1
|
Kim S, Bae S. In Vitro and In Vivo Human Body Odor Analysis Method Using GO:PANI/ZNRs/ZIF−8 Adsorbent Followed by GC/MS. Molecules 2022; 27:molecules27154795. [PMID: 35956746 PMCID: PMC9369976 DOI: 10.3390/molecules27154795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Among various volatile organic compounds (VOCs) emitted from human skin, trans-2-nonenal, benzothiazole, hexyl salicylate, α-hexyl cinnamaldehyde, and isopropyl palmitate are key indicators associated with the degrees of aging. In our study, extraction and determination methods of human body odor are newly developed using headspace-in needle microextraction (HS-INME). The adsorbent was synthesized with graphene oxide:polyaniline/zinc nanorods/zeolitic imidazolate framework-8 (GO:PANI/ZNRs/ZIF−8). Then, a wire coated with the adsorbent was placed into the adsorption kit to be directly exposed to human skin as in vivo sampling and inserted into the needle so that it was able to be desorbed at the GC injector. The adsorption kit was made in-house with a 3D printer. For the in vitro method, the wire coated with the adsorbent was inserted into the needle and exposed to the headspace of the vial. When a cotton T-shirt containing body odor was transferred to a vial, the headspace of the vial was saturated with body odor VOCs. After volatile organic compounds were adsorbed in the dynamic mode, the needle was transferred to the injector for analysis of the volatile organic compounds by gas chromatography/mass spectrometry (GC/MS). The conditions of adsorbent fabrication and extraction for body odor compounds were optimized by response surface methodology (RSM). In conclusion, it was able to synthesize GO:PANI/ZNRs/ZIF−8 at the optimal condition and applicable to both in vivo and in vitro methods for body odor VOCs analysis.
Collapse
|
2
|
Xue X, Deng F, Ge Z, Meng J, Liu X, Zhao Y, Hu Y, Ling X. Conductive polymer sorbent for extraction and determination of resveratrol and polydatin in Polygonum cuspidatum root samples. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:590-598. [PMID: 35098595 DOI: 10.1002/pca.3112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION The quantitative analysis of trace resveratrol and polydatin in plant tissues is suitable for elucidation of the compounds' mechanisms of action. OBJECTIVES The main objective of this work was to develop a feasible and effective sample pretreatment method to measure the concentrations of resveratrol and polydatin in complex samples. METHODOLOGY A polymer sorbent, poly(2-mercaptobenzimidazole), was electrochemically prepared and utilized for selective extraction, while resveratrol and polydatin were used as target analytes. The sorbent was characterized by cyclic voltammetry, scanning electron microscopy and Fourier transform infrared spectroscopy. After extraction and elution, the analytes were analyzed by a Thermo U3000 HPLC system. Several affecting parameters, including the volume of elution solution, sample pH value, sample flow rate and sample volume, were evaluated and optimized. RESULTS The proposed method showed good linearity with low limits of detection (from 0.5 to 0.8 ng·mL-1 ) and ideal accuracy with spiked recoveries from 81.30% to 99.16%. A good enrichment factor (more than 200-fold) together with good sensitivity was obtained with this method. Analysis of resveratrol and polydatin in Polygonum cuspidatum samples by this method is efficient. CONCLUSION The method developed in this work exhibits several significant merits, including easy operation and high extraction efficiency, indicating that electrochemically prepared polymer sorbent is useful for sample pretreatment and analysis of traditional Chinese medicine samples.
Collapse
Affiliation(s)
- Xuemei Xue
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Fei Deng
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
| | - Zhenkai Ge
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, China
| | - Jingwen Meng
- Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, Shiyan, China
| | - Xiya Liu
- Hubei Collaborative Innovation Center of Key Technology for the Industrialization of Wudang Local Medicinal Material, Shiyan, China
| | - Yongheng Zhao
- Hubei Collaborative Innovation Center of Key Technology for the Industrialization of Wudang Local Medicinal Material, Shiyan, China
| | - Yanggen Hu
- Hubei Collaborative Innovation Center of Key Technology for the Industrialization of Wudang Local Medicinal Material, Shiyan, China
| | - Xu Ling
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, China
| |
Collapse
|
3
|
Liu Z, Yuan Z, Hu W, Chen Z. Electrochemically deposition of metal-organic framework onto carbon fibers for online in-tube solid-phase microextraction of non-steroidal anti-inflammatory drugs. J Chromatogr A 2022; 1673:463129. [DOI: 10.1016/j.chroma.2022.463129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
4
|
A review on preparation methods and applications of metal–organic framework-based solid-phase microextraction coatings. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Lian C, Feng X, Tian M, Tian Y, Zhang Y. Electrodeposition of zeolitic imidazolate framework coating on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Rapidly covalent immobilization of β-ketoenamine-linked covalent organic framework on fibers for efficient solid-phase microextraction of phthalic acid esters. Talanta 2022; 243:123380. [DOI: 10.1016/j.talanta.2022.123380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
|
7
|
Zakernezhad MJ, Seidi S, Manouchehri M. Efficient Ion Separation from Environmental and Biological Samples Using a Novel Sorbent Based on Ni-Substituted ZIF-67: Optimization, Equilibrium, Kinetic, and Thermodynamic Study. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Javad Zakernezhad
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611 Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611 Tehran, Iran
| | - Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, 15418-49611 Tehran, Iran
| |
Collapse
|
8
|
Ou JH, Sheu YT, Chang BK, Verpoort F, Surampalli RY, Kao CM. Application of zeolitic imidazolate framework for hexavalent chromium removal: A feasibility and mechanism study. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1995-2009. [PMID: 33835627 DOI: 10.1002/wer.1571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/13/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The mechanisms and effectiveness of using zeolitic imidazolate framework (ZIF-8) [a sub-family of metal-organic framework (MOF)] particles on hexavalent chromium [Cr(VI)] removal were evaluated. The ultrasonic mixing method was applied for the preparation of ZIF-8, and chemicals used for ZIF-8 synthesis included ammonium hydroxide, zinc nitrate hexahydrate, and 2-methylimidazole. ZIF-8 particle had a clear rhombic dodecahedron morphology shape and a strong peak intensity with high crystallinity. The adsorption capacity (AC) of ZIF-8 was 30.3 mg of Cr(VI)/g of ZIF-8 [Cr(VI) = 50 mg/L]. The AC of Cr(VI) raised to 34.3 mg/g under acidic conditions (pH = 5), and the AC dropped to below 13.7 mg/g with a pH range from 7 to 11. It could be because of the competitive effects between CrO4 2- and hydroxide ions for adsorption locations of ZIF-8. Cr(VI) removal relied on the amount of Cr(VI) adsorbed on the particles of ZIF-8, and the mechanisms of Cr(VI) adsorption by ZIF-8 included chemical/physical processes and the rate-limiting step was the chemical adsorption. A fraction of sorbed Cr(VI) was reduced to Cr(III), and thus, ZIF-8 could serve as a reducing agent during Cr(VI) reduction. Cr(VI) was removed effectively from the water phase by ZIF-8 via adsorption and reduction mechanisms. PRACTITIONER POINTS: ZIF-8 particles had an adsorption capacity of 30.33 mg of Cr(VI)/g of ZIF-8. Cr(VI) sorption by ZIF-8 has chemical (rate-limiting step) and physical processes. ZIF-8 can serve as a reducing agent for Cr(VI) reduction. Cr(VI) can be removed by ZIF-8 via the adsorption and reduction mechanisms.
Collapse
Affiliation(s)
- Jiun-Hau Ou
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yih-Terng Sheu
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bor Kae Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, KS, USA
| | - Chih-Ming Kao
- Institute of Environmental Engr., National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Zhou Q, Zhao K, Wu Y, Li S, Guo J, Zhou B, Zhao J, Guo L, Chen C. Rapid magnetic enrichment and sensitive detection of Sudan pollutants with nanoscale zero valent iron-based nanomaterials in combination with liquid chromatography-ultraviolet detector. CHEMOSPHERE 2021; 281:130900. [PMID: 34044305 DOI: 10.1016/j.chemosphere.2021.130900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
In present work, we reported a new nanomaterial nano Fe0 decorated with SiO2 and dopamine by self-assembly method (Fe@SiO2@PDA). A sensitive method for determination of Sudan pollutants in aqueous samples was developed using Fe@SiO2@PDA as magnetic solid phase extraction adsorbents prior to high-performance liquid chromatography with variable wavelength detector. The possible parameters which would affect the enrichment have been optimized. The best parameters were as follows: elutent, 4.5 mL methanol; adsorbent dosage, 30 mg; adsorption time, 20 min; elution time, 18 min; sample pH 7; sample volume, 40 mL. The experimental results demonstrated that Fe@SiO2@PDA exhibited good adsorption properties to Sudan Red dyes. The established method provided excellent linear ranges over 0.01-50 μg L-1 and detection limits ranged from 2.0 to 5.1 ng L-1 for Sudan red I-IV. The developed method was also evaluated with real water samples and the results demonstrated that it was of applicative value owing to its merits including robustness, easy operation, fastness, cheapness and high enrichment efficiency, and had great prospect in environmental fields.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Kuifu Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 10037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingyi Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Libing Guo
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
10
|
Zhou Q, Lei M, Wu Y, Li S, Tong Y, Li Z, Liu M, Guo L, Chen C. Magnetic and thermal dual-sensitive core-shell nanoparticles for highly preconcentration and measurement of Sudan red pollutants. CHEMOSPHERE 2021; 279:130584. [PMID: 33887597 DOI: 10.1016/j.chemosphere.2021.130584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Recently, thermal-sensitive polymers absorbed much more concerns, and the goal of present work was to modify magnetic nanoparticles with N-isopropylacrylamide (NIPAM) and methyl 3,3-dimethylacrylate (DMMA) for obtaining thermal and magnetic dual-sensitive nanoparticles based on silica coated nanoscale zero valent iron and thermal-sensitive polymers (Fe@p(NIPAM-co-DMMA)). Fe@p(NIPAM-co-DMMA) nanoparticles were fabricated and possessed excellent adsorption ability for Sudan pollutants in aqueous samples. A rapid extraction and separation approach utilizing synthesized dual-sensitive nanomaterials was designed and developed before analysis by liquid chromatography (HPLC). Upon the enrichment factors as their optimal values, the established method gained wonderful linearity over the range of 0.05-500 μg L-1. The precisions of proposed method were all lower than 3.87%. The validating experiments ensured that this developed method provided with satisfied recoveries in the range of 97.4-102.6% from spiked real water samples, which affirmed that this method was a reliable monitoring tool for Sudan pollutants in water and food samples, etc.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Man Lei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Libin Guo
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
11
|
Souza ID, Oliveira IGC, Queiroz MEC. Innovative extraction materials for fiber-in-tube solid phase microextraction: A review. Anal Chim Acta 2021; 1165:238110. [PMID: 33975700 DOI: 10.1016/j.aca.2020.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022]
Abstract
Fiber-in-tube solid-phase microextraction (fiber-in-tube SPME) with short capillary longitudinally packed with fine fibers as extraction device allows direct coupling to high performance liquid chromatography (HPLC) systems to determine weakly volatile or thermally labile compounds. This technique associates the advantages of miniaturized and analytical on-line systems. Major achievements include the use of different capillaries (fused-silica, copper, stainless steel, polyetheretherketone (PEEK), or poly(tetrafluoroethylene) (PTFE)) that are packed with neat fibers (Zylon®, silk, or Kevlar 29®) or fibers (stainless steel, basalt, or carbon) functionalized with selective coatings (aerogels, ionic liquids (ILs), polymeric ionic liquids (PILs), molecularly imprinted polymers (MIPs), layered double hydroxides (LDHs), or conducting polymer). This review outlines the fundamental theory and the innovative extraction materials for fiber-in-tube SPME-HPLC systems and highlights their main applications in environmental and bioanalyses.
Collapse
Affiliation(s)
- Israel D Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Igor G C Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Eugênia C Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Ge D, Shan Z, Pang T, Lu X, Wang B. Preparation of new hydrophobic deep eutectic solvents and their application in dispersive liquid-liquid microextraction of Sudan dyes from food samples. Anal Bioanal Chem 2021; 413:3873-3880. [PMID: 33963882 DOI: 10.1007/s00216-021-03337-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
In this work, a new generation of hydrophobic deep eutectic solvents (DESs) was prepared using eugenol (as hydrogen bond donor) and benzyltriethylammonium bromide, benzyltributylammonium bromide, benzyltriethylammonium chloride and benzyltributylammonium chloride (as hydrogen bond acceptor) in different molar ratios. These DESs were applied to vortex-assisted dispersive liquid-liquid microextraction of Sudan dyes from food samples, followed by high-performance liquid chromatographic determination. The influencing parameters, including the type of DES, amount of DES, extraction time, solution pH and salt addition, were investigated and optimized. Under the optimized conditions, a linear range of 2-1000 ng mL-1 with determination coefficients of <0.999 was obtained. Limits of detection and limits of quantification were in the range of 0.5 to 1 ng mL-1 and 2 to 3 ng mL-1, respectively. The proposed method was successfully used in the determination of Sudan dyes in chili sauce, chili powder and ketchup, and satisfactory recoveries of between 89.9 and 119.3% were obtained, with relative standard deviations in the range of 0.1-6.8%. The proposed method is simple, green and efficient, and can be applied to determine Sudan dyes in complex matrices.
Collapse
Affiliation(s)
- Dandan Ge
- Department of Chemical Science & Technology, Kunming University, Kunming, 650214, Yuannan, China.
| | - Zhizhuo Shan
- Department of Chemical Science & Technology, Kunming University, Kunming, 650214, Yuannan, China
| | - Tongqing Pang
- Department of Chemical Science & Technology, Kunming University, Kunming, 650214, Yuannan, China
| | - Xiaomin Lu
- Department of Chemical Science & Technology, Kunming University, Kunming, 650214, Yuannan, China
| | - Baoling Wang
- Department of Chemical Science & Technology, Kunming University, Kunming, 650214, Yuannan, China
| |
Collapse
|
13
|
Khataei MM, Yamini Y, Shamsayei M. Applications of porous frameworks in solid-phase microextraction. J Sep Sci 2021; 44:1231-1263. [PMID: 33433916 DOI: 10.1002/jssc.202001172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023]
Abstract
Porous frameworks are a term of attracting solid materials assembled by interconnection of molecules and ions. These trendy materials due to high chemical and thermal stability, well-defined pore size and structure, and high effective surface area gained attention to employ as extraction phase in sample pretreatment methods before analytical analysis. Solid-phase microextraction is an important subclass of sample preparation technique that up to now different configurations of this method have been introduced to get adaptable with different environments and analytical instruments. In this review, theoretical aspect and different modes of solid-phase microextraction method are investigated. Different classes of porous frameworks and their applications as extraction phase in the proposed microextraction method are evaluated. Types and features of supporting substrates and coating procedures of porous frameworks on them are reviewed. At the end, the prospective and the challenges ahead in this field are discussed.
Collapse
Affiliation(s)
- Mohammad Mahdi Khataei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran.,Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund, Sweden
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Maryam Shamsayei
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Sivrikaya Ozak S, Yılmaz Y. Ultrasound-assisted hydrophobic deep eutectic solvent based solid-liquid microextraction of Sudan dyes in spice samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118353. [PMID: 32320916 DOI: 10.1016/j.saa.2020.118353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
An environmentally friendly, simple method was carried out with the help of an ultrasonic assisted solid-liquid microextraction technique using a new deep eutectic solvent (DES) for the extraction and determination of Sudan dyes (I-IV) in spice samples. In this method, parameters affecting the optimization were researched and optimized such as DES composition, DES volume, ultrasonic time, temperature and, centrifuge time. The analytical performance of the developed method was quite satisfactory, the R2 values were higher than 0.9989, and the limits of quantification were <1.17 μg g-1. Two different concentrations (10-50 μg g-1) were spiked to Chili peppers, paprika, cumin and sumac spices for the applicability and accuracy of the developed microextraction method. Some of these spices were found to contain Sudan I and IV dyes. The recovery values for spiked samples were found to be between 85.55% and 99.29% and relative standard deviations were found to be <3.17% when using a 10 μg g-1 Sudan dyes concentration. The results showed that the developed method can be successfully applied for extraction and determination of Sudan dyes in spice samples.
Collapse
Affiliation(s)
- Sezen Sivrikaya Ozak
- Polymer Engineering Department, Technology Faculty, Duzce University, Duzce, Turkey.
| | - Yunus Yılmaz
- Chemistry Department, Institute of Science, Duzce University, Duzce, Turkey
| |
Collapse
|
15
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Development of magnetic porous carbon nano-fibers for application as adsorbents in the enrichment of trace Sudan dyes in foodstuffs. J Chromatogr A 2020; 1625:461305. [PMID: 32709348 DOI: 10.1016/j.chroma.2020.461305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
A novel kind of magnetic porous carbon nano-fibers (Fe3O4@P-CNFs) materials was successfully prepared and used as an adsorbent. Based on the above-mentioned adsorbent, a simple and effective magnetic disperse solid-phase extraction (MSPE) method was developed and first utilized to the enrichment and purification of five Sudan dyes (including Sudan I, Sudan II, Sudan III, Sudan IV, and Sudan Red 7B) in foodstuffs for the first time. High-performance liquid chromatography was used to determine the content of the Sudan dyes. The parameters affecting the extraction performance were studied and optimized, including the amount of the adsorbent and inorganic salt, type and the volume of the eluent, pH of the sample solution and extraction time. Under the optimized experimental conditions, the results show that the proposed method has a good linear relationship (r≥ 0.9993). The limits of detection range from 0.88 μg L-1 to 1.27 μg L-1. The recoveries range from 86.6% to 99.7% with the relative standard deviations ranging from 0.6% to 7.9% in the methodology validation. The above-mentioned results indicate that the proposed method is a sensitive and reliable procedure with good reproducibility for the detection of Sudan dyes residues in foodstuffs.
Collapse
|
17
|
Template-directed fabrication of zeolitic imidazolate framework-67-derived coating materials on nickel/titanium alloy fiber substrate for selective solid-phase microextraction. J Chromatogr A 2020; 1618:460855. [DOI: 10.1016/j.chroma.2020.460855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023]
|
18
|
Three-dimensional pompon-like Au/ZnO porous microspheres as solid phase microextraction coating for determination of volatile fatty acids from foot odor. Talanta 2020; 209:120519. [PMID: 31892032 DOI: 10.1016/j.talanta.2019.120519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022]
Abstract
In this study, facile fabrication of three-dimensional (3D) pompon-like gold/zinc oxide (Au/ZnO) porous microspheres by hydrothermal procedure was investigated. These microspheres were utilized as solid phase microextraction (SPME) coating for determination of volatile fatty acids (VFAs) from foot odor coupling with gas chromatography-mass spectrometry (GC-MS). SEM and TEM characterizations showed that as-prepared material was composed of 1D porous nanowires and presented a uniform coating on stainless-steel wire. The extraction of VFAs including propanoic acid, butyric acid, isobutanoic acid, isovaleric acid, hexanoic acid, and heptylic acid was carried out by headspace model after sampling from human foot using cotton wool strips. Following optimization of extraction parameters including extraction temperature and time and desorption temperature and time, the as-prepared SPME coating presented better extraction efficiency than commercial DVB/CAR/PDMS fiber towards all the VFAs due to its excellent properties. Under the optimized conditions, the method exhibited good linearity (0.5-200 ng) with regression coefficients (R2) ranging from 0.9836 to 0.9981 for all the analytes. The limits of detection ranged from 0.017 to 0.098 ng. Single fiber repeatability varied from 6.5% to 11.2% and the fiber-to-fiber reproducibility ranged from 8.6% to 12.3%. The proposed method was successfully applied for extraction and determination of VFAs from foot odor after sampling using cotton wool strips.
Collapse
|
19
|
New approach in radiometabolite analysis of positron emission tomography (PET) radioligands; lead-shielded microextraction by packed sorbent as a tool for in vivo radiometabolite analysis of [11C]SMW139 in rat plasma. Talanta 2020; 208:120449. [DOI: 10.1016/j.talanta.2019.120449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 02/05/2023]
|
20
|
Metal-organic framework-1210(zirconium/cuprum) modified magnetic nanoparticles for solid phase extraction of benzophenones in soil samples. J Chromatogr A 2019; 1607:460403. [DOI: 10.1016/j.chroma.2019.460403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
|
21
|
Liu H, Jiang L, Lu M, Liu G, Li T, Xu X, Li L, Lin H, Lv J, Huang X, Xu D. Magnetic Solid-Phase Extraction of Pyrethroid Pesticides from Environmental Water Samples Using Deep Eutectic Solvent-type Surfactant Modified Magnetic Zeolitic Imidazolate Framework-8. Molecules 2019; 24:E4038. [PMID: 31703405 PMCID: PMC6891655 DOI: 10.3390/molecules24224038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 02/02/2023] Open
Abstract
A simple, sensitive and effective magnetic solid-phase extraction (MSPE) technique was developed for the extraction of pyrethroid pesticides from environmental water samples, followed by gas chromatography tandem triple quadrupole mass spectrometry determination. An adsorbent of magnetic zeolitic imidazolate framework-8@deep eutectic solvent (M-ZIF-8@DES) was prepared using deep eutectic solvent coated on the surface of M-ZIF-8. The features of M-ZIF-8@DES were confirmed by material characterizations, and the results indicated that M-ZIF-8@DES has a good magnetism (61.3 emu g-1), a decent surface area (96.83 m2 g-1) and pore volume (0.292 mL g-1). Single factor experiments were carried out to investigate the effect of different conditions on the performance of MSPE. Under the optimal conditions, the developed method performs good linearity (R2 ≥ 0.9916) in the concentration range of 1-500 μg L-1. The limits of detection were in the range of 0.05-0.21 μg L-1 (signal/noise = 3/1). The intraday relative standard deviation (RSD) and interday RSD were less than 9.40%. Finally, the proposed technique was applied for the determination of pyrethroid pesticides in environmental water samples. This work shows the potential of DES-modified metal-organic frameworks for different sample pretreatment techniques.
Collapse
Affiliation(s)
- Huifang Liu
- School of Life Science and Food Engeneering, Hebei University of Engeneering, Handan 056000, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Lihua Jiang
- School of Life Science and Food Engeneering, Hebei University of Engeneering, Handan 056000, China
| | - Meng Lu
- School of Life Science and Food Engeneering, Hebei University of Engeneering, Handan 056000, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Tengfei Li
- School of Life Science and Food Engeneering, Hebei University of Engeneering, Handan 056000, China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Huan Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Jun Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| |
Collapse
|
22
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
23
|
Pelit L, Pelit F, Ertaş H, Ertaş FN. Electrochemically Fabricated Solid Phase Microextraction Fibers and Their Applications in Food, Environmental and Clinical Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411015666190314155440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Designing an analytical methodology for complicated matrices, such as biological and environmental samples, is difficult since the sample preparation procedure is the most demanding step affecting the whole analytical process. Nowadays, this step has become more challenging by the legislations and environmental concerns since it is a prerequisite to eliminate or minimize the use of hazardous substances in traditional procedures by replacing with green techniques suitable for the sample matrix.Methods:In addition to the matrix, the nature of the analyte also influence the ease of creating green analytical techniques. Recent developments in the chemical analysis provide us new methodologies introducing microextraction techniques and among them, solid phase microextraction (SPME) has emerged as a simple, fast, low cost, reliable and portable sample preparation technique that minimizes solvent consumption.Results:The use of home-made fibers is popular in the last two decades since the selectivity can be tuned by changing the surface characteristics through chemical and electrochemical modifications. Latter technique is preferred since the electroactive polymers can be coated onto the fiber under controlled electrochemical conditions and the film thicknesses can be adjusted by simply changing the deposition parameters. Thermal resistance and mechanical strength can be readily increased by incorporating different dopant ions into the polymeric structure and selectivity can be tuned by inserting functional groups and nanostructures. A vast number of analytes with wide range of polarities extracted by this means can be determined with a suitable chromatographic detector coupled to the system. Therefore, the main task is to improve the physicochemical properties of the fiber along with the extraction efficiency and selectivity towards the various analytes by adjusting the electrochemical preparation conditions.Conclusion:This review covers the fine tuning conditions practiced in electrochemical preparation of SPME fibers and in-tube systems and their applications in environmental, food and clinical analysis.
Collapse
Affiliation(s)
- Levent Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Füsun Pelit
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Hasan Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| | - Fatma Nil Ertaş
- Department of Chemistry, Science Faculty, Ege University, Bornova, 35 100, İzmir, Turkey
| |
Collapse
|
24
|
Abstract
Metal–organic frameworks (MOFs) have attracted recently considerable attention in analytical sample preparation, particularly when used as novel sorbent materials in solid-phase microextraction (SPME). MOFs are highly ordered porous crystalline structures, full of cavities. They are formed by inorganic centers (metal ion atoms or metal clusters) and organic linkers connected by covalent coordination bonds. Depending on the ratio of such precursors and the synthetic conditions, the characteristics of the resulting MOF vary significantly, thus drifting into a countless number of interesting materials with unique properties. Among astonishing features of MOFs, their high chemical and thermal stability, easy tuneability, simple synthesis, and impressive surface area (which is the highest known), are the most attractive characteristics that makes them outstanding materials in SPME. This review offers an overview on the current state of the use of MOFs in different SPME configurations, in all cases covering extraction devices coated with (or incorporating) MOFs, with particular emphases in their preparation.
Collapse
|
25
|
|