1
|
Zhao J, Ni Y, Tan L, Zhang W, Zhou H, Xu B. Recent advances in meat freshness "magnifier": fluorescence sensing. Crit Rev Food Sci Nutr 2024; 64:11626-11642. [PMID: 37555377 DOI: 10.1080/10408398.2023.2241553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
To address the serious waste of meat resources and food safety problems caused by the decrease in meat freshness due to the action of microorganisms and enzymes, a low-cost, time-saving and high-efficiency freshness monitoring method is urgently needed. Fluorescence sensing could act as a "magnifier" for meat freshness monitoring due to its ability to sense characteristic signal produced by meat spoilage. Here, the magnification mechanism of meat freshness via sensing the water activity, adenosine triphosphate, hydrogen ion, total volatile basic nitrogen, hydrogen sulfide, bioamines was comprehensively analyzed. The existing "magnifier" forms including paper chips, films, labels, arrays, probes, and hydrogels as well as the application in livestock, poultry and aquatic meat freshness monitoring were reviewed. Future research directions involving innovation of principles, visualization and quantification capabilities for various meats freshness were provided. By critically evaluating the potential and limitations, efficient and reliable meat freshness monitoring strategies wish to be developed for the post-epidemic era.
Collapse
Affiliation(s)
- Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
3
|
Li J, Liu X, Xi J, Deng L, Yang Y, Li X, Sun H. Recent Development of Polymer Nanofibers in the Field of Optical Sensing. Polymers (Basel) 2023; 15:3616. [PMID: 37688242 PMCID: PMC10489887 DOI: 10.3390/polym15173616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, owing to the continuous development of polymer nanofiber manufacturing technology, various nanofibers with different structural characteristics have emerged, allowing their application in the field of sensing to continually expand. Integrating polymer nanofibers with optical sensors takes advantage of the high sensitivity, fast response, and strong immunity to electromagnetic interference of optical sensors, enabling widespread use in biomedical science, environmental monitoring, food safety, and other fields. This paper summarizes the research progress of polymer nanofibers in optical sensors, classifies and analyzes polymer nanofiber optical sensors according to different functions (fluorescence, Raman, polarization, surface plasmon resonance, and photoelectrochemistry), and introduces the principles, structures, and properties of each type of sensor and application examples in different fields. This paper also looks forward to the future development directions and challenges of polymer nanofiber optical sensors, and provides a reference for in-depth research of sensors and industrial applications of polymer nanofibers.
Collapse
Affiliation(s)
- Jinze Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xin Liu
- School of Physics, Xidian University, Xi'an 710071, China
| | - Jiawei Xi
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Li Deng
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Yanxin Yang
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Xiang Li
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| | - Hao Sun
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, China
| |
Collapse
|
4
|
Xu W, Ahmed F, Xiong H. A mitochondria-targeted fluorescent probe based on biocompatible RBH-U for the enhanced response of Fe 3+ in living cells and quenching of Cu 2+ in vitro. Anal Chim Acta 2023; 1249:340925. [PMID: 36868767 DOI: 10.1016/j.aca.2023.340925] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
A rhodamine hydrazide conjugating uridine moiety (RBH-U) is firstly synthesized by screening different synthetic routes, and then developed as a fluorescence probe for selective detection of Fe3+ ions in an aqueous solution, accompanied by visual color change with naked eyes. Upon the addition of Fe3+ in a 1:1 stoichiometry, a 9-fold enhancement in the fluorescence intensity of the RBH-U was observed with an emission wavelength of 580 nm. In the presence of other metal ions, the "turn-on" fluorescent probe with pH-independent (value 5.0 to 8.0) is remarkably specific for Fe3+ with a detection limit as low as 0.34 μM. Further, the enhanced fluorescence intensity of RBH-U- Fe3+ can be quenched as a switch-off sensor to assist in the recognition of Cu2+ ions. Additionally, the colocalization assay demonstrated that RBH-U containing uridine residue can be used as a novel mitochondria-targeted fluorescent probe with rapid reaction time. Cytotoxicity and cell imaging of RBH-U probe in live NIH-3T3 cells suggest that it can be a potential candidate for clinical diagnosis and Fe3+ tracking toll for the biological system due to its biocompatibility and nontoxicity in NIH-3T3 cells even up to 100 μM.
Collapse
Affiliation(s)
- Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
5
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
6
|
Zhang W, Sun DW, Ma J, Wang Z, Qin A, Zhong Tang B. Simultaneous Sensing of Ammonia and Temperatures Using A Dual-mode Freshness Indicator Based on Au/Cu Nanoclusters for Packaged Seafood. Food Chem 2023; 418:135929. [PMID: 37001353 DOI: 10.1016/j.foodchem.2023.135929] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Seafood is highly perishable and monitoring its freshness this thus an important issue. For the first time, the current study developed a dual-mode freshness indicator based on d-penicillamine capped bimetallic gold/copper nanoclusters (DPA-Au/CuNCs) as a response probe for simultaneous monitoring of ammonia and temperatures to assess seafood freshness. Results indicated that the prepared DPA-Au/CuNCs have good sensitivity toward ammonia, with a limit of detection of 0.14 ppm. The indicator as a gas sensor for ammonia vapour detection exhibited highly recognizable fluorescence colour changes and the variations from white to yellow were observed with increasing storage temperature under natural light. For confirming its practical applications, the indicator was used to simultaneously monitor ammonia and temperatures during the storage of shrimp and fish, showing good potential for practical applications in evaluating seafood freshness for the food industry.
Collapse
Affiliation(s)
- Wenyang Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. http://www.ucd.ie/refrig
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China; Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| |
Collapse
|
7
|
Kusuma HS, Yugiani P, Himana AI, Aziz A, Putra DAW. Reflections on food security and smart packaging. Polym Bull (Berl) 2023; 81:1-47. [PMID: 36852383 PMCID: PMC9947446 DOI: 10.1007/s00289-023-04734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Estimating the number of COVID-19 cases in 2020 exacerbated the food contamination and food supply issues. These problems make consumers more concerned about food and the need to access accurate information on food quality. One of the main methods for preserving the quality of food commodities for export, storage, and finished products is food packaging itself. In the food industry, food packaging has a significant role in the food supply which acts as a barrier against unwanted substances and preserves the quality of the food. Meanwhile, packaging waste can also harm the environment; namely, it can become waste in waterways or become garbage that accumulates because it is nonrenewable and nonbiodegradable. The problem of contaminated food caused by product packaging is also severe. Therefore, to overcome these challenges of safety, environmental impact, and sustainability, the role of food packaging becomes very important and urgent. In this review, the authors will discuss in more detail about new technologies applied in the food industry related to packaging issues to advance the utilization of Smart Packaging and Active Packaging.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Puput Yugiani
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Ayu Iftah Himana
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Amri Aziz
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Deva Afriga Wardana Putra
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| |
Collapse
|
8
|
Fernandez CM, Alves J, Gaspar PD, Lima TM, Silva PD. Innovative processes in smart packaging. A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:986-1003. [PMID: 35279845 DOI: 10.1002/jsfa.11863] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 03/13/2022] [Indexed: 05/15/2023]
Abstract
Smart packaging provides one possible solution that could reduce greenhouse gas emissions. In comparison with traditional packaging, which aims to extend the product's useful life and to facilitate transport and marketing, smart packaging allows increased efficiency, for example by ensuring authenticity and traceability from the product's origin, preventing fraud and theft, and improving security. Consequently, it may help to reduce pollution, food losses, and waste associated with the food supply chain. However, some questions must be answered to fully understand the advantages and limitations of its use. What are the most suitable smart packaging technologies for use in agro-industrial subsectors such as meat, dairy, fruits, and vegetables, bakery, and pastry? What are the opportunities from a perspective of life extension, process optimization, traceability, product quality, and safety? What are the future challenges? An up-to-date, systematic review was conducted of literature relevant to the application of indicator technologies, sensors, and data carriers in smart packaging, to answer these questions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos M Fernandez
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro Dinis Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| |
Collapse
|
9
|
Liu B, Yang H, Zhu C, Xiao J, Cao H, Simal-Gandara J, Li Y, Fan D, Deng J. A comprehensive review of food gels: formation mechanisms, functions, applications, and challenges. Crit Rev Food Sci Nutr 2022; 64:760-782. [PMID: 35959724 DOI: 10.1080/10408398.2022.2108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gels refer to the soft and flexible macromolecular polymeric materials retaining a large amount of water or biofluids in their three-dimensional network structure. Gels have attracted increasing interest in the food discipline, especially proteins and polysaccharides, due to their good biocompatibility, biodegradability, nutritional properties, and edibility. With the advancement of living standards, people's demand for nutritious, safe, reliable, and functionally diverse food and even personalized food has increased. As a result, gels exhibiting unique advantages in food application will be of great significance. However, a comprehensive review of functional hydrogels as food gels is still lacking. Here, we comprehensively review the gel-forming mechanisms of food gels and systematically classify them. Moreover, the potential of hydrogels as functional foods in different types of food areas is summarized, with a special focus on their applications in food packaging, satiating gels, nutrient delivery systems, food coloring adsorption, and food safety monitoring. Additionally, the key scientific issues for future food gel research, with specific reference to future novel food designs, mechanisms between food components and matrices, food gel-human interactions, and food gel safety, are discussed. Finally, the future directions of hydrogels for food science and technology are summarized.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| |
Collapse
|
10
|
|
11
|
Jeevanandam J, Agyei D, Danquah MK, Udenigwe C. Food quality monitoring through bioinformatics and big data. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Mordovina EA, Plastun VO, Abdurashitov AS, Proshin PI, Raikova SV, Bratashov DN, Inozemtseva OA, Goryacheva IY, Sukhorukov GB, Sindeeva OA. "Smart" Polylactic Acid Films with Ceftriaxone Loaded Microchamber Arrays for Personalized Antibiotic Therapy. Pharmaceutics 2021; 14:pharmaceutics14010042. [PMID: 35056938 PMCID: PMC8781070 DOI: 10.3390/pharmaceutics14010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial infections are a severe medical problem, especially in traumatology, orthopedics, and surgery. The local use of antibiotics-elution materials has made it possible to increase the effectiveness of acute infections treatment. However, the infection prevention problem remains unresolved. Here, we demonstrate the fabrication of polylactic acid (PLA) “smart” films with microchamber arrays. These microchambers contain ceftriaxone as a payload in concentrations ranging from 12 ± 1 μg/cm2 to 38 ± 8 μg/cm2, depending on the patterned film thickness formed by the different PLA concentrations in chloroform. In addition, the release profile of the antibiotic can be prolonged up to 72 h in saline. At the same time, on the surface of agar plates, the antibiotic release time increases up to 96 h, which has been confirmed by the growth suppression of the Staphylococcus aureus bacteria. The efficient loading and optimal release rate are obtained for patterned films formed by the 1.5 wt % PLA in chloroform. The films produced from 1.5 and 2 wt % PLA solutions (thickness—0.42 ± 0.12 and 0.68 ± 0.16 µm, respectively) show an accelerated ceftriaxone release upon the trigger of the therapeutic ultrasound, which impacted as an expansion of the bacterial growth inhibition zone around the samples. Combining prolonged drug elution with the on-demand release ability of large cargo amount opens up new approaches for personalized and custom-tunable antibacterial therapy.
Collapse
Affiliation(s)
- Ekaterina A. Mordovina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
- Correspondence: (E.A.M.); (O.A.S.)
| | - Valentina O. Plastun
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
| | - Pavel I. Proshin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
| | - Svetlana V. Raikova
- Saratov Hygiene Medical Research Center of the FBSI «FSC Medical and Preventive Health Risk Management Technologies», 1A Zarechnaya Str., 410022 Saratov, Russia;
- Department of Microbiology, Virology, and Immunology, Saratov State Medical University, 112 Bolshaya Kazachia Str., 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Olga A. Inozemtseva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Irina Yu. Goryacheva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.O.P.); (D.N.B.); (O.A.I.); (I.Y.G.)
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olga A. Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (P.I.P.); (G.B.S.)
- Correspondence: (E.A.M.); (O.A.S.)
| |
Collapse
|
13
|
Azeredo HM, Correa DS. Smart choices: Mechanisms of intelligent food packaging. Curr Res Food Sci 2021; 4:932-936. [PMID: 34917950 PMCID: PMC8646162 DOI: 10.1016/j.crfs.2021.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Intelligent food packaging is usually designed to monitor the state of the food itself and/or the environment around it, as well as the interactions between them, providing customers with information on food quality and/or safety through a variety of signals. They involve indicators (which inform by direct visual changes about specific properties related to food quality) and sensors (which detect specific analytes by using receptors, transducers, and signal processing electronics). A third type of intelligent packaging is known as data carriers, which are not typically used for information on food quality, but rather to track the movement of food along the food supply chain. In this graphical review, the basic mechanisms of intelligent food packaging systems are presented, as well as their main applications, with particular emphasis on those focused on food quality monitoring.
Collapse
Affiliation(s)
- Henriette M.C. Azeredo
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, 60511-110, Fortaleza, CE, Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, R. 15 de Novembro, 1452, Caixa Postal 741, 13560-970, São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, R. 15 de Novembro, 1452, Caixa Postal 741, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
14
|
Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Mordovina EA, Sindeeva OA, Abramova AM, Tsyupka DV, Atkin VS, Bratashov DN, Goryacheva IY, Sukhorukov GB. Controlled release of α-amylase from microchamber arrays containing carbon nanoparticle aggregates. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Nguyen HL, Tran TH, Hao LT, Jeon H, Koo JM, Shin G, Hwang DS, Hwang SY, Park J, Oh DX. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications. Carbohydr Polym 2021; 271:118421. [PMID: 34364562 DOI: 10.1016/j.carbpol.2021.118421] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Aluminum-coated polypropylene films are commonly used in food packaging because aluminum is a great gas barrier. However, recycling these films is not economically feasible. In addition, their end-of-life incineration generates harmful alumina-based particulate matter. In this study, coating layers with excellent gas-barrier properties are assembled on polypropylene films through layer-by-layer (LbL) deposition of biorenewable nanocellulose and nanochitin. The coating layers significantly reduce the transmission of oxygen and water vapors, two unfavorable gases for food packaging, through polypropylene films. The oxygen transmission rate of a 60 μm-thick, 20 LbL-coated polypropylene film decreases by approximately a hundredfold, from 1118 to 13.10 cc m-2 day-1 owing to the high crystallinity of nanocellulose and nanochitin. Its water vapor transmission rate slightly reduces from 2.43 to 2.13 g m-2 day-1. Furthermore, the coated film is highly transparent, unfavorable to bacterial adhesion and thermally recyclable, thus promising for advanced food packaging applications.
Collapse
Affiliation(s)
- Hoang-Linh Nguyen
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Thang Hong Tran
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Sung Yeon Hwang
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
17
|
Nimbkar S, Auddy M, Manoj I, Shanmugasundaram S. Novel Techniques for Quality Evaluation of Fish: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1925291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shubham Nimbkar
- Planning and Monitoring Cell, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, Thanjavur, Tamil Nadu, India
| | - Manoj Auddy
- Planning and Monitoring Cell, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, Thanjavur, Tamil Nadu, India
| | - Ishita Manoj
- Planning and Monitoring Cell, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, Thanjavur, Tamil Nadu, India
| | - S Shanmugasundaram
- Planning and Monitoring Cell, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
18
|
Sobhan A, Muthukumarappan K, Wei L, Qiao Q, Rahman MT, Ghimire N. Development and characterization of a novel activated biochar-based polymer composite for biosensors. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1921497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abdus Sobhan
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, USA
| | | | - Lin Wei
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD, USA
| | - Quinn Qiao
- Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD, USA
| | - Md Tawabur Rahman
- Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD, USA
| | - Nabin Ghimire
- Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
19
|
Portable functional hydrogels based on silver metallization for visual monitoring of fish freshness. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Taghinia P, Abdolshahi A, Sedaghati S, Shokrollahi B. Smart edible films based on mucilage of lallemantia iberica seed incorporated with curcumin for freshness monitoring. Food Sci Nutr 2021; 9:1222-1231. [PMID: 33598206 PMCID: PMC7866608 DOI: 10.1002/fsn3.2114] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of the present work was first to develop a smart packaging system based on Lallemantia iberica seed gum (LISG)/curcumin and, subsequently, investigate its physicochemical characteristics and biological activity. Finally, the response of LISG/curcumin films against pH change and the spoilage of shrimp were tested. The barrier properties and mechanical performance of the films improved as the curcumin concentration increased. FT-IR analysis revealed the formation of physical interaction between LISG and curcumin. LISG/curcumin films showed a continuous and steady release of curcumin. The incorporation of curcumin into LISG matrix imparts antioxidant and antibacterial/mold activity to the films. A strong positive correlation was observed between total volatile base nitrogen (TVBN) content of shrimp and a* (redness) during storage time (Pearson correlation = 0.975). Eventually, LISG/curcumin film could be a promising smart packaging system capable of detecting food spoilage.
Collapse
Affiliation(s)
- Pouya Taghinia
- Department of Food Science and TechnologyIslamic Azad UniversitySariIran
| | - Anna Abdolshahi
- Food safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| | - Sahebeh Sedaghati
- Department of Food Science and TechnologyFerdowsi University of Mashhad (FUM)MashhadIran
| | - Behdad Shokrollahi
- Food safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| |
Collapse
|
21
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
22
|
Kiryukhin MV, Lau HH, Lim SH, Salgado G, Fan C, Ng YZ, Leavesley DI, Upton Z. Arrays of Biocompatible and Mechanically Robust Microchambers Made of Protein-Polyphenol-Clay Multilayer Films. ACS Biomater Sci Eng 2020; 6:5653-5661. [PMID: 33320583 DOI: 10.1021/acsbiomaterials.0c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a growing demand for biocompatible and mechanically robust arrays of microcompartments loaded with minute amounts of active substances for sensing or controlled release applications. Here we report on a novel biocompatible composite material, protein-polyphenol-clay (PPC) multilayer film. The material is shown to be strong enough to make robust microchambers retaining the shape and dimensions of truncated square pyramids. We study the mechanical properties and biocompatibility of the PPC microchambers and compare them to those made of synthetic polyelectrolyte multilayer film, poly(styrenesulfonate)-poly(allylammonium) (PSS-PAH). The mechanical properties of the microchambers were characterized under uniaxial compression using nanoindentation with a flat-punch tip. The effective Young's modulus of PPC microchambers, 166 ± 53 MPa, is found to be lower than that of PSS-PAH microchambers, 245 ± 52 MPa. However, the capacity to elastically absorb the energy of the former, 2.4 ± 1.0 MPa, is marginally higher than of the latter, 2.0 ± 1.3 MPa. Arrays of microchambers were sealed onto a polyethylene film, loaded with a model oil-soluble drug, and their biocompatibility was tested using an ex vivo 3D human skin reconstruct model. We found no evidence for toxicity with the PPC microchambers; however, PSS-PAH microchambers stimulated reduced cell density in the epidermis and significantly affected epidermal-dermal attachment. Both materials do not alter skin cell proliferation but affect skin cell differentiation. We interpret that rather than affecting epidermal barrier function, these data suggest the applied plastic films with microchamber arrays affect transpiration, normoxia, and moisture exchange.
Collapse
Affiliation(s)
- Maxim V Kiryukhin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Hooi Hong Lau
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Su Hui Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Giorgiana Salgado
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Chen Fan
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Yi Zhen Ng
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - David I Leavesley
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Zee Upton
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| |
Collapse
|
23
|
Sindeeva OA, Kopach O, Kurochkin MA, Sapelkin A, Gould DJ, Rusakov DA, Sukhorukov GB. Polylactic Acid-Based Patterned Matrixes for Site-Specific Delivery of Neuropeptides On-Demand: Functional NGF Effects on Human Neuronal Cells. Front Bioeng Biotechnol 2020; 8:497. [PMID: 32596218 PMCID: PMC7304324 DOI: 10.3389/fbioe.2020.00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery system for drug storage and site-/time-specific drug release on demand. However, functional evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release on-demand to trigger local cell responses. Here, we load the nerve growth factor (NGF) inside microchambers and grow N2A cells on the surface of patterned microchamber arrays. We find that the neurite outgrowth in local N2A cells can be preferentially directed towards opened microchambers (upon-specific NGF release). These observations suggest the PLA-microchambers can be an efficient drug delivery system for the site-specific delivery of neuropeptides on-demand, potentially suitable for the migratory or axonal guidance of human nerve cells.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maxim A. Kurochkin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrei Sapelkin
- School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
| | - David J. Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dmitri A. Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- Center of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
24
|
Wu D, Zhang M, Chen H, Bhandari B. Freshness monitoring technology of fish products in intelligent packaging. Crit Rev Food Sci Nutr 2020; 61:1279-1292. [PMID: 32342714 DOI: 10.1080/10408398.2020.1757615] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fish products are one of the preferred products in modern healthy diets, because they contain unqualified proteins, polyunsaturated fatty acids and a variety of vitamins and minerals. However, because of their vulnerability to deterioration, methods to maintain their freshness have attracted wide attention. Intelligent packaging can effectively monitor the quality and safety of fish products, provide warning, and has a great market and development potential. Therefore, this paper reviews the research progress of intelligent packaging technology used to monitor the freshness of fish products. The quality attributes of freshness of fish products are summarized. The classification, principle and latest application progress of three advanced technologies, indicator, sensor and radio frequency identification (RFID), are summarized. In addition, the advantages and disadvantages of the intelligent packaging technology for monitoring the freshness of products are discussed, and the current research results are summarized and prospected.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi,, China
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Liu Y, Gai M, Sukvanitvichai D, Frueh J, Sukhorukov GB. pH dependent degradation properties of lactide based 3D microchamber arrays for sustained cargo release. Colloids Surf B Biointerfaces 2020; 188:110826. [PMID: 32007703 DOI: 10.1016/j.colsurfb.2020.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Encapsulation of small water soluble molecules is important in a large variety of applications, ranging from medical substance releasing implants in the field of medicine over release of catalytically active substances in the field of chemical processing to anti-corrosion agents in industry. In this work polylactic acid (PLA) based hollow-structured microchamber (MC) arrays are fabricated via one-step dip coating of a silicone rubber stamp into PLA solution. These PLA MCs are able to retain small water soluble molecules (Rhodamine B) stably entrapped within aqueous environments. It is shown, that degradation of PLA MCs strongly depends on environmental conditions like surrounding pH and follows first order degradation kinetics. This pH dependent PLA MC degradation can be utilized to control the release kinetics of encapsulated cargo.
Collapse
Affiliation(s)
- Yuechi Liu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China
| | - Meiyu Gai
- Max Plank Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Dusita Sukvanitvichai
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Johannes Frueh
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Stefano-Franscini-Platz 3, 8093, Zürich, Switzerland.
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom; Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
| |
Collapse
|
26
|
Kalpana S, Priyadarshini S, Maria Leena M, Moses J, Anandharamakrishnan C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.09.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Rostami H, Esfahani AA. Development a smart edible nanocomposite based on mucilage of Melissa officinalis seed/montmorillonite (MMT)/curcumin. Int J Biol Macromol 2019; 141:171-177. [PMID: 31479676 DOI: 10.1016/j.ijbiomac.2019.08.261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023]
Abstract
The aim of the present study was, first to fabricate Melissa officinalis seed gum (MOSG)-based films incorporated with montmorillonite (MMT) at various concentrations and subsequently, evaluate of the physicochemical properties of the developed films. Afterward, the anti-bacterial and anti-mold activities of the developed nanocomposites were assessed. Finally, curcumin was incorporated into formulation of the fabricated film at optimal condition to sense pH changes. Incorporating MMT nanoparticles into MOSG-based films could reduce the thickness, water solubility and moisture content of the samples. Tensile strength (TS) and elongation at break (EB) values significantly increased with increase of MMT concentration. The nanoparticle addition specifically at higher levels resulted in increase of agglomeration. Neither anti-mold and nor anti-microbial activity were observed for the tested nanocomposites. The films containing curcumin had good antibacterial and anti-mold activities and can be used as smart package due to their ability to sense the pH change.
Collapse
Affiliation(s)
- H Rostami
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - A Aliakbar Esfahani
- Marine Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Zhuo N, Zhang N, Jiang T, Chen P, Wang H. Effect of particle sizes and mass ratios of a phosphor on light color performance of a green phosphor thin film and a laminated white light-emitting diode. RSC Adv 2019; 9:27424-27431. [PMID: 35529217 PMCID: PMC9070674 DOI: 10.1039/c9ra05503g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/21/2019] [Indexed: 11/21/2022] Open
Abstract
Green phosphor thin films with different silica resin/phosphor mass ratios and phosphor particle sizes were prepared by the hot pressing method. A 405 nm near-ultraviolet light-emitting diode (LED) chip was used to package the laminated white LED (WLED), and the correlated color temperature, luminous efficiency of radiation, light color uniformity, and color coordinate of the laminated WLED were obtained. An increase in the mass ratio and decrease in particle size can effectively affect the scattering coefficient of phosphor photons and the efficiency of the absorption-excitation-emission process, increasing the efficiency and light color uniformity of phosphor thin films and laminated WLEDs. By comprehensive evaluation of various light color parameters, a laminate was prepared with a mass ratio of silica resin/phosphor = 6 : 0.75, and the optimum value of the WLED was obtained. According to the IES TM30 standard, its R f reached 92, R g reached 101, and R g and color distortion icons showed increased saturation for green color. Its luminous efficiency of radiation value of 270.21 lm W-1, correlated color temperature of 4423 K, and neutral white characteristics indicate that it is a device suitable for lighting applications.
Collapse
Affiliation(s)
- Ningze Zhuo
- School of Electronic Science and Engineering, Nanjing University Nanjing 210093 China .,Institute of Optoelectronic Materials of Light Industry Nanjing 210015 China .,Research Institute of Electric Light Source Materials, Nanjing Tech University Nanjing 210015 China
| | - Na Zhang
- Institute of Optoelectronic Materials of Light Industry Nanjing 210015 China .,Research Institute of Electric Light Source Materials, Nanjing Tech University Nanjing 210015 China
| | - Teng Jiang
- College of Materials Science and Engineering, Nanjing Tech University Nanjing 210015 China
| | - Peng Chen
- School of Electronic Science and Engineering, Nanjing University Nanjing 210093 China
| | - Haibo Wang
- Institute of Optoelectronic Materials of Light Industry Nanjing 210015 China .,Research Institute of Electric Light Source Materials, Nanjing Tech University Nanjing 210015 China
| |
Collapse
|
29
|
Yousefi H, Su HM, Imani SM, Alkhaldi K, M. Filipe CD, Didar TF. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens 2019; 4:808-821. [PMID: 30864438 DOI: 10.1021/acssensors.9b00440] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Food safety is a major factor affecting public health and the well-being of society. A possible solution to control food-borne illnesses is through real-time monitoring of the food quality throughout the food supply chain. The development of emerging technologies, such as active and intelligent packaging, has been greatly accelerated in recent years, with a focus on informing consumers about food quality. Advances in the fields of sensors and biosensors has enabled the development of new materials, devices, and multifunctional sensing systems to monitor the quality of food. In this Review, we place the focus on an in-depth summary of the recent technological advances that hold the potential for being incorporated into food packaging to ensure food quality, safety, or monitoring of spoilage. These advanced sensing systems usually target monitoring gas production, humidity, temperature, and microorganisms' growth within packaged food. The implementation of portable and simple-to-use hand-held devices is also discussed in this Review. We highlight the mechanical and optical properties of current materials and systems, along with various limitations associated with each device. The technologies discussed here hold great potential for applications in food packaging and bring us one step closer to enable real-time monitoring of food throughout the supply chain.
Collapse
Affiliation(s)
- Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Sindeeva OA, Prikhozhdenko ES, Bratashov DN, Vostrikova AM, Atkin VS, Ermakov AV, Khlebtsov BN, Sapelkin AV, Goryacheva IY, Sukhorukov GB. Carbon dot aggregates as an alternative to gold nanoparticles for the laser-induced opening of microchamber arrays. SOFT MATTER 2018; 14:9012-9019. [PMID: 30378616 DOI: 10.1039/c8sm01714j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon dots (CDs) are usually used as an alternative to other fluorescent nanoparticles. Apart from fluorescence, CDs also have other important properties for use in composite materials, first of all their ability to absorb light energy and convert it into heat. In our work, for the first time, CDs have been proposed as an alternative to gold nanostructures for harvesting light energy, which results in the opening of polymer-based containers with biologically active compounds. In this paper, we propose a method for the synthesis of polylactic acid microchamber arrays with embedded CDs. A comparative analysis was made of the damage to microchambers functionalized with gold nanorods and with CD aggregates, depending on the wavelength and power of the laser used. The release of fluorescent cargo from the microchamber arrays with CD aggregates under laser exposure was demonstrated.
Collapse
|
31
|
Sindeeva OA, Gusliakova OI, Inozemtseva OA, Abdurashitov AS, Brodovskaya EP, Gai M, Tuchin VV, Gorin DA, Sukhorukov GB. Effect of a Controlled Release of Epinephrine Hydrochloride from PLGA Microchamber Array: In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37855-37864. [PMID: 30299076 DOI: 10.1021/acsami.8b15109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper presents the synthesis of highly biocompatible and biodegradable poly(lactide- co-glycolide) (PLGA) microchamber arrays sensitive to low-intensity therapeutic ultrasound (1 MHz, 1-2 W, 1 min). A reliable method was elaborated that allowed the microchambers to be uniformly filled with epinephrine hydrochloride (EH), with the possibility of varying the cargo amount. The maximum load of EH was 4.5 μg per array of 5 mm × 5 mm (about 24 pg of EH per single microchamber). A gradual, spontaneous drug release was observed to start on the first day, which is especially important in the treatment of acute patients. Ultrasound triggered a sudden substantial release of EH from the films. In vivo real-time studies using a laser speckle contrast imaging system demonstrated changes in the hemodynamic parameters as a consequence of EH release under ultrasound exposure. We recorded a decrease in blood flow as a vascular response to EH release from a PLGA microchamber array implanted subcutaneously in a mouse. This response was immediate and delayed (1 and 2 days after the implantation of the array). The PLGA microchamber array is a new, promising drug depot implantable system that is sensitive to external stimuli.
Collapse
Affiliation(s)
- Olga A Sindeeva
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
| | | | | | | | - Ekaterina P Brodovskaya
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
- Ogarev Mordovia State University , 68 Bolshevistskaya Street , Saransk 430005 , Russia
| | - Meiyu Gai
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
- Tomsk Polytechnic University , 30 Lenin Avenue , Tomsk 634050 , Russia
- Max Plank Institute of Polymer Research , 10 Ackermannweg , Mainz 55128 , Germany
| | - Valery V Tuchin
- Interdisciplinary Laboratory of Biophotonics , Tomsk State University , 36 Lenin Avenue , Tomsk 634050 , Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems , Institute of Precision Mechanics and Control of RAS , 24 Rabochaya Street , 410028 Saratov , Russia
| | - Dmitry A Gorin
- Laboratory of Biophotonics, Center for Photonics and Quantum Materials , Skolkovo Institute of Science and Technology , Nobel Street, Building 3 , Moscow 121205 , Russia
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
- Tomsk Polytechnic University , 30 Lenin Avenue , Tomsk 634050 , Russia
| |
Collapse
|
32
|
Polyelectrolyte multilayer microchamber-arrays for in-situ cargo release: Low frequency vs . medical frequency range ultrasound. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Ermakov A, Lim SH, Gorelik S, Kauling AP, de Oliveira RVB, Castro Neto AH, Glukhovskoy E, Gorin DA, Sukhorukov GB, Kiryukhin MV. Polyelectrolyte-Graphene Oxide Multilayer Composites for Array of Microchambers which are Mechanically Robust and Responsive to NIR Light. Macromol Rapid Commun 2018; 40:e1700868. [DOI: 10.1002/marc.201700868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Alexey Ermakov
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
- Educational Research Institute of Nanostructures and Biosystems; N. G. Chernyshevsky Saratov State University; 83 Astrakhanskaya Street Saratov 410012 Russia
| | - Su Hui Lim
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Sergey Gorelik
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Alan P. Kauling
- Centre for Advanced 2D Materials; National University of Singapore; 6 Science Drive 2 Singapore 117546 Singapore
| | - Ricardo V. B. de Oliveira
- Centre for Advanced 2D Materials; National University of Singapore; 6 Science Drive 2 Singapore 117546 Singapore
| | - A. H. Castro Neto
- Centre for Advanced 2D Materials; National University of Singapore; 6 Science Drive 2 Singapore 117546 Singapore
| | - Evgeniy Glukhovskoy
- Educational Research Institute of Nanostructures and Biosystems; N. G. Chernyshevsky Saratov State University; 83 Astrakhanskaya Street Saratov 410012 Russia
| | - Dmitry A. Gorin
- Educational Research Institute of Nanostructures and Biosystems; N. G. Chernyshevsky Saratov State University; 83 Astrakhanskaya Street Saratov 410012 Russia
- Biophotonics Lab Center of Photonics & Quantum Materials; Skolkovo Institute of Science and Technology; Nobel Str. 3 Moscow 143026 Russia
| | - Gleb B. Sukhorukov
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Maxim V. Kiryukhin
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research (A*STAR); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| |
Collapse
|