic liquid coated fiber for solid-phase microextraction of organochlorine pesticides prior to GC/MS and GC/ECD. Anal Chim Acta 2021; 1185:339075. [PMID: 34711316 DOI: 10.1016/j.aca.2021.339075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
A novel montmorillonite clay (MMT) bionanocomposite modified with chitosan (CH), carboxymethyl cellulose (CMC), and benzylimidazolium based dicationic ionic liquid with tetraethylene glycol linker (DIL) was fabricated on stainless steel wire by in situ process. The MMT-CH-CMC-DIL coated solid-phase microextraction (SPME) fiber was examined for the determination of organochlorine pesticides (OCPs) in real samples by HS-SPME-GC method using mass spectrometry (MS) and electron capture detector (ECD). Under optimized conditions, the proposed method exhibited low limits of detection (0.5 ng L-1 with MS and 0.1 ng L-1 with ECD detection), good linearities (R2 = 0.9972-0.9993 with MS and 0.9987-0.9998 with ECD detection), favorable single-fiber repeatability, and fiber-to-fiber reproducibility (less than 8.2% and 9.9% for both types of detection) and high reusability around 125 cycles. Recovery studies were carried out for OCPs in tap water, green tea, and milk samples to verify the applicability of the developed SPME-GC method.
Collapse
Affiliation(s)
- Aylin Altınışık Tağaç
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Pelin Erdem
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Serap Seyhan Bozkurt
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Melek Merdivan
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey.
| |
Collapse
|
22
|
Biopolymer-imidazolium based dicationic ionic liquid modified clay bionanocomposite coating for solid-phase microextraction of phthalate esters. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S. Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 2021; 1655:462484. [PMID: 34487879 DOI: 10.1016/j.chroma.2021.462484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Sample preparation methods with high accuracy and matrix resistance will benefit the quick analysis of desired analytes in an intricate matrix, such as the monitoring of drug samples in biofluids. Herein, an electrospun composite, consisting of polyfam and a Co-metal organic framework- 74, was developed as a novel sorbent for the high-throughput solid-phase micro-extraction of certain anti-cancer drugs (sorafenib, dasatinib, and erlotinib hydrochloride) from wastewater and biological samples before high-performance liquid chromatography- ultraviolet analysis (HPLC-UV). The synthesis of the resulting composite nanofibers was confirmed using the techniques of Fourier transform-infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (XRD). FESEM images illustrated irregular and bead-free nanofibers with a diameter range of 126.9-269.6 nm. Thanks to the incorporation of Co-MOF-74 into the polyfam network, the electrospun nanofibers displayed a large surface area, high porosity, and significant extraction efficiency toward target analytes. Under optimal experimental conditions, the linearity was achieved in the range of 0.1-1500.0 µg L-1 for sorafenib and 0.5-1500.0 µg L-1 for dasatinib and erlotinib hydrochloride, with a coefficient of determination of ≥0.9996. The detection limits (LODs) were calculated within the range of 0.03-0.20 µg L-1. The relative standard deviation values (RSDs %) were in the range of 3.1%-8.6% (intra-day, n = 6) and 7.0%-10.3% (inter-day, n=3) in the span of three days. Ultimately, the application of the developed method was appraised for the quantification of trace amounts of the intended analytes in various spiked samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
24
|
Functionalized magnetic nanoparticles as powerful sorbents and stationary phases for the extraction and chromatographic applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Afshar Mogaddam MR, Jouyban A, Nemati M, Farajzadeh MA, Marzi Khosrowshahi E. Application of curcumin as a green and new sorbent in deep eutectic solvent-based dispersive micro-solid phase extraction of several polycyclic aromatic hydrocarbons from honey samples prior to gas chromatography-mass spectrometry determination. J Sep Sci 2021; 44:4037-4047. [PMID: 34459084 DOI: 10.1002/jssc.202100354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
A green, simple, and efficient dispersive micro-solid phase extraction method was developed for the extraction of polycyclic aromatic hydrocarbons from honey samples. In this method, for the first time, curcumin was used as an efficient and green sorbent to extract the analytes from the sample. After that the adsorbed analytes were eluted using a deep eutectic solvent prepared by mixing tetrabutylammonium chloride: ethylene glycol and analyzed by gas chromatography-mass spectrometry. Important experimental factors affecting adsorption and desorption steps of the method were optimized and under optimal experimental conditions, low limits of detection (0.14-0.37 ng/g) and quantification (0.49-1.3 ng/g), wide linear range (1.3-500 ng/g) with a coefficient of determination ≥0.994 were obtained. Relative standard deviation values for intra- and interday precisions were ≤7.5% for all of the analytes at a concentration of 2 ng/g for each analyte (n = 6). Extraction recovery of the method was in the range of 72-81%. Finally, 20 honey samples were analyzed and the analytes were successfully detected. The method is environment friendly because of the use of curcumin as a sorbent. Also, biodegradability of the used deep eutectic solvent components is another advantage of the method.
Collapse
Affiliation(s)
- Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, Mersin, Turkey
| | | |
Collapse
|
26
|
Xu Q, Liu Z, Yan C, Lu R, Zhou W. 1-Octyl-3-methylimidazolium hexafluorophosphate-functionalised magnetic poly β-cyclodextrin for magnetic solid-phase extraction ofpyrethroids from tea infusions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1743-1754. [PMID: 34237240 DOI: 10.1080/19440049.2021.1943004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, a novel sorbent, 1-octyl-3-methylimidazolium hexafluorophosphate functionalised magnetic poly β-cyclodextrin, was successfully synthesised and applied to magnetic solid-phase extraction for the determination of pyrethroids in tea infusions. The sorbent was characterised by transmission electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometer and Brunauer-Emmett-Teller measurement. All factors affecting extraction efficiency, such as sorbent amount, extraction time, ionic strength and desorption conditions, were optimised individually. Under the chosen conditions, wide linearity (2.5-500 μg L-1) with determination coefficients ranging from 0.9995 to 0.9999, low limits of detection of 0.32-0.54 μg L-1 and good precision (intra-day: 2.6-7.0%; inter-day: 3.5-7.6%) were achieved for four pyrethroids in tea infusions. The relative recoveries of target analytes in real tea infusion samples were from 70% to 101% with relative standard deviations lower than 9.1%. We conclude that the proposed method is promising in the detection of pyrethroids in tea infusions.
Collapse
Affiliation(s)
- Qinqin Xu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zikai Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Chen Yan
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Wu H, Li D, Zhao B, Guan S, Jing X, Ding Y, Fan G. Magnetic covalent organic framework nanocomposites as a new adsorbent for the determination of polycyclic aromatic hydrocarbons in water and food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2847-2856. [PMID: 34085678 DOI: 10.1039/d1ay00496d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A magnetic covalent organic framework nanocomposite (Fe3O4@COF(Tp-NDA)) was synthesized via a solvothermal method, used as a magnetic adsorbent for the extraction of polycyclic aromatic hydrocarbons (PAHs) from lake water, tea, coffee, and fried chicken, and detected using a high performance liquid chromatography-ultraviolet detector. The synthesized magnetic adsorbent was characterized via transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm analysis and vibrating sample magnetometry. Parameters that affected the extraction conditions and desorption conditions were optimized. Adsorption equilibrium could be attained within 3 min. The prepared magnetic material could be reused 10 times. The limits of detection and quantification were 0.05-0.25 μg L-1 and 0.17-0.83 μg L-1, respectively. The recovery was 74.6-101.8% with a relative standard deviation of below 4.2%. The method was successfully used to detect PAHs in various samples.
Collapse
Affiliation(s)
- Hao Wu
- School of Chemistry and Materials Science of Shanxi Normal University, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen 041004, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mokhodoeva OB, Maksimova VV, Dzhenloda RK, Shkinev VM. Magnetic Nanoparticles Modified by Ionic Liquids in Environmental Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Nie L, Toufouki S, Yao S, Guo D. Rethinking the Applications of Ionic Liquids and Deep Eutectic Solvents in Innovative Nano-Sorbents. Front Chem 2021; 9:653238. [PMID: 33898393 PMCID: PMC8062918 DOI: 10.3389/fchem.2021.653238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
With the development of green chemistry and nano materials, new alternatives to traditional volatile solvents are one of many important hotspots in the field of nano materials. Ionic liquids (ILs) and deep eutectic solvents (DESs) as excellent alternative solvents are being applied in the innovation of nano-sorbents, including nanoparticles, nanogels, and nanofluid. ILs and DESs are often used as carriers/modifiers/dispersers of nano-sorbents to enhance the adsorption capacity and selectivity in the extraction procedure. Various extraction technologies, such as solid-phase extraction, solid-phase microextraction, micro-solid phase extraction, hollow fiber liquid phase microextraction, and magnetic solid-phase extraction, have also been promoted by them to achieve rapid development. This paper focused on the latest development of nano-sorbents based on ILs and DESs. The problems and bottlenecks encountered were analyzed in order to provide meaningful and valuable references for the related research and thus promote further development and application of alternative solvents-assisted nano-sorbents.
Collapse
Affiliation(s)
- Lirong Nie
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sara Toufouki
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Shun Yao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dong Guo
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
30
|
Ambient Levels, Emission Sources and Health Effect of PM2.5-Bound Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons in the City of Kuala Lumpur, Malaysia. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With increasing interest in understanding the contribution of secondary organic aerosol (SOA) to particulate air pollution in urban areas, an exploratory study was carried out to determine levels of carbonaceous aerosols and polycyclic aromatic hydrocarbons (PAHs) in the city of Kuala Lumpur, Malaysia. PM2.5 samples were collected using a high-volume sampler for 24 h in several areas in Kuala Lumpur during the north-easterly monsoon from January to March 2019. Samples were analyzed for water-soluble organic carbon (WSOC), organic carbon (OC), and elemental carbon (EC). Secondary organic carbon (SOC) in PM2.5 was estimated. Particle-bound PAHs were analyzed using gas chromatography-flame ionization detector (GC-FID). Average concentrations of WSOC, OC, and EC were 2.73 ± 2.17 (range of 0.63–9.12) µg/m3, 6.88 ± 4.94 (3.12–24.1) µg/m3, and 3.68 ± 1.58 (1.33–6.82) µg/m3, respectively, with estimated average SOC of 2.33 µg/m3, contributing 34% to total OC. The dominance of char-EC over soot-EC suggests that PM2.5 is influenced by biomass and coal combustion sources. The average of total PAHs was 1.74 ± 2.68 ng/m3. Source identification methods revealed natural gas and biomass burning, and urban traffic combustion as dominant sources of PAHs in Kuala Lumpur. A deterministic health risk assessment of PAHs was conducted for several age groups, including infant, toddler, children, adolescent, and adult. Carcinogenic and non-carcinogenic risk of PAH species were well below the acceptable levels recommended by the USEPA. Backward trajectory analysis revealed north-east air mass brought pollutants to the studied areas, suggesting the north-easterly monsoon as a major contributor to increased air pollution in Kuala Lumpur. Further work is needed using long-term monitoring data to understand the origin of PAHs contributing to SOA formation and to apply source-risk apportionment to better elucidate the potential risk factors posed by the various sources in urban areas in Kuala Lumpur.
Collapse
|
31
|
Manousi N, Deliyanni EA, Rosenberg E, Zachariadis GA. Ultrasound-assisted magnetic solid-phase extraction of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons from water samples with a magnetic polyaniline modified graphene oxide nanocomposite. J Chromatogr A 2021; 1645:462104. [PMID: 33857676 DOI: 10.1016/j.chroma.2021.462104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023]
Abstract
A novel magnetic graphene oxide nanocomposite modified with polyaniline (Fe3O4@GO-PANI) was synthesized and applied for the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) (i.e. fluorene, phenanthrene and pyrene) and nitrated polycyclic aromatic hydrocarbons (N-PAHs) (i.e. 2-nitrofluorene, 9-nitroanthracene, 1-nitropyrene and 3-nitrofluoranthene) prior to their determination by gas chromatography-mass spectrometry. The prepared nanomaterial was characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy. The main experimental parameters affecting the extraction and desorption steps of the MSPE procedure were investigated and optimized. Under optimum conditions, coefficients of determination (r2) ranged between 0.9970 and 0.9995, limits of detection (LODs, S/N = 3) ranged between 0.04-0.05 ng mL-1 for PAHs and 0.01-0.11 ng mL-1 for N-PAHs, while the relative standard deviation for intra-day and inter-day repeatability were lower than 10.0% for PAHs and N-PAHs. The method was successfully applied to the analysis of tap, mineral and river water samples. Relative recoveries in spiked water samples ranged between from 91.6 to 114% and from 92.3 to 110% for PAHs and N-PAHs, respectively. The proposed method is simple, rapid, sensitive and the Fe3O4@GO-PANI sorbent can be reused for at least 15 times without significant decrease in extraction recovery.
Collapse
Affiliation(s)
- N Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - E A Deliyanni
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - E Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
| | - G A Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
32
|
Gamonchuang J, Burakham R. Amino-based magneto-polymeric-modified mixed iron hydroxides for magnetic solid phase extraction of phenol residues in environmental samples. J Chromatogr A 2021; 1643:462071. [PMID: 33761435 DOI: 10.1016/j.chroma.2021.462071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022]
Abstract
Mixed iron hydroxides (MIHs) modified with different amino-based polymeric materials, including aminopropyltriethoxysilane, polydopamine, diaminobenzoic acid, polyaniline, and polyphenylenediamine, were comparatively investigated as sorbents for the extraction of phenol compounds. Polyphenylenediamine-modified mixed iron hydroxides (MIH@PPDA) showed high adsorption capability for most target analytes. Its ferromagnetic behavior, with a magnetization of 17.38 emu g-1, was sufficient for subsequent use in magnetic solid-phase extraction (MSPE). The functional groups, morphology, and magnetic properties of this magnetic nanomaterial were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray diffraction, and CHN analysis. High-performance liquid chromatography with a photodiode array detector was used to quantify phenol compounds. The experimental parameters affecting the efficiency of the entire MSPE process were optimized. Good linearity in the range of 0.5-1000 µg L-1 was obtained (depended on the compound). The detection and quantitation limits varied from 0.01 to 0.3 µg L-1 and 0.03 to 0.9 µg L-1, respectively. The enrichment factors for all phenol compounds were in the range of 80-285. The precision in terms of intra- and inter-day relative standard deviations were below 5.8% and 6.2%, respectively. The developed MSPE method was applied to analyze phenol compounds in diverse samples, including soil, drinking water, and fruit. Relative recoveries of 76.7-130.1% were obtained. The MIH@PPDA magneto-polymeric sorbent exhibits good stability and is reliable for a variety of phenol compounds.
Collapse
Affiliation(s)
- Jirasak Gamonchuang
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
33
|
Tang T, Cao S, Xi C, Chen Z. Multifunctional magnetic chitosan-graphene oxide-ionic liquid ternary nanohybrid: An efficient adsorbent of alkaloids. Carbohydr Polym 2021; 255:117338. [DOI: 10.1016/j.carbpol.2020.117338] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
|
34
|
Wu L, He Q, Zhang J, Li Y, Yang W, Sun C. QuEChERS with Ultrasound-Assisted Extraction Combined with High-Performance Liquid Chromatography for the Determination of 16 Polycyclic Aromatic Hydrocarbons in Sediment. J AOAC Int 2021; 104:1255-1263. [PMID: 33617642 DOI: 10.1093/jaoacint/qsab023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/30/2023]
Abstract
Abstract
Background
Polycyclic aromatic hydrocarbons (PAHs) have attracted worldwide attention due to their carcinogenic, teratogenic, and mutagenic effects, environmental persistence, and bioaccumulation characteristics. Therefore, the sensitive, reliable, and rapid detection of PAHs in sediment is of great importance.
Objective
To develop a high-performance liquid chromatography (HPLC) with fluorescence and ultraviolet detection after Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) treatment for simultaneous determination of 16 U.S. Environmental Protection Agency priority PAHs in sediment samples.
Method
The samples were ultrasonically extracted with acetone and then the supernatant was purified with a modified QuEChERS method. After centrifugation, the supernatant was injected into the HPLC system for analysis. The separation was accomplished on a ZORBAX Eclipse PAH column (150 × 4.6 mm, 3.5 μm) and the column temperature was set at 30 °C. The flow rate of the mobile phase consisting of water and acetonitrile in gradient elution mode was fixed at 0.9 mL/min. Detection was conducted on an ultraviolet detector and a fluorescence detector simultaneously. The qualitative analysis was based on retention time and the quantification was based on standard curves.
Results
Under the optimal conditions, this method showed good linearities in the range of 10–200 μg/L with correlation coefficients greater than 0.9993. The method had LODs ranging from 0.00108 to 0.314 ng/g. The mean recoveries ranged from 78.4 to 117% with intra-day and inter-day RSDs of 0.592–10.7% and 1.01–13.0%, respectively. The proposed method was successfully applied to the detection of 16 PAHs in sediment samples collected from the Funan River in Chengdu, China with total contents of 431–2143 ng/g·dw.
Conclusions
The established method is simple, rapid, environmentally friendly, and cost-effective. It can be applied to the analysis of 16 PAHs in sediment samples.
Highlights
A method of QuEChERS with ultrasound-assisted extraction combined with HPLC has been established for the analysis of 16 PAHs in sediment samples and the proposed method has been successfully applied to the analysis PAHs in real sediment samples.
Collapse
Affiliation(s)
- Ling Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Weiqing Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chengjun Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Nukatsuka I, Satoh R, Kihara S, Kitagawa F. A thin-layer solid-phase extraction-liquid film elution technique used for the enrichment of polycyclic aromatic hydrocarbons in water. J Sep Sci 2021; 44:1989-1997. [PMID: 33605531 DOI: 10.1002/jssc.202001165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
In this article, we propose a novel microsolid-phase extraction and elution technique, which we called the thin-layer solid-phase extraction-liquid film elution technique. The thin-layer solid-phase extraction phase is an octadecylsilylated sol gel- coated porous silica thin film prepared on the outer wall of a test tube, which has a larger surface area for the extraction of the target compounds compared to a conventional solid-phase microextraction phase. After optimization of the extraction procedure for five types of polycyclic aromatic hydrocarbons, the liquid film elution technique was investigated. Liquid film elution is an elution technique wherein the compounds extracted into the thin-layer solid-phase extraction phase are eluted using a small volume of solvent film formed around the extraction phase. The results show that the elution can be carried out using 150 μL of eluent. Enrichment factors between 20 and 34 were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings in 10 mL aliquots of aqueous samples. Finally, recoveries of 85-112% were obtained for polycyclic aromatic hydrocarbons containing more than four aromatic rings from spiked natural water samples using the thin-layer solid-phase extraction-liquid film elution technique.
Collapse
Affiliation(s)
- Isoshi Nukatsuka
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Ryota Satoh
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Shigeki Kihara
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
36
|
Chen D, Ma S, Zhang X, Wang X, Gao M, Li J, Wang H. Enhanced extraction of organophosphorus pesticides from fruit juices using magnetic effervescent tablets composed of the NiFe2O4@SiO2@PANI-IL nanocomposites. RSC Adv 2021; 11:1668-1678. [PMID: 35424117 PMCID: PMC8693588 DOI: 10.1039/d0ra09100f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
The reported ionic liquid (IL)-based magnetic effervescent tablets are a result of direct addition of ILs and magnetic nanoparticles (MNPs). In effervescent reaction-enhanced microextraction procedures, the dissociation between ILs and MNPs easily leads to loss of ILs due to aqueous solubility, thereby decreasing the extraction efficiency. Herein, we attached a hydrophilic IL ([BMIM]Br) onto the surface of NiFe2O4@SiO2@polyaniline (NiFe2O4@SiO2@PANI-IL) to prepare novel core–shell-like multi-layer nanocomposites. Magnetic effervescent tablets were composed of Na2CO3 as an alkaline source, tartaric acid as an acidic source and as-synthesized nanocomposites as an extractant. The nanocomposites were used in an effervescent reaction-enhanced magnetic solid-phase extraction (ERMSE) for the extraction of four organophosphorus pesticides (OPPs) in fruit juices prior to HPLC-DAD detection. Under optimized conditions, this method provided low limits of detection (0.06–0.17 μg L−1), high recoveries (80.6–97.3%) and excellent precision (1.1–5.2%) for OPP quantification in five fruit juices. Notably, the three-layer core–shell nanocomposites were efficiently recycled for at least eight extraction cycles with a recovery loss of <10%. The novelty of this study lies in: (1) for the first time, the ILs-based hybrid magnetic nanocomposites were prepared with appropriate pore size/volume and more active sites for OPPs; (2) the combination of the nanocomposites with effervescent tablets realizes rapid dispersion of CO2 bubbles, and convenient magnetic separation/collection into one synchronous step; and (3) due to there being no requirement of electrical power, it is feasible for use in field conditions. Thus, the ERMSE method has excellent potential for conventional monitoring of trace-level OPPs in complex fruit juice matrices. The reported ionic liquid (IL)-based magnetic effervescent tablets are a result of direct addition of ILs and magnetic nanoparticles (MNPs).![]()
Collapse
Affiliation(s)
- Dechao Chen
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Sai Ma
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Xiaofan Zhang
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Xuedong Wang
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Ming Gao
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Jieyi Li
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Huili Wang
- School of Environmental Science and Engineering
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| |
Collapse
|
37
|
Recovery of platinum group metals using magnetic nanoparticles modified with ionic liquids. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Gopal K, Al deeb I, Raaov M, Suah F, Samad N, Yahaya N, Lim V, Zain N. Supramolecular solvent combined with dispersive solid phase extraction based magnetic silicone surfactant activated charcoal adsorbent for extraction of phenolic compounds from industrial wastewater. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Sajid M, Nazal MK, Ihsanullah I. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Anal Chim Acta 2020; 1141:246-262. [PMID: 33248658 DOI: 10.1016/j.aca.2020.07.064] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons are hazardous environmental pollutants that possess mutagenic and carcinogenic properties. Generally, the concentrations of PAHs in environmental water samples are very low, and it is challenging to detect such levels directly by the analytical instrumentation. Thus, the extraction of PAHs using suitable extraction methodology is required for sample cleanup and analyte enrichment. Dispersive solid-phase extraction has several advantages over conventional approaches for the extraction of PAHs from environmental water samples. In this article, we critically evaluate the role of different nano and micro sorbent materials employed in the extraction of PAHs. Carbon-based nanomaterials, metal-organic frameworks, polymeric nanocomposites, ionic-liquid based composites, and silica-based materials are explicitly covered. This review also provides insight on functional components of all types of sorbents and their way of interaction with PAHs. The factors affecting the dispersive (micro) solid phase extraction of PAHs such as the design of the sorbent, the ratio of functional material to magnetic core, sample volume, amount of sorbent, extraction and desorption times, desorption solvent and its volume, salt addition, and sample pH are critically appraised. Finally, a brief account on the accomplishments, limitations, and challenges associated with such methods is provided.
Collapse
Affiliation(s)
- Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Mazen Khaled Nazal
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
40
|
Manousi N, Zachariadis GA. Recent Advances in the Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Samples. Molecules 2020; 25:E2182. [PMID: 32392764 PMCID: PMC7249015 DOI: 10.3390/molecules25092182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise a group of chemical compounds consisting of two or more fused benzene rings. PAHs exhibit hydrophobicity and low water solubility, while some of their members are toxic substances resistant to degradation. Due to their low levels in environmental matrices, a preconcentration step is usually required for their determination. Nowadays, there is a wide variety of sample preparation techniques, including micro-extraction techniques (e.g., solid-phase microextraction and liquid phase microextraction) and miniaturized extraction techniques (e.g., dispersive solid-phase extraction, magnetic solid-phase extraction, stir bar sorptive extraction, fabric phase sorptive extraction etc.). Compared to the conventional sample preparation techniques, these novel techniques show some benefits, including reduced organic solvent consumption, while they are time and cost efficient. A plethora of adsorbents, such as metal-organic frameworks, carbon-based materials and molecularly imprinted polymers, have been successfully coupled with a wide variety of extraction techniques. This review focuses on the recent advances in the extraction techniques of PAHs from environmental matrices, utilizing novel sample preparation approaches and adsorbents.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
41
|
Zhou DB, Han F, Ding L, Song W, Lv YN, Hu YY, Liu YX, Sheng X, Zheng P. Magnetic C 60 nanospheres based solid-phase extraction coupled with isotope dilution gas chromatography-mass spectrometry method for the determination of sixteen polycyclic aromatic hydrocarbons in Chinese herbal medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144:122076. [PMID: 32222675 DOI: 10.1016/j.jchromb.2020.122076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
C60-based magnetic nanospheres were synthesized by coating Fe3O4 nanospheres with silica, then modifying with 3-aminopropyltriethoxysilane as a linker and a C60 fullerene stationary phase. The morphologies, magnetic properties, infrared absorption and carbon content of magnetic nanospheres were studied by TEM, VSM, FTIR and carbon and sulfur analyzer. The magnetic nanospheres were employed for the magnetic solid-phase extraction (MSPE) of 16 polycyclic aromatic hydrocarbons (PAHs) in nine Chinese herbal medicines. The analyses were conducted by isotope dilution gas chromatography-mass spectrometry. The main parameters influencing the extraction, including extraction solvent, adsorbent amount, and extraction time were optimized. Method validation showed that the limit of detection (LOD) was 0.02-0.11 µg/kg, and the limit of quantification (LOQ) was 0.07-0.36 µg/kg. The spiked recoveries rates for 16 PAHs in white peony root were 84.7-107.2%. The relative standard deviation (RSD) was 1.7-8.4%. The established method was further used for the determination 16 PAHs in nine Chinese herbal medicines. Total content of 16 PAHs varied from 73.6 µg/kg (fructus lycii) to 2172.6 µg/kg (astragalus root). The results indicate that the pollution of PAHs in Chinese herbal medicines is serious. The established method can effective detect PAHs contamination in Chinese herbal medicines.
Collapse
Affiliation(s)
- Dian-Bing Zhou
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China.
| | - Fang Han
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Lei Ding
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Wei Song
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Ya-Ning Lv
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Yan-Yun Hu
- Instruments' Center for Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China; School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yu-Xin Liu
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Xuan Sheng
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| | - Ping Zheng
- Technology Center of Hefei Customs, and Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui 230022, PR China
| |
Collapse
|
42
|
Recent advances and applications of magnetic nanomaterials in environmental sample analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115864] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Qin SB, Li XS, Fan YH, Mou XX, Qi SH. Facile synthesis of polydivinylbenzene coated magnetic polydopamine coupled with pressurized liquid extraction for the extraction and cleanup of polycyclic aromatic hydrocarbons in soils. J Chromatogr A 2020; 1613:460676. [PMID: 31727351 DOI: 10.1016/j.chroma.2019.460676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/20/2019] [Accepted: 11/03/2019] [Indexed: 01/03/2023]
Abstract
Due to the trace levels of polycyclic aromatic hydrocarbons (PAHs) in soil and the complexity of soil matrices, effective sample pretreatment methods are of great significance to obtain accurate analytical results. In this paper, polydopamine (PDA) encapsulated Fe3O4 particles were used as seeds for in situ polymerization of divinylbenzene (DVB) to derive magnetic hybrid material Fe3O4@PDA@PDVB. Coupled with pressurized liquid extraction, Fe3O4@PDA@PDVB was investigated as a selective adsorbent for the extraction and cleanup of PAHs in soil. The prepared magnetic material was characterized and demonstrated to possess strong hydrophobicity and superparamagnetism. Under optimal conditions, Fe3O4@PDA@PDVB can effectively extract 15 PAHs from a 30% methanol solution within 2 min, and it is more selective for PAHs than for n-alkane in soil extracts. The matrix effect significantly decreased after extraction by the prepared material, which showed superiority to a silica gel column method (EPA 3630C Method). The developed method was linear (5-1000 ng g-1) with coefficient of determination (R2) ranging from 0.9986-0.9998, and the limits of detection were 0.13-0.54 ng g-1. Additionally, repetitive experiments indicated that the prepared material was reproducible and reusable with relative standard deviations below 8.4% and 8.6%, respectively. Finally, the new method was successfully employed to determine the concentrations of PAHs in genuine soil and standard reference material, and the results were comparable to those of widely utilized EPA methodology.
Collapse
Affiliation(s)
- Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Yu-Han Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiao-Xuan Mou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
44
|
Shi Z, Jiang J, Pang W, Ma H, Chu X, Zhou C, Zhang H. Dispersive micro-solid phase extraction using cotton based carbon fiber sorbent for the determination of three polycyclic aromatic hydrocarbons in tea infusion by gas chromatography-quadrupole mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Patel N, Katheriya D, Dadhania H, Dadhania A. Graphene oxide supported dicationic ionic liquid: an efficient catalyst for the synthesis of 1-carbamatoalkyl-2-naphthols. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03922-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
de Barros Caetano VCL, da Costa Cunha G, Oliveira RVM, da Rosa Alexandre M, Romão LPC. Magnetic hybrid support for ultrasound-assisted magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from produced water. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A. Recent Applications of Magnetic Solid-phase Extraction for Sample Preparation. Chromatographia 2019. [DOI: 10.1007/s10337-019-03721-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Ramezanpour M, Raeisi SN, Shahidi SA, Ramezanpour S, Seidi S. Polydopamine-functionalized magnetic iron oxide for the determination of trace levels of lead in bovine milk. Anal Biochem 2019; 570:5-12. [DOI: 10.1016/j.ab.2019.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
|
49
|
Boon YH, Mohamad Zain NN, Mohamad S, Osman H, Raoov M. Magnetic poly(β-cyclodextrin-ionic liquid) nanocomposites for micro-solid phase extraction of selected polycyclic aromatic hydrocarbons in rice samples prior to GC-FID analysis. Food Chem 2019; 278:322-332. [DOI: 10.1016/j.foodchem.2018.10.145] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
|
50
|
Wójciak-Kosior M, Sowa I, Dresler S, Kováčik J, Staniak M, Sawicki J, Zielińska S, Świeboda R, Strzemski M, Kocjan R. Polyaniline based material as a new SPE sorbent for pre-treatment of Chelidonium majus extracts before chromatographic analysis of alkaloids. Talanta 2019; 194:32-37. [DOI: 10.1016/j.talanta.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023]
|