1
|
Tzimas PS, Petrakis EA, Halabalaki M, Skaltsounis LA. Extraction solvent selection for Cannabis sativa L. by efficient exploration of cannabinoid selectivity and phytochemical diversity. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:163-183. [PMID: 37709551 DOI: 10.1002/pca.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Cannabis sativa L. is attracting worldwide attention due to various health-promoting effects. Extraction solvent type is critical for the recovery of bioactive compounds from the plant, especially cannabinoids. However, the choice of solvent is varied and not adequately warranted elsewhere, causing confusion in involved fields. OBJECTIVE The present work aimed to investigate the effect of extraction solvent on C. sativa (hemp) with regard to cannabinoid recovery and phytochemical profile of the extracts, considering most of the related solvents. METHODOLOGY The majority of solvents reported for C. sativa (n = 14) were compared using a representative hemp pool. Quantitative results for major and minor cannabinoids were rapidly and reliably obtained using ultrahigh-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). In parallel, high-performance thin-layer chromatographic (HPTLC) fingerprinting was employed, involving less toxic mobile phase than in relevant reports. Various derivatisation schemes were applied for more comprehensive comparison of extracts. RESULTS Differential selectivity towards cannabinoids was observed among solvents. MeOH was found particularly efficient for most cannabinoids, in addition to solvent systems such as n-Hex/EtOH 70:30 and ACN/EtOH 80:20, while EtOH was generally inferior. For tetrahydrocannabinol (THC)-type compounds, EtOAc and n-Hex/EtOAc 60:40 outperformed n-Hex, despite its use in the official EU method. Solvents that tend to extract more lipids or more polar compounds were revealed based on HPTLC results. CONCLUSION Combining the observations from UPLC quantitation and HPTLC fingerprinting, this work allowed comprehensive evaluation of extraction solvents, in view of robust quality assessment and maximised utilisation of C. sativa.
Collapse
Affiliation(s)
- Petros S Tzimas
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios A Petrakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Suárez-Jacobo Á, Díaz Pacheco A, Bonales-Alatorre E, Castillo-Herrera GA, García-Fajardo JA. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules 2023; 28:molecules28072895. [PMID: 37049659 PMCID: PMC10095677 DOI: 10.3390/molecules28072895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The Cannabis genus of plants has been widely used in different cultures for various purposes. It is separated into three main species: sativa, indica, and ruderalis. In ancient practices, the plant was used as a multipurpose crop and valued for its fiber, food, and medicinal uses. Since methodologies for the extraction, processing, and identification of components have become available, medical, and food applications have been increasing, allowing potential development in the pharmaceutical and healthy functional food industries. Although the growing legalization and adoption of cannabis for the treatment of diseases are key factors pushing the growth of its market, the biggest challenge is to obtain higher-quality products in a time- and cost-effective fashion, making the process of extraction and separation an essential step. Latin American countries exhibit great knowledge of extraction technologies; nevertheless, it is still necessary to verify whether production costs are economically profitable. In addition, there has been an increase in commercial cannabis products that may or may not be allowed, with or without quality fact sheets, which can pose health risks. Hence, legalization is mandatory and urgent for the rest of Latin American countries. In this article, the phytochemical compounds (cannabinoids, terpenes, and phenolic compounds), the current status of legalization, extraction techniques, and research advances in cannabis in Latin America are reviewed.
Collapse
Affiliation(s)
- Ángela Suárez-Jacobo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Tlaxcala 90000, Mexico
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico
| | - Gustavo Adolfo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico
| | - Jorge Alberto García-Fajardo
- Subsede Noreste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico
| |
Collapse
|
3
|
Sainz Martinez A, Lanaridi O, Stagel K, Halbwirth H, Schnürch M, Bica-Schröder K. Extraction techniques for bioactive compounds of cannabis. Nat Prod Rep 2023; 40:676-717. [PMID: 36625451 DOI: 10.1039/d2np00059h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Historically, cannabis has always constituted a component of the civilized world; archaeological discoveries indicate that it is one of the oldest crops, while, up until the 19th century, cannabis fibers were extensively used in a variety of applications, and its seeds comprised a part of human and livestock nutrition. Additional evidence supports its exploitation for medicinal purposes in the ancient world. The cultivation of cannabis gradually declined as hemp fibers gave way to synthetic fibers, while the intoxicating ability of THC eventually overshadowed the extensive potential of cannabis. Nevertheless, the proven value of certain non-intoxicating cannabinoids, such as CBD and CBN, has recently given rise to an entire market which promotes cannabis-based products. An increase in the research for recovery and exploitation of beneficial cannabinoids has also been observed, with more than 10 000 peer-reviewed research articles published annually. In the present review, a brief overview of the history of cannabis is given. A look into the classification approaches of cannabis plants/species as well as the associated nomenclature is provided, followed by a description of their chemical characteristics and their medically valuable components. The application areas could not be absent from the present review. Still, the main focus of the review is the discussion of work conducted in the field of extraction of valuable bioactive compounds from cannabis. We conclude with a summary of the current status and outlook on the topics that future research should address.
Collapse
Affiliation(s)
- Aitor Sainz Martinez
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna, Austria.
| | - Olga Lanaridi
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna, Austria.
| | - Kristof Stagel
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna, Austria.
| | - Heidi Halbwirth
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna, Austria.
| | | |
Collapse
|
4
|
Ye L, Budge SM. Sample preparation for the analysis of key metabolites from cannabinoids biosynthesis in phytoplankton using gas chromatography–mass spectrometry. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liyun Ye
- Department of Process Engineering and Applied Science Dalhousie University Halifax Nova Scotia Canada
| | - Suzanne M. Budge
- Department of Process Engineering and Applied Science Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
5
|
Capriotti AL, Cannazza G, Catani M, Cavaliere C, Cavazzini A, Cerrato A, Citti C, Felletti S, Montone CM, Piovesana S, Laganà A. Recent applications of mass spectrometry for the characterization of cannabis and hemp phytocannabinoids: From targeted to untargeted analysis. J Chromatogr A 2021; 1655:462492. [PMID: 34507140 DOI: 10.1016/j.chroma.2021.462492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
This review is a collection of recent applications of mass spectrometry studies for the characterization of phytocannabinoids in cannabis and hemp plant material and related products. The focus is mostly on recent applications using mass spectrometry as detector, in hyphenation to typical separation techniques (i.e., liquid chromatography or gas chromatography), but also with less common couplings or by simple direct analysis. The papers are described starting from the most common approach for targeted quantitative analysis, with applications using low-resolution mass spectrometry equipment, but also with the introduction of high-resolution mass analyzers as the detectors. This reflects a common trend in this field, and introduces the most recent applications using high-resolution mass spectrometry for untargeted analysis. The different approaches used for untargeted analysis are then described, from simple retrospective analysis of compounds without pure standards, through untargeted metabolomics strategies, and suspect screening methods, which are the ones currently allowing to achieve the most detailed qualitative characterization of the entire phytocannabinoid composition, including minor compounds which are usually overlooked in targeted studies and in potency evaluation. These approaches also represent powerful strategies to answer questions on biological and pharmacological activity of cannabis, and provide a sound technology for improved classification of cannabis varieties. Finally, open challenges are discussed for future directions in the detailed study of complex phytocannabinoid mixtures.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Giuseppe Cannazza
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, Modena 41125, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Cinzia Citti
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, Modena 41125, Italy
| | - Simona Felletti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy
| |
Collapse
|
6
|
Madden O, Walshe J, Kishore Patnala P, Barron J, Meaney C, Murray P. Phytocannabinoids - An Overview of the Analytical Methodologies for Detection and Quantification of Therapeutically and Recreationally Relevant Cannabis Compounds. Crit Rev Anal Chem 2021; 53:211-231. [PMID: 34328047 DOI: 10.1080/10408347.2021.1949694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The legalization of the cultivation of low Δ9-tetrahydrocannabinol (Δ9-THC) and high cannabidiol (CBD) Cannabis Sativa plants is gaining momentum around the world due to increasing demand for CBD-containing products. In many countries where CBD oils, extracts and CBD-infused foods and beverages are being sold in health shops and supermarkets, appropriate testing of these products is a legal requirement. Normally this involves determining the total Δ9-THC and CBD and their precursor tetrahydrocannabinolic acids (THCA) and cannabidiolic acid (CBDA). As our knowledge of the other relevant cannabinoids expands, it is likely so too will the demand for them as additives in many consumer products ensuring a necessity for quantification methods and protocols for their identification. This paper discusses therapeutically relevant cannabinoids found in Cannabis plant, the applicability and efficiency of existing extraction and analytical techniques as well as the legal requirements for these analyses.
Collapse
Affiliation(s)
- Olena Madden
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Jessica Walshe
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland.,Department of Applied Science, Limerick Institute of Technology, Limerick, Ireland
| | - Prem Kishore Patnala
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | | | - Claire Meaney
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| | - Patrick Murray
- Research and Technology Transfer, Shannon ABC, Limerick Institute of Technology, Limerick, Ireland
| |
Collapse
|
7
|
Nahar L, Uddin SJ, Alam MA, Sarker SD. Extraction of naturally occurring cannabinoids: an update. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:228-241. [PMID: 32893413 DOI: 10.1002/pca.2987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Organic molecules that interact with the cannabinoid receptors are called cannabinoids, which can be endogenous, natural or synthetic compounds. They possess similar pharmacological properties as produced by the plant, Cannabis sativa L. Before cannabinoids can be analysed, they need to be extracted from the matrices. OBJECTIVE To review literature on the methods and protocols for the extraction of naturally occurring cannabinoids. METHODOLOGY An extensive literature search was performed incorporating several databases, notably, Web of Knowledge, PubMed and Google Scholar, and other relevant published materials. The keywords used in the search, in various combinations, with cannabinoids and extraction being present in all combinations, were Cannabis, hemp, cannabinoids, Cannabis sativa, marijuana, and extraction. RESULTS In addition to classical maceration with organic solvents, e.g. ethanol, pressurised solvent extraction, solvent heat reflux, Soxhlet extraction, supercritical fluid extraction, ultrasound-assisted extraction and microwave-assisted extraction, are routinely used nowadays for the extraction of cannabinoids from plant materials and cannabis consumer products. For the extraction of cannabinoids from biological samples, e.g. human blood, and also from food and beverages, and wastewater, solid-phase extraction and its variants, as well as liquid-liquid extraction are commonly used. Parameters for extraction can be optimised by response surface methodology or other mathematical modelling tools. There are at least six US patents on extraction of cannabinoids available to date. CONCLUSIONS Irrespective of the extraction method, extraction temperature, extraction time and extraction pressure play a vital role in overall yield of extraction. Solvent polarity can also be an important factor in some extraction methods.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Ashraful Alam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
8
|
Qamar S, Torres YJM, Parekh HS, Robert Falconer J. Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122581. [PMID: 33639334 DOI: 10.1016/j.jchromb.2021.122581] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
The pharmaceutical importance of cannabis is growing due to the natural non-psychoactive and psychoactive cannabinoids. For medicinal and forensic purposes, the effective extraction and quantification are essential to fully utilise the natural cannabinoids. The supercritical fluid extraction (SFE) process has gained increasing interest due to its selective extraction, short processing time (partly due to the efficient solvent removal process - supercritical fluid to vapour - leaving a solvent free product), low running cost, and low impact on the environment, compared to that of most conventional extraction methods. In this review, the extraction of cannabinoids through SFE methods have been summarised. The advantages of SFE of cannabinoids over conventional extraction procedures; such as microwave-assisted extraction, solid phase microextraction, hard-cap espresso, soxhlet extraction, high-throughput homogenization, ultrasound-assisted extraction, vacuum distillation of lipid-based extract, and liquid-liquid extraction are discussed. Furthermore, this review examines the importance of the SFE of cannabinoids by coupling with various conventional extraction methods, separation techniques, selection of a suitable co-solvent/modifier, and appropriate sample preparation. Additionally, the applications of using SFE technology and cannabinoids are reviewed with a focus on industrial, pharmaceutical, waste by-products, and purification.
Collapse
Affiliation(s)
- Sadia Qamar
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia.
| | - Yady J M Torres
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - Harendra S Parekh
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Merlo TC, Molognoni L, Hoff RB, Daguer H, Patinho I, Contreras-Castillo CJ. Alternative pressurized liquid extraction using a hard cap espresso machine for determination of polycyclic aromatic hydrocarbons in smoked bacon. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Masike K, Stander MA, de Villiers A. Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 2021; 195:113846. [PMID: 33422832 DOI: 10.1016/j.jpba.2020.113846] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
11
|
Deans BJ, Just J, Smith JA, Bissember AC. Development and Applications of Water‐based Extraction Methods in Natural Products Isolation Chemistry. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bianca J. Deans
- School of Natural Sciences ChemistryUniversity of Tasmania Hobart Australia
| | - Jeremy Just
- School of Natural Sciences ChemistryUniversity of Tasmania Hobart Australia
| | - Jason A. Smith
- School of Natural Sciences ChemistryUniversity of Tasmania Hobart Australia
| | - Alex C. Bissember
- School of Natural Sciences ChemistryUniversity of Tasmania Hobart Australia
| |
Collapse
|
12
|
Dybowski MP, Dawidowicz AL, Typek R, Rombel M. Conversion of cannabidiol (CBD) to Δ9-tetrahydrocannabinol (Δ9-THC) during protein precipitations prior to plasma samples analysis by chromatography - Troubles with reliable CBD quantitation when acidic precipitation agents are applied. Talanta 2020; 220:121390. [PMID: 32928411 DOI: 10.1016/j.talanta.2020.121390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
Abstract
The growing popularity of supplements containing cannabidiol (CBD), mainly CBD oils, in self-medication of humans and the increased interest in this compound in different preclinical and clinical trials stimulates the development of procedures of CBD analysis in plasma for the study of CBD pharmacology in people and animals or in establishing dose-therapeutic effect relationships of this compound. Preliminary removal of protein by its precipitation from plasma is still one of the willingly applied plasma sample preparation methods in many analytical procedures estimating plasma drug concentration, including CBD. The present paper shows that a significant amount of CBD transforms to Δ9-tetrahydrocannabinol (Δ9-THC) in a hot GC injection system when acidic precipitation agents, such as TFA, TCA, HClO4, H2SO4, ZnSO4 or CHCl3, are used for plasma protein precipitation. The transformation degree depends on the temperature of the GC injector, the concentration of the precipitation agent and the incubation time of plasma with the precipitating agent. At the CBD plasma concentration equal to 50 ng/ml, which is approximately the mean level for patients treated for epileptic syndromes, the CBD transformation degree can exceed 20%. For a reliable estimate of CBD in blood plasma, neutral precipitation agents (e.g. ACN, MeOH, acetone) should be used when plasma deproteinization precedes GC analysis. The presented results are important not only for analysts cooperating with pharmacologists and for medicine doctors examining the activity of CBD-containing drugs in the therapeutic process, but also for forensic scientists who may erroneously find innocent people guilty of using marijuana or its preparations.
Collapse
Affiliation(s)
- Michal P Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland.
| | - Andrzej L Dawidowicz
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Rafal Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal Rombel
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University in Lublin, 20-031, Lublin, Poland
| |
Collapse
|
13
|
Hoff RB, Molognoni L, Deolindo CTP, Vargas MO, Kleemann CR, Daguer H. Determination of 62 veterinary drugs in feedingstuffs by novel pressurized liquid extraction methods and LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122232. [PMID: 32559652 DOI: 10.1016/j.jchromb.2020.122232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
A fast and simple method for the determination of 62 veterinary drugs in feedingstuffs was developed, optimized, validated, and applied to real samples. Sample preparation was based on a pressurized liquid extraction method using a hard cap coffee machine, which was compared to a commercial pressurized liquid extraction system. Extraction was performed with diatomaceous earth, acetonitrile (20%), and formic acid (0.1%). A central composite design was used to optimize the composition of the extraction solvent. The extracts were analyzed using two chromatographic modes (reversed phase with C18 and HILIC). Analytical limits were set to 25 (limit of detection) and 75 µg kg-1 (limit of quantitation). For banned substances, a salting-out step was included, achieving LOQ lower as 1 µg kg-1 for ractopamine. Other figures of merit such as precision, trueness, decision limit (CCα), method capability (CCβ), matrix effects, stability, recovery, and measurement uncertainty were also reported for analytical validation. The method was successfully applied to hundreds of real samples demonstrating its fitness-for-purpose for the analysis of sulfonamides, tetracyclines, fluoroquinolones, avermectins, quinolones, beta-agonists, beta-lactams, amphenicols, benzimidazoles, coccidiostats, lincosamides, macrolides, nitrofurans, quinoxalines, melamine, and trimethoprim.
Collapse
Affiliation(s)
- Rodrigo Barcellos Hoff
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil.
| | - Luciano Molognoni
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil; Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC 88034-100, Brazil
| | - Carolina Turnes Pasini Deolindo
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC 88034-100, Brazil
| | - Maryella Osório Vargas
- Universidade Federal de Santa Catarina (UFSC), Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, SC 88034-100, Brazil
| | - Cristian Rafael Kleemann
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil; Instituto Catarinense de Sanidade Agropecuária (ICASA), Florianópolis, SC 88034-100, Brazil
| | - Heitor Daguer
- Ministério da Agricultura, Pecuária e Abastecimento, Laboratório Federal de Defesa Agropecuária, Seção Laboratorial Avançada em Santa Catarina (SLAV/SC/LFDA/RS), São José, SC 88102-600, Brazil
| |
Collapse
|
14
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
15
|
Debruille K, Smith JA, Quirino JP. Pressurized Hot Water Extraction and Capillary Electrophoresis for Green and Fast Analysis of Useful Metabolites in Plants. Molecules 2019; 24:molecules24132349. [PMID: 31247895 PMCID: PMC6651437 DOI: 10.3390/molecules24132349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/02/2022] Open
Abstract
The search for useful compounds from plants is an important research area. Traditional screening that involves isolation and identification/quantitation is tedious, time consuming, and generates a significant amount of chemical waste. Here, we present a simple, fast, and green strategy to assess ≥0.1% wt/wt quantities of useful compounds in plants/spices using pressurized hot water extraction using a household espresso machine followed by chemical analysis using capillary electrophoresis. Three demonstrations with polygodial, cinnamaldehyde, coumarin, and shikimic acid as target metabolites are shown. Direct analysis of extracts was by the developed micellar electrokinetic chromatography and capillary zone electrophoresis methods. The approach, which can be implemented in less developed countries, can process many samples within a day, much faster than traditional techniques that would normally take at least a day. Finally, 0.8–1.1% wt/wt levels of shikimic acid were found in Tasmanian-pepperberry and Tasmanian-fuschia leaves via the approach.
Collapse
Affiliation(s)
- Kurt Debruille
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia
- Department of Chemistry, Faculty of Science, University of Mons, 20 Place du Parc, 7000 Mons, Belgium
| | - Jason A Smith
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, 7001 Tasmania, Australia.
| |
Collapse
|