1
|
Duchateau C, Stévigny C, Waeytens J, Deconinck E. Chromatographic and Spectroscopic Analyses of Cannabinoids: A Narrative Review Focused on Cannabis Herbs and Oily Products. Molecules 2025; 30:490. [PMID: 39942595 PMCID: PMC11821174 DOI: 10.3390/molecules30030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Cannabis sativa L. is cultivated nowadays for agricultural, industrial, and medicinal applications and also for recreational use. The latter is due to the presence of delta-9-tetrahydrocannabinol, a psychoactive substance. Recreational cannabis policies vary between different countries, which has led to the lack of a clearly defined legal context for cannabis and also a diversity of products derived from or containing cannabis on the (il)legal market. These cannabis-derived products have regained attention, notably because of their cannabinoid content. This review aims to assess and present analytical methods developed to analyze phytocannabinoids with spectroscopic and chromatographic techniques in specific cannabis matrices: herbs and oily products. Published papers from 2018-November 2024 were searched for with precise criteria, analyzed, and summarized. In the studies, liquid and gas chromatographic techniques (>70% reviewed papers) were the most used and have been widely applied using similar methods, and most papers were focused on cannabis herbs (>75%). Techniques were also compared and future challenges were identified. A comparison of different specificities of chromatographic and spectroscopic techniques discussed in this current review has also been established and summarized.
Collapse
Affiliation(s)
- Céline Duchateau
- Sciensano, Scientific Direction Physical and Chemical Health Risks, Medicines and Health Products Rue Juliette Wytsmanstraat, 14, 1050 Brussels, Belgium
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bld Triomphe, Campus Plaine, CP 205/5-B, 1050 Brussels, Belgium
| | - Caroline Stévigny
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bld Triomphe, Campus Plaine, CP 205/5-B, 1050 Brussels, Belgium
| | - Jehan Waeytens
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bld Triomphe, Campus Plaine, CP 205/5-B, 1050 Brussels, Belgium
| | - Eric Deconinck
- Sciensano, Scientific Direction Physical and Chemical Health Risks, Medicines and Health Products Rue Juliette Wytsmanstraat, 14, 1050 Brussels, Belgium
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), Bld Triomphe, Campus Plaine, CP 205/5-B, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Wilson WB, Urbas AA, Jensen H, Sander LC. High-throughput LC-PDA method for determination of Δ9-THC and related cannabinoids in Cannabis sativa. Forensic Chem 2024; 41:100610. [DOI: 10.1016/j.forc.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Vella Szijj J. Challenges of Extracting and Determining Cannabinoids in Different Matrices. Cannabis Cannabinoid Res 2024; 9:1470-1477. [PMID: 39134071 PMCID: PMC11685289 DOI: 10.1089/can.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Introduction: Accurate and precise analysis of cannabinoids is important for elucidating their therapeutic potential and developing therapies, which are targeted toward different medical conditions. A wide range of cannabis products are present on the market and are available in different dosage forms, including dried flowers, extracts, and consumables. The aim of this article is to provide an updated narrative review of literature on challenges of analyzing cannabinoids in plant material, oils, and edibles. Method: Literature search was conducted to identify sample preparation and analytical techniques for determination of cannabinoids in plant material, oils, and edibles and associated challenges. Results: Challenges related to determination of cannabinoids in plant material include matrix complexity, co-extraction of unwanted compounds during sample preparation, and differences in matrix composition between calibration standards and sample extracts. During analysis of cannabinoids in oil, the unique properties of carrier oils need to be taken into consideration. Analysis of cannabinoids in edibles can be considered to be challenging due to the wide range of matrix types that are available on the market, rendering analysis resource-intensive, time-consuming, and impractical. Discussion: Analysis of cannabinoids in plant material, oils, and edibles requires a multifaceted approach that includes regulatory guidance, method development, and technological innovation. In the face of an evolving analytical landscape where novel cannabinoids are being identified and require determination, there is a need for the development and validation of standardized accurate and precise analytical methods, which are specifically tailored for each matrix.
Collapse
Affiliation(s)
- Janis Vella Szijj
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
4
|
Yeganegi A, Fardindoost S, Tasnim N, Hoorfar M. Molecularly imprinted polymers (MIP) combined with Raman spectroscopy for selective detection of Δ⁹-tetrahydrocannabinol (THC). Talanta 2024; 267:125271. [PMID: 37806109 DOI: 10.1016/j.talanta.2023.125271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
A proof-of-concept sensor is developed for the sensitive and selective detection of Trans-Δ⁹-tetrahydrocannabinol (THC) based on a molecularly imprinted polymer (MIP) synthesized with a THC template which was analyzed using Raman spectroscopy to perform label-free monitoring of THC based on a single identifying Raman peak. The MIP sensor produced a peak at 1614 cm-1 in the Raman spectrum originating from the THC target molecule, allowing for the selective quantification of bound THC with the lowest detection limit of 250 ppm. A higher sensitivity of the MIP to the THC target molecule was observed compared to the non-imprinted polymer (NIP) control which confirmed the presence of THC-specific recognition sites within the synthesized MIP sensing material. The selectivity of this MIP-based sensor was determined by measuring the Raman spectrum of MIP exposed to Cannabidiol (CBD), ethanol, and acetone.
Collapse
Affiliation(s)
- Arian Yeganegi
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Somayeh Fardindoost
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Nishat Tasnim
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
5
|
Raslan-Jaramillo JJ, Ríos-Gajardo GA, Avello MA, de Diego MG. Determination of Cannabinoids in Cannabis sativa Oil and Infused Ice Cream by LC-DAD Method. J AOAC Int 2024; 107:140-145. [PMID: 37819769 DOI: 10.1093/jaoacint/qsad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Cannabis sativa is known to produce a class of terpenophenolic compounds named cannabinoids. The two main ones are cannabidiol (CBD) and tetrahydrocannabinol (THC), which have therapeutic properties. In the development of cannabis-based preparations, it is important to have suitable analytical methods for the analysis of the principal cannabinoids. OBJECTIVE This study aimed to develop and validate a simple and rapid HPLC method with photodiode array detection for determination of CBD and THC in Cannabis sativa oil extract and infused ice cream, including a stability study. METHOD Chromatographic separation of CBD and THC was performed with a C18 column, with a mobile phase consisting of acetonitrile and water with formic acid (80 + 20 v/v) in isocratic elution mode, with detection at 208 nm for CBD and 280 nm for THC and 1.0 mL/min flow rate. RESULTS The method was linear over a range of 1-5 µg/mL for CBD, and 20-100 µg/mL for THC; the relative standard deviation was <3.6%, the recovery ranged between 98.8 and 102.5% for oil and between 84 and 94% for ice cream, QL was 0.33 µg/mL for CBD and 2.30 µg/mL for THC, and the assay demonstrated adequate selectivity. CBD and THC were stable for at least 28 days under light protection at 22°C, 4°C, and -20°C in the oil and for at least 60 days at -20°C in the ice cream. CONCLUSIONS The results showed that the method was suitable for quantitative determination of CBD and THC in Cannabis sativa oil extract and infused ice cream, and it is useful for quality control purposes. HIGHLIGHTS The method is simple and fast, and it is useful for the quality control of a new product corresponding to an ice cream based on a Cannabis sativa oil extract.
Collapse
Affiliation(s)
- Jefree J Raslan-Jaramillo
- Universidad de Concepción, Faculty of Pharmacy, Department of Pharmacy, P.O. Box 237, Concepción 4030000, Chile
| | - Gisela A Ríos-Gajardo
- Universidad de Concepción, Faculty of Pharmacy, Department of Food Science and Technology, P.O. Box 237, Concepción 4030000, Chile
| | - Marcia A Avello
- Universidad de Concepción, Faculty of Pharmacy, Department of Pharmacy, P.O. Box 237, Concepción 4030000, Chile
| | - Marta G de Diego
- Universidad de Concepción, Faculty of Pharmacy, Department of Pharmacy, P.O. Box 237, Concepción 4030000, Chile
| |
Collapse
|
6
|
Dawidowicz AL, Typek R, Dybowski MP, Holowinski P, Rombel M. Cannabigerol (CBG) signal enhancement in its analysis by gas chromatography coupled with tandem mass spectrometry. Forensic Toxicol 2024; 42:31-44. [PMID: 37755669 PMCID: PMC10808273 DOI: 10.1007/s11419-023-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE According to recent reports, cannabigerol (CBG) concentration level in blood and body fluids may have forensic utility as a highly specific albeit insensitive biomarker of recent cannabis smoking. While the analytical sensitivity of cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC) or cannabinol (CBN) estimation by gas chromatography-mass spectrometry (GC-MS) is similar and sufficiently high, it is exceptionally low in the case of CBG (ca. 25 times lower than for the other mentioned cannabinoids). The purpose of this study is to explain the reasons for the extremely low analytical sensitivity of GC-MS in estimating CBG and to present possible ways of its improvement. METHODS Nuclear magnetic resonance (NMR) data and GC-MS responses to CBG and its various derivatization and transformation products were studied. RESULTS The validation data of individual derivatives of CBG and its transformation products were established. CBG silylation/acylation or hydration allows to decrease LOD about 3 times, whereas the formation of pyranic CBG derivative leads to 10-times decrease of LOD. The paper enriches the literature of the subject by providing MS and NMR spectra, not published so far, for derivatives of CBG and its transformation products. The most likely cause of low GC-MS response to CBG is also presented. CONCLUSIONS The presented results shows that although the signal increase of CBG can be obtained through its derivatization by silylation and/or acylation, the greatest increase is observed in the case of its cyclization to the pyranic CBG form during the sample preparation process. The CBG cyclization procedure is very simple and workable in estimating this cannabinoid in blood/plasma samples.
Collapse
Affiliation(s)
- Andrzej L Dawidowicz
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland.
| | - Rafal Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal P Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Piotr Holowinski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal Rombel
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| |
Collapse
|
7
|
Vettorato E, Fiordelisi M, Ferro S, Zanin D, Franceschinis E, Marzaro G, Realdon N. Deformable Vesicles with Edge Activators for the Transdermal Delivery of Non-Psychoactive Cannabinoids. Curr Pharm Des 2024; 30:921-934. [PMID: 38482628 DOI: 10.2174/0113816128289593240226071813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Transdermal delivery of highly lipophilic molecules is challenging due to the strong barrier function of the skin. Vesicles with penetration enhancers are safe and efficient systems that could improve the transdermal delivery of non-psychoactive cannabinoids such as cannabidiol and desoxy-cannabidiol. In the last decades, research interest in desoxy-cannabidiol as a potent drug with anti-nociceptive properties has risen. Still, its scarce market availability poses a limit for both research and clinical applications. Therefore, it is necessary to improve the synthesis to produce sufficient amounts of desoxy-cannabidiol. Moreover, also the formulation aspects for this drug are challenging and require to be addressed to meet an efficient delivery to the patients. OBJECTIVE This work aimed to develop innovative phospholipid-based vesicles with propylene glycol (PG), oleic acid (OA), or limonene as edge activators, for the transdermal delivery of highly lipophilic drugs such as non-psychoactive cannabinoids. In particular, desoxy-cannabidiol was selected thanks to its anti-nociceptive activity, and its synthesis was improved enhancing the stereoselectivity of its synthon's production. METHODS Desoxy-cannabidiol was synthesized by Lewis acid-mediated condensation of p-mentha-2,8-dien- 1-ol and m-pentylphenol, improving the stereoselectivity of the first synthon's production. Transethosomes containing 20-50% w/w PG, 0.4-0.8% w/w OA, or 0.1-1% w/w limonene were optimized and loaded with cannabidiol or desoxy-cannabidiol (0.07-0.8% w/w, 0.6-7.0 mg/mL). Ex-vivo studies were performed to assess both the skin permeation and accumulation of the cannabinoids, as well as the penetration depth of fluorescein- loaded systems used as models. RESULTS An enantioselective bromination was added to the pathway, thus raising the production yield of pmentha- 2,8-dien-1-ol to 81% against 35%, and the overall yield of desoxy-cannabidiol synthesis from 12% to 48%. Optimized transethosomes containing 0.6 mg/mL cannabinoids were prepared with 1:10 PG:lipid weight ratio, 0.54 OA:lipid molar ratio, and 0.3 limonene:lipid molar ratio, showing good nanometric size (208 ± 20.8 nm - 321 ± 26.3 nm) and entrapment efficiency (> 80%). Ex-vivo tests showed both improved skin permeation rates of cannabinoids (up to 21.32 ± 4.27 μg/cm2 cannabidiol), and skin penetration (depth of fluorescein up to 240 μm, with PG). CONCLUSION Desoxy-cannabidiol was successfully produced at high yields, and formulated into transethosomes optimized for transdermal delivery. Loaded vesicles showed improved skin penetration of desoxy-cannabidiol, cannabidiol and a lipophilic probe. These results suggest the potential of these carriers for the transdermal delivery of highly lipophilic drugs.
Collapse
Affiliation(s)
- Elisa Vettorato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Marisa Fiordelisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Silvia Ferro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Desirè Zanin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, Padova 35131, Italy
| |
Collapse
|
8
|
Pino S, Espinoza L, Jara-Gutiérrez C, Villena J, Olea AF, Díaz K. Study of Cannabis Oils Obtained from Three Varieties of C. sativa and by Two Different Extraction Methods: Phytochemical Characterization and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091772. [PMID: 37176831 PMCID: PMC10180737 DOI: 10.3390/plants12091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Currently, much effort is being placed into obtaining extracts and/or essential oils from Cannabis sativa L. for specific therapeutic purposes or pharmacological compositions. These potential applications depend mainly on the phytochemical composition of the oils, which in turn are determined by the type of C. sativa and the extraction method used to obtain the oils. In this work, we have evaluated the contents of secondary metabolites, delta-9-tetrahydrocannabinol (THC), and cannabidiol (CBD), in addition to the total phenolic, flavonoids, and anthraquinone content in oils obtained using solid-liquid extraction (SLE) and supercritical fluid extraction (SCF). Different varieties of C. sativa were chosen by using the ratio of THC to CBD concentrations. Additionally, antioxidant, antifungal and anticancer activities on different cancer cell lines were evaluated in vitro. The results indicate that oils extracted by SLE, with high contents of CBD, flavonoids, and phenolic compounds, exhibit a high antioxidant capacity and induce a high decrease in the cell viability of the tested breast cancer cell line (MCF-7). The observed biological activities are attributed to the entourage effect, in which CBD, phenols and flavonoids play a key role. Therefore, it is concluded that the right selection of C. sativa variety and the solvent for SLE extraction method could be used to obtain the optimal oil composition to develop a natural anticancer agent.
Collapse
Affiliation(s)
- Sebastián Pino
- LABSUN (Laboratorio Sustentable Natural), Valparaíso 2340000, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Carlos Jara-Gutiérrez
- Laboratorio de Investigación-Estrés Oxidativo, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Joan Villena
- Laboratorio de Investigación-Estrés Oxidativo, Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Andrés F Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| |
Collapse
|
9
|
Mano-Sousa BJ, Alves BC, Pedrosa AM, Lima PL, Andrade FPD, Duarte-Almeida JM. Validation of analytical method of cannabinoids: Novel approach using turbo-extraction. Talanta 2023; 254:124108. [PMID: 36459874 DOI: 10.1016/j.talanta.2022.124108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The development of simple, efficient, and low-cost analytical methods is essential for the evaluation and monitoring of the main cannabinoids in Cannabis-based products. In this sense, the objectives of this study were to develop and validate an analytical method for obtaining and determining cannabinoids in a pool sample. Two extraction techniques were used, ultrasound and turbo-extraction, and two system-solvents, methanol:chloroform (9:1 v:v) and ethanol. The analytical method used and validated was carried out in High Performance Liquid Chromatography with Diodes Array Detector. The cannabidiol standard was characterized by a nuclear magnetic resonance. The use of the proposed method makes it possible to identify cannabinoids, both in the acid form and in the neutral form, in 7 min of analysis. The results confirmed high precision and accuracy. The detection and quantification limits were 0.19 μg/mL and 5 μg/mL, respectively. The method developed proved to be selective and robust for the evaluation of cannabinoids. It is hoped that the methods developed can be used to obtain and analyze cannabinoids, both for medicinal purposes and for forensic analysis.
Collapse
Affiliation(s)
| | - Bruna Cristina Alves
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste, Minas Gerais, Brazil
| | | | - Paula Lamounier Lima
- Universidade Federal de São João Del-Rei, Campus Centro-Oeste, Minas Gerais, Brazil; Posto de Perícia Integrado, 7° Departamento de Polícia Civil de Minas Gerais (PCMG), Divinópolis, Minas Gerais, Brazil
| | | | | |
Collapse
|
10
|
Burnier C, Monzò M, Sauzier G, Lewis SW. Negative results: Investigations into the quantification of silicone-based condom lubricants in solution by DRIFTS-FTIR. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2022. [DOI: 10.1016/j.fsir.2022.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Porcu S, Tuveri E, Palanca M, Melis C, La Franca IM, Satta J, Chiriu D, Carbonaro CM, Cortis P, De Agostini A, Ricci PC. Rapid In Situ Detection of THC and CBD in Cannabis sativa L. by 1064 nm Raman Spectroscopy. Anal Chem 2022; 94:10435-10442. [PMID: 35848818 PMCID: PMC9330313 DOI: 10.1021/acs.analchem.2c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The need to find a rapid and worthwhile technique for
the in situ
detection of the content of delta-9-tetrahydrocannabinol (THC) and
cannabidiol (CBD) in Cannabis sativa L. is an ever-increasing problem in the forensic field. Among all
the techniques for the detection of cannabinoids, Raman spectroscopy
can be identified as the most cost-effective, fast, noninvasive, and
nondestructive. In this study, 42 different samples were analyzed
using Raman spectroscopy with 1064 nm excitation wavelength. The use
of an IR wavelength laser showed the possibility to clearly identify
THC and CBD in fresh samples, without any further processing, knocking
out the contribution of the fluorescence generated by visible and
near-IR sources. The results allow assigning all the Raman features
in THC- and CBD-rich natural samples. The multivariate analysis underlines
the high reproducibility of the spectra and the possibility to distinguish
immediately the Raman spectra of the two cannabinoid species. Furthermore,
the ratio between the Raman bands at 1295/1440 and 1623/1663 cm–1 is identified as an immediate test parameter to evaluate
the THC content in the samples.
Collapse
Affiliation(s)
- Stefania Porcu
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, CA, Italy
| | - Enrica Tuveri
- Scientific Investigation Department (RIS) of Cagliari, Via Ludovico Ariosto, 24, 09129 Cagliari, CA, Italy
| | - Marco Palanca
- Scientific Investigation Department (RIS) of Cagliari, Via Ludovico Ariosto, 24, 09129 Cagliari, CA, Italy
| | - Claudia Melis
- Scientific Investigation Department (RIS) of Cagliari, Via Ludovico Ariosto, 24, 09129 Cagliari, CA, Italy
| | | | - Jessica Satta
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, CA, Italy
| | - Daniele Chiriu
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, CA, Italy
| | - Carlo Maria Carbonaro
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, CA, Italy
| | - Pierluigi Cortis
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant'Ignazio 13, 09123 Cagliari, CA, Italy
| | - Antonio De Agostini
- Department of Life and Environmental Sciences, University of Cagliari, Via Sant'Ignazio 13, 09123 Cagliari, CA, Italy
| | - Pier Carlo Ricci
- Department of Physics, University of Cagliari, S.p. no. 8 Km 0700, 09042 Monserrato, CA, Italy
| |
Collapse
|
12
|
Büttenbender S, Carlos G, Steppe M, Ortiz RS, Limberger RP, Mendez ASL. Fast and reliable profiling of cannabinoids in seized samples using the method of HPLC-DAD followed by chemometrics. Forensic Toxicol 2022; 40:407-413. [PMID: 36454417 DOI: 10.1007/s11419-022-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/02/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Sabrina Büttenbender
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| | - Graciela Carlos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil.
| | - Martin Steppe
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Scorsatto Ortiz
- Superintendência da Polícia Federal no Rio Grande Sul, Rua Walter Spalding 50, Porto Alegre, RS 90040-410, Brazil.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| | - Renata Pereira Limberger
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| | - Andreas Sebastian Loureiro Mendez
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Av. Ipiranga 2752, Porto Alegre, RS 90610-000, Brazil
| |
Collapse
|
13
|
Deidda R, Dispas A, De Bleye C, Hubert P, Ziemons É. Critical review on recent trends in cannabinoid determination on cannabis herbal samples: From chromatographic to vibrational spectroscopic techniques. Anal Chim Acta 2022; 1209:339184. [DOI: 10.1016/j.aca.2021.339184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
|
14
|
Stefkov G, Cvetkovikj Karanfilova I, Stoilkovska Gjorgievska V, Trajkovska A, Geskovski N, Karapandzova M, Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products-A Comprehensive Review. Molecules 2022; 27:975. [PMID: 35164240 PMCID: PMC8838193 DOI: 10.3390/molecules27030975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980-2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Collapse
Affiliation(s)
- Gjoshe Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ivana Cvetkovikj Karanfilova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ana Trajkovska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia;
| | - Marija Karapandzova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Svetlana Kulevanova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| |
Collapse
|
15
|
Determination of 11 Cannabinoids in Hemp Plant and Oils by Liquid Chromatography and Photodiode Array Detection. Chromatographia 2022. [DOI: 10.1007/s10337-021-04114-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Chen Z, de Boves Harrington P, Griffin V, Griffin T. In Situ Determination of Cannabidiol in Hemp Oil by Near-Infrared Spectroscopy. JOURNAL OF NATURAL PRODUCTS 2021; 84:2851-2857. [PMID: 34784219 DOI: 10.1021/acs.jnatprod.1c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cannabidiol (CBD, 1) is an active component of hemp oil and many other products that offers diverse health benefits. Near-infrared spectroscopy (NIRS) coupled with chemometrics was utilized to quantify the CBD (1) concentration in the hemp oil through the containing glass vial. NIRS provided a fast and cost-effective tool to measure chemical profiles for the hemp oil samples with various concentrations of CBD (1) and its acid precursor, i.e., cannabidiolic acid (CBDA, 2). The measured NIR spectra were transformed by using a Savitzky-Golay first-derivative filter to remove baseline drift. Two self-optimizing chemometric methods, super partial least-squares regression (sPLSR) and self-optimizing support vector elastic net (SOSVEN), were applied to construct automatically multivariate models that predict the concentrations of CBD (1) and total CBD (sum of 1 and 2 concentrations) of the hemp oil samples. The SOSVEN had validation errors of 6.4 mg/mL for the prediction of CBD (1) concentration and 6.6 mg/mL for the prediction of total CBD concentration, which are significantly lower than the errors given by sPLSR. Other than the lower validation errors, SOSVEN has another advantage over sPLSR in that it builds a multivariate model while selecting spectral features at the same time. These results demonstrated that NIR spectroscopy combined with chemometrics can be used as a rapid and cost-effective approach to determine the CBD (1) and total CBD concentrations in hemp oil. Manufacturers would benefit from the fast and reliable approach in quality assurance.
Collapse
Affiliation(s)
- Zewei Chen
- Clippinger Laboratories, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Peter de Boves Harrington
- Clippinger Laboratories, Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | - Veronica Griffin
- G2 Analytical, PO Box 851, Wingate, North Carolina 28174, United States
| | - Todd Griffin
- G2 Analytical, PO Box 851, Wingate, North Carolina 28174, United States
| |
Collapse
|
17
|
Forensic laboratory backlog: The impact of inconclusive results of marijuana analysis and the implication on analytical routine. Sci Justice 2021; 61:755-760. [PMID: 34802649 DOI: 10.1016/j.scijus.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Forensic laboratories worldwide are struggling to keep up with the increasing number of cases submitted for analysis, regardless of the reasons, backlog of controlled substances cases is a reality in many countries. In this paper we analyse the number of petitioned examinations (from 2016 to 2020) and the data from 11,655 marijuana TLC results from the Forensic Laboratory in the Federal District Civil Police in Brazil. Data demonstrates that backlog increases inconclusive results, with storage and light playing a crucial role in the process. Additionally we explored the repercussions of delayed forensic results for controlled substances and propose an approach to overcome waiting time in this context.
Collapse
|
18
|
Payne WZ, Kurouski D. Raman spectroscopy enables phenotyping and assessment of nutrition values of plants: a review. PLANT METHODS 2021; 17:78. [PMID: 34266461 PMCID: PMC8281483 DOI: 10.1186/s13007-021-00781-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/11/2021] [Indexed: 05/23/2023]
Abstract
Our civilization has to enhance food production to feed world's expected population of 9.7 billion by 2050. These food demands can be met by implementation of innovative technologies in agriculture. This transformative agricultural concept, also known as digital farming, aims to maximize the crop yield without an increase in the field footprint while simultaneously minimizing environmental impact of farming. There is a growing body of evidence that Raman spectroscopy, a non-invasive, non-destructive, and laser-based analytical approach, can be used to: (i) detect plant diseases, (ii) abiotic stresses, and (iii) enable label-free phenotyping and digital selection of plants in breeding programs. In this review, we critically discuss the most recent reports on the use of Raman spectroscopy for confirmatory identification of plant species and their varieties, as well as Raman-based analysis of the nutrition value of seeds. We show that high selectivity and specificity of Raman makes this technique ideal for optical surveillance of fields, which can be used to improve agriculture around the world. We also discuss potential advances in synergetic use of RS and already established imaging and molecular techniques. This combinatorial approach can be used to reduce associated time and cost, as well as enhance the accuracy of diagnostics of biotic and abiotic stresses.
Collapse
Affiliation(s)
- William Z Payne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
19
|
Geskovski N, Stefkov G, Gigopulu O, Stefov S, Huck CW, Makreski P. Mid-infrared spectroscopy as process analytical technology tool for estimation of THC and CBD content in Cannabis flowers and extracts. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119422. [PMID: 33477086 DOI: 10.1016/j.saa.2020.119422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most notable Cannabis components with pharmacological activity and their content in the plant flowers and extracts are considered as critical quality parameters. The new Medical Cannabis industry needs to adopt the quality standards of the pharmaceutical industry, however, the variability of phytocannabinoids content in the plant material often exerts an issue in the inconsistency of the finished product quality parameters. Sampling problems and sample representativeness is a major limitation in the end-point testing, particularly when the expected variation of the product quality parameters is high. Therefore, there is an obvious need for the introduction of Process Analytical Technology (PAT) for continuous monitoring of the critical quality parameters throughout the production processes. Infrared spectroscopy is a promising analytical technique that is consistent with the PAT requirements and its implementation depends on the advances in instrumentation and chemometrics that will facilitate the qualitative and quantitative aspects of the technique. Our present work aims in highlighting the potential of mid-infrared (MIR) spectroscopy as PAT in the quantification of the main phytocannabinoids (THC and CBD), considered as critical quality/material parameters in the production of Cannabis plant and extract. A detailed assignment of the bands related to the molecules of interest (THC, CBD) was performed, the spectral features of the decarboxylation of native flowers were identified, and the specified bands for the acid forms (THCA, CBDA) were assigned and thoroughly explained. Further, multivariate models were constructed for the prediction of both THC and CBD content in extract and flower samples from various origins, and their prediction ability was tested on a separate sample set. Savitskzy-Golay smoothing and the second derivative of the native MIR spectra (1800-400 cm-1 region) resulted in best-fit parameters. The PLS models presented satisfactory R2Y and RMSEP of 0.95 and 3.79% for THC, 0.99 and 1.44% for CBD in the Cannabis extract samples, respectively. Similar statistical indicators were noted for the Partial least-squares (PLS) models for THC and CBD prediction of decarboxylated Cannabis flowers (R2Y and RMSEP were 0.99 and 2.32% for THC, 0.99 and 1.33% for CBD respectively). The VIP plots of all models demonstrated that the THC and CBD distinctive band regions bared the highest importance for predicting the content of the molecules of interest in the respected PLS models. The complexity of the sample (plant tissue or plant extract), the variability of the samples regarding their origin and horticultural maturity, as well as the non-uniformity of the plant material and the flower-ATR crystal contact (in the case of Cannabis flowers) were governing the accuracy descriptors. Taking into account the presented results, ATR-MIR should be considered as a promising PAT tool for THC and CBD content estimation, in terms of critical material and quality parameters for Cannabis flowers and extracts.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, North Macedonia.
| | - Gjose Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, North Macedonia
| | - Olga Gigopulu
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, North Macedonia
| | | | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB - Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Petre Makreski
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia.
| |
Collapse
|
20
|
Payne WZ, Kurouski D. Raman-Based Diagnostics of Biotic and Abiotic Stresses in Plants. A Review. FRONTIERS IN PLANT SCIENCE 2021; 11:616672. [PMID: 33552109 PMCID: PMC7854695 DOI: 10.3389/fpls.2020.616672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 05/11/2023]
Abstract
Digital farming is a novel agricultural philosophy that aims to maximize a crop yield with the minimal environmental impact. Digital farming requires the development of technologies that can work directly in the field providing information about a plant health. Raman spectroscopy (RS) is an emerging analytical technique that can be used for non-invasive, non-destructive, and confirmatory diagnostics of diseases, as well as the nutrient deficiencies in plants. RS is also capable of probing nutritional content of grains, as well as highly accurate identification plant species and their varieties. This allows for Raman-based phenotyping and digital selection of plants. These pieces of evidence suggest that RS can be used for chemical-free surveillance of plant health directly in the field. High selectivity and specificity of this technique show that RS may transform the agriculture in the US. This review critically discusses the most recent research articles that demonstrate the use of RS in diagnostics of abiotic and abiotic stresses in plants, as well as the identification of plant species and their nutritional analysis.
Collapse
Affiliation(s)
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
21
|
Risoluti R, Gullifa G, Battistini A, Materazzi S. The detection of cannabinoids in veterinary feeds by microNIR/chemometrics: a new analytical platform. Analyst 2020; 145:1777-1782. [PMID: 31915770 DOI: 10.1039/c9an01854a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the capabilities of a novel miniaturized and portable microNIR spectrometer were investigated in order to propose a practical and intelligible test allowing the rapid and easy screening of cannabinoids in veterinary feeds. In order to develop a predictive model that could identify and simultaneously quantify the residual amounts of cannabinoids, specimens from popular veterinary feeds were considered and spiked with increasing amounts of cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), and cannabigerol (CBG). Partial least squares discriminant analysis (PLS-DA) and partial least squares regression (PLSr) were applied for the simultaneous detection and quantification of cannabinoids. The results demonstrated that the microNIR/chemometric platform could statistically identify the presence of CBD, THC and CBG in the simulated samples containing cannabinoids from 0.001 to 0.01%w/w, with the accuracy and sensitivity of the official reference methods actually proposed. The method was checked against false positive and true positive responses, and the results proved to be those required for confirmatory analyses, permitting to provide a fast and accurate method for monitoring cannabinoids in veterinary feeds.
Collapse
Affiliation(s)
- Roberta Risoluti
- Department of Chemistry - "Sapienza" University of Rome, p.le A.Moro 5, 00185 Rome, Italy
| | - Giuseppina Gullifa
- Department of Chemistry - "Sapienza" University of Rome, p.le A.Moro 5, 00185 Rome, Italy
| | - Alfredo Battistini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Politiche e Bioeconomia, via Pò 14, 00198, Italy
| | - Stefano Materazzi
- Department of Chemistry - "Sapienza" University of Rome, p.le A.Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
McRae G, Melanson JE. Quantitative determination and validation of 17 cannabinoids in cannabis and hemp using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2020; 412:7381-7393. [PMID: 32833075 PMCID: PMC7533253 DOI: 10.1007/s00216-020-02862-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
The increase in production of cannabis for medical and recreational purposes in recent years has led to a corresponding increase in laboratories performing cannabinoid analysis of cannabis and hemp. We have developed and validated a quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method that is simple, reliable, specific, and accurate for the analysis of 17 cannabinoids in cannabis and hemp. Liquid-solid sample extraction coupled with dilution into a calibration range from 10 to 10,000 ng/mL and LC-MS/MS analysis provides quantification of samples ranging from 0.002 to 200 mg/g (0.0002 to 20.0%) in matrix. Linearity of calibration curves in methanol was demonstrated with regression r2 ≥ 0.99. Within-batch precision (0.5 to 6.5%) and accuracy (91.4 to 108.0%) and between-batch precision (0.9 to 5.1%) and accuracy (91.5 to 107.5%) were demonstrated for quality control (QC) samples in methanol. Within-batch precision (0.2 to 3.6%) and accuracy (85.4 to 111.6%) and between-batch precision (1.4 to 6.1 %) and accuracy (90.2 to 110.3%) were also evaluated with a candidate cannabis certified reference material (CRM). Repeatability (1.5 to 12.4% RSD) and intermediate precision (2.2 to 12.8% RSD) were demonstrated via analysis of seven cannabis samples with HorRat values ranging from 0.3 to 3.1. The method provides enhanced detection limits coupled with a large quantitative range for 17 cannabinoids in plant material. It is suitable for a wide range of applications including routine analysis for delta-9-tetrahydrocannabinol (Δ9-THC), delta-9-tetrahydrocannabinolic acid (Δ9-THCA), cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabinol (CBN) as well as more advanced interrogation of samples for both major and minor cannabinoids.
Collapse
Affiliation(s)
- Garnet McRae
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Jeremy E Melanson
- National Research Council of Canada, Metrology, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
23
|
Nahar L, Onder A, Sarker SD. A review on the recent advances in HPLC, UHPLC and UPLC analyses of naturally occurring cannabinoids (2010-2019). PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:413-457. [PMID: 31849137 DOI: 10.1002/pca.2906] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Organic molecules that bind to cannabinoid receptors are called cannabinoids, and they have similar pharmacological properties like the plant, Cannabis sativa L. Hyphenated liquid chromatography (LC), incorporating high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography (UPLC, also known as ultrahigh-performance liquid chromatography, UHPLC), usually coupled to an ultraviolet (UV), UV-photodiode array (PDA) or mass spectrometry (MS) detector, has become a popular analytical tool for the analysis of naturally occurring cannabinoids in various matrices. OBJECTIVE To review literature on the use of various LC-based analytical methods for the analysis of naturally occurring cannabinoids published since 2010. METHODOLOGY A comprehensive literature search was performed utilising several databases, like Web of Knowledge, PubMed and Google Scholar, and other relevant published materials including published books. The keywords used, in various combinations, with cannabinoids being present in all combinations, in the search were Cannabis, hemp, cannabinoids, Cannabis sativa, marijuana, analysis, HPLC, UHPLC, UPLC, quantitative, qualitative and quality control. RESULTS Since 2010, several LC methods for the analysis of naturally occurring cannabinoids have been reported. While simple HPLC-UV or HPLC-UV-PDA-based methods were common in cannabinoids analysis, HPLC-MS, HPLC-MS/MS, UPLC (or UHPLC)-UV-PDA, UPLC (or UHPLC)-MS and UPLC (or UHPLC)-MS/MS, were also used frequently. Applications of mathematical and computational models for optimisation of different protocols were observed, and pre-analyses included various environmentally friendly extraction protocols. CONCLUSIONS LC-based analysis of naturally occurring cannabinoids has dominated the cannabinoids analysis during the last 10 years, and UPLC and UHPLC methods have been shown to be superior to conventional HPLC methods.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
24
|
Sanchez L, Baltensperger D, Kurouski D. Raman-Based Differentiation of Hemp, Cannabidiol-Rich Hemp, and Cannabis. Anal Chem 2020; 92:7733-7737. [PMID: 32401504 DOI: 10.1021/acs.analchem.0c00828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hemp (Cannabis sativa) has been used to treat pain as far back as 2900 B.C. Its pharmacological effects originate from a large variety of cannabinols. Although more than 100 different cannabinoids have been isolated from Cannabis plants, clear physiological effects of only a few of them have been determined, including delta-9 tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol (CBG). While THC is an illicit drug, CBD and CBG are legal substances that have a variety of unique pharmacological properties such as the reduction of chronic pain, inflammation, anxiety, and depression. Over the past decade, substantial efforts have been made to develop Cannabis varieties that would produce large amounts of CBD and CBG. Ideally, such plant varieties should produce very little (below 0.3%) if any THC to make their cultivation legal. The amount of cannabinoids in the plant material can be determined using high performance liquid chromatography (HPLC). This analysis, however, is nonportable, destructive, and time and labor consuming. Our group recently proposed to use Raman spectroscopy (RS) for confirmatory, noninvasive, and nondestructive differentiation between hemp and cannabis. The question to ask is whether RS can be used to detect CBD and CBG in hemp, as well as enable confirmatory differentiation between hemp, cannabis, and CBD-rich hemp. In this manuscript, we show that RS can be used to differentiate between cannabis, CBD-rich plants, and regular hemp. We also report spectroscopic signatures of CBG, cannabigerolic acid (CBGA), THC, delta-9-tetrahydrocannabinolic acid (THCA), CBD, and cannabidiolic acid (CBDA) that can be used for Raman-based quantitative diagnostics of these cannabinoids in plant material.
Collapse
Affiliation(s)
- Lee Sanchez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - David Baltensperger
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.,The Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Monitoring of cannabinoids in hemp flours by MicroNIR/Chemometrics. Talanta 2020; 211:120672. [DOI: 10.1016/j.talanta.2019.120672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022]
|
26
|
Joye T, Widmer C, Favrat B, Augsburger M, Thomas A. Parallel Reaction Monitoring-Based Quantification of Cannabinoids in Whole Blood. J Anal Toxicol 2020; 44:541-548. [DOI: 10.1093/jat/bkz113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Cannabis is the most consumed drug of abuse, making it the primary target for identification and quantification in human whole blood regarding forensic and clinical toxicology analyses. Among biological matrices, blood is the reference for toxicological interpretation. A highly sensitive and selective liquid chromatography (LC) hyphenated with high-resolution mass spectrometry (HRMS) was developed for the quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxytetrahydrocannabinol (THC-OH), 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) and cannabidiol (CBD). Those cannabinoids were extracted from 1 mL of whole blood by a simple liquid–liquid extraction (LLE) in acidic conditions. HRMS was performed on an Orbitrap-based instrument using its trapping capabilities and increased selectivity for parallel reaction monitoring (PRM) quantification in positive polarity with a negative polarity switching for THC-OH and THC-COOH. Although selected reaction monitoring (SRM) and PRM-targeted methods have similar performance in terms of linearity, dynamic range, precision and repeatability, Orbitrap-based PRM provides a higher specificity due to the use of high-resolution mode separating background ions from the targeted molecules. The method was fully validated according to guidelines set forth by the “Société Française des Sciences et des Techniques Pharmaceutiques” (SFSTP). Trueness was measured below 107% for all tested concentrations. Repeatability and intermediate precision were found to be lower than 12% while the assay was found to be linear in the concentration range of 0.4–20 ng/mL for THC, THC-OH and CBD and of 2–100 ng/mL for THC-COOH. Recovery (RE) and matrix effect (ME) ranged from 70.6 to 102.5% and from −40 to 6.6%, respectively. The validated method provides an efficient procedure for the simultaneous and rapid quantification of cannabinoids in PRM mode providing an alternative over classical SRM.
Collapse
Affiliation(s)
- Timothée Joye
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital-Geneva University Hospitals, 4 Chemin de la Vulliette, 1000, Lausanne, Switzerland
- Faculty Unit of Toxicology, CURML, Lausanne University Hospital, Faculty of Biology and Medicine, University of Lausanne, 4 Chemin de la Vulliette, 1000, Lausanne, Switzerland
| | - Christèle Widmer
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital-Geneva University Hospitals, 4 Chemin de la Vulliette, 1000, Lausanne, Switzerland
| | - Bernard Favrat
- Unit of Medicine and Traffic Psychology, University Centre of Legal Medicine, Lausanne-Geneva, 26 Rue Saint-Martin, 1005, Lausanne, Switzerland
| | - Marc Augsburger
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital-Geneva University Hospitals, 4 Chemin de la Vulliette, 1000, Lausanne, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne University Hospital-Geneva University Hospitals, 4 Chemin de la Vulliette, 1000, Lausanne, Switzerland
- Faculty Unit of Toxicology, CURML, Lausanne University Hospital, Faculty of Biology and Medicine, University of Lausanne, 4 Chemin de la Vulliette, 1000, Lausanne, Switzerland
| |
Collapse
|
27
|
The Italian panorama of cannabis light preparation: Determination of cannabinoids by LC-UV. Forensic Sci Int 2020; 307:110113. [DOI: 10.1016/j.forsciint.2019.110113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/17/2022]
|
28
|
Sanchez L, Filter C, Baltensperger D, Kurouski D. Confirmatory non-invasive and non-destructive differentiation between hemp and cannabis using a hand-held Raman spectrometer. RSC Adv 2020; 10:3212-3216. [PMID: 35497720 PMCID: PMC9048763 DOI: 10.1039/c9ra08225e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/27/2019] [Indexed: 01/28/2023] Open
Abstract
Cannabis is a generic term that is used to denote hemp plants (Cannabis sativa) that produce delta-9-tetrahydrocannabinolic acid (THCA) in amounts higher than industrial hemp. While THCA itself is not considered psychoactive, it is the source of the psychoactive delta-9 tetrahydrocannabinol (THC) that forms from its oxidation. About 147 million people, which is around 2.5% of the world population, consume cannabis. This makes cannabis by far the most widely cultivated and trafficked illicit drug in the world. Such enormous popularity of cannabis requires substantial effort by border control and law enforcement agencies to control illegal trafficking and distribution. Confirmatory diagnostics of cannabis is currently done by high pressure liquid chromatography (HPLC), which requires sample transportation to a certified laboratory, making THC diagnostics extremely time and labor consuming. This catalyzed a push towards development of a portable, confirmatory, non-invasive and non-destructive approach for cannabis diagnostics that could be performed by a police officer directly in the field to verify illicit drug possession or transport. Raman spectroscopy (RS) is a modern analytical technique that meets all these strict expectations. In this manuscript, we show that RS can be used to determine whether plant material is hemp or cannabis with 100% accuracy. We also demonstrate that RS can be used to probe the content of THCA in the analyzed samples. These findings suggest that a hand-held Raman spectrometer can be an ideal tool for police officers and hemp breeders to enable highly accurate diagnostics of THCA content in plants. Cannabis is a generic term that is used to denote hemp plants (Cannabis sativa) that produce delta-9-tetrahydrocannabinolic acid (THCA) in amounts higher than industrial hemp.![]()
Collapse
Affiliation(s)
- Lee Sanchez
- Department of Biochemistry and Biophysics
- Texas A&M University
- College Station
- USA
| | | | | | - Dmitry Kurouski
- Department of Biochemistry and Biophysics
- Texas A&M University
- College Station
- USA
- The Institute for Quantum Science and Engineering
| |
Collapse
|
29
|
Pang X, Bai L, Wang Z, Yang H, Liu H, Yan H. Establishment of Quantitatively Analytical Methods for the Determination of Aroma Components in Edible Spices Using a Homemade Chromatographic Monolithic Column. Chromatographia 2019. [DOI: 10.1007/s10337-019-03761-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Fast Detection of 10 Cannabinoids by RP-HPLC-UV Method in Cannabis sativa L. Molecules 2019; 24:molecules24112113. [PMID: 31167395 PMCID: PMC6600594 DOI: 10.3390/molecules24112113] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022] Open
Abstract
Cannabis has regained much attention as a result of updated legislation authorizing many different uses and can be classified on the basis of the content of tetrahydrocannabinol (THC), a psychotropic substance for which there are legal limitations in many countries. For this purpose, accurate qualitative and quantitative determination is essential. The relationship between THC and cannabidiol (CBD) is also significant as the latter substance is endowed with many specific and non-psychoactive proprieties. For these reasons, it becomes increasingly important and urgent to utilize fast, easy, validated, and harmonized procedures for determination of cannabinoids. The procedure described herein allows rapid determination of 10 cannabinoids from the inflorescences of Cannabis sativa L. by extraction with organic solvents. Separation and subsequent detection are by RP-HPLC-UV. Quantification is performed by an external standard method through the construction of calibration curves using pure standard chromatographic reference compounds. The main cannabinoids dosed (g/100 g) in actual samples were cannabidiolic acid (CBDA), CBD, and Δ9-THC (Sample L11 CBDA 0.88 ± 0.04, CBD 0.48 ± 0.02, Δ9-THC 0.06 ± 0.00; Sample L5 CBDA 0.93 ± 0.06, CBD 0.45 ± 0.03, Δ9-THC 0.06 ± 0.00). The present validated RP-HPLC-UV method allows determination of the main cannabinoids in Cannabis sativa L. inflorescences and appropriate legal classification as hemp or drug-type.
Collapse
|