1
|
Fruekilde PBN, Nielsen F. Long-term stability of five atypical antipsychotics (risperidone, olanzapine, paliperidone, clozapine, quetiapine) and the antidepressant mirtazapine in human serum assessed by a validated SPE LC-MS/MS method. Basic Clin Pharmacol Toxicol 2024; 135:607-619. [PMID: 39314029 DOI: 10.1111/bcpt.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Long-term sample stability of five atypical antipsychoticdrugs risperidone, paliperidone, clozapine, quetiapine and olanzapine and the antidepressant drug mirtazapine in serum was studied by use of a newly developed and validated analytical method based on solid-phase extraction and liquid chromatography-tandem mass spectrometry. Ascorbic acid was used as an antioxidative agent to stabilize olanzapine during storage and sample preparation. We assessed analyte stability on long-term storage in serum samples at 25°C, 5°C, -20°C and -80°C, and during five freeze-thaw cycles. Analytes were stable for 23 days at room temperature except for olanzapine and mirtazapine (17 days). All analytes were stable for at least 30 days at 5°C. All analytes were stable for 270 days at -20°C, except for paliperidone and mirtazapine with 60 days and 180 days, respectively. All analytes were stable for 270 days at -80°C. Furthermore, all analytes were stable for five freeze-thaw cycles. We recommend storage at -80°C when samples drawn for analysis of antipsychotic drugs are stored for more than 60 days, whereas a temperature of -20°C is sufficient for storage less than 60 days.
Collapse
Affiliation(s)
| | - Flemming Nielsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine. Dept. of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Wang L, Zhao M, Li J, Xu H, Song Y, Zhao Y, Yu J, Zhou C. Evaluation of 4 quantification methods for monitoring 16 antidepressant drugs and their metabolites in human plasma by LC-MS/MS. J Pharmacol Toxicol Methods 2024; 130:107568. [PMID: 39383999 DOI: 10.1016/j.vascn.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Therapeutic drug monitoring for antidepressants (ADs) is vital due to the potentially serious consequences and disputes related to medical events. Therefore, we created a quick and convenient analysis way for separation and quantification of ADs. METHODS To ensure quantitative stability, we divided the 16 ADs or their metabolites into 4 pools (AD1-AD4), considering the hospital frequency that the clinician prescribed, the physicochemical properties of medicines, and the calibration range of selected ADs. After precipitation with methanol, the analytes were eluted for at least 3.5 min on a BEH C18 analytical column by different gradient elution methods. RESULTS The LLOQ and LOD were 1.25-10 ng/mL and 0.42-5 ng/mL, respectively. High precision (<12 %) and accuracy (87.07-111.47 %) were demonstrated by quality control samples both within and between days. All the compounds were stable at room temperature and within -80 °C. CONCLUSION The method is of wide clinical and laboratory interest due to simpler sample cleanup, shorter chromatographic run times, and wider calibration range compared to other methods.
Collapse
Affiliation(s)
- Lingjiao Wang
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mengqiang Zhao
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiao Li
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Hongtao Xu
- HangZhou Biozon Medical Institute Co., Ltd, Hangzhou, China
| | - Yang Song
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhao
- Key Laboratory for Neuroimmunological Regulation and Mental Health of Hebei Province, Shijiazhuang, China; The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jing Yu
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, Shijiazhuang, China.
| | - Chunhua Zhou
- Department of Clinical Pharmacy, the First Hospital of Hebei Medical University, Shijiazhuang, China; The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
3
|
Nozawa H, Minakata K, Hasegawa K, Yamagishi I, Miyoshi N, Yuyama K, Suzuki M, Kitamoto T, Kondo M, Suzuki O. Quantification of risperidone and paliperidone by liquid chromatography-tandem mass spectrometry in biological fluids and solid tissues obtained from two deceased using the standard addition method. Leg Med (Tokyo) 2024; 69:102340. [PMID: 37945391 DOI: 10.1016/j.legalmed.2023.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Risperidone (RIS) is an atypical antipsychotic agent and its 9-hydroxylated metabolite named paliperidone (PAL) also has pharmacological properties similar to that of RIS. Quantifications of RIS and PAL in authentic human biological fluids and solid tissues by liquid chromatography (LC)-tandem mass spectrometry (MS/MS) have not been reported yet although those in plasma (and blood) were reported abundantly. In the present work, a quantification method for RIS and PAL based on the standard addition method was devised and validated for the human fluid and solid tissue specimens. RIS and PAL in biological fluids were quantified only after their dilution and deproteinization. The concentrations of RIS and PAL in the heart whole blood, pericardial fluid, stomach contents, bile, urine, liver, kidney and cerebrum were determined for a deceased who had been treated with RIS therapeutically, and also a deceased who had ingested RIS with other drugs intentionally. To our knowledge, this is the first report on the quantification of RIS and PAL by LC-MS/MS in the authentic human tissues and biological fluids.
Collapse
Affiliation(s)
- Hideki Nozawa
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Kayoko Minakata
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Koutaro Hasegawa
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Itaru Yamagishi
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Naotomo Miyoshi
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kenta Yuyama
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Masako Suzuki
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Takuya Kitamoto
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Minako Kondo
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Osamu Suzuki
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
4
|
Ferreira V, Folgueira C, Montes-San Lorenzo Á, Rodríguez-López A, Gonzalez-Iglesias E, Zubiaur P, Abad-Santos F, Sabio G, Rada P, Valverde ÁM. Estrogens prevent the hypothalamus-periphery crosstalk induced by olanzapine intraperitoneal treatment in female mice: Effects on brown/beige adipose tissues and liver. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167227. [PMID: 38733774 DOI: 10.1016/j.bbadis.2024.167227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17β-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.
Collapse
Affiliation(s)
- Vítor Ferreira
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ángela Montes-San Lorenzo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Andrea Rodríguez-López
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Eva Gonzalez-Iglesias
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, School of Medicine, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| |
Collapse
|
5
|
Mahdavijalal M, Petio C, Staffilano G, Mandrioli R, Protti M. Innovative Solid-Phase Extraction Strategies for Improving the Advanced Chromatographic Determination of Drugs in Challenging Biological Samples. Molecules 2024; 29:2278. [PMID: 38792139 PMCID: PMC11124106 DOI: 10.3390/molecules29102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In the past few decades, considerable scientific strides have been made in the subject of drug analysis in human biological samples. However, the risk caused by incorrect drug plasma levels in patients still remains an important concern. This review paper attempts to investigate the advances made over the last ten years in common sample preparation techniques (SPT) for biological samples based on solid sorbents, including solid-phase extraction (SPE) and solid-phase micro-extraction (SPME), and in particular in the field of molecularly imprinted polymers (MIPs), including non-stimuli-responsive and stimuli-responsive adsorbents. This class of materials is known as 'smart adsorbents', exhibiting tailored responses to various stimuli such as magnetic fields, pH, temperature, and light. Details are provided on how these advanced SPT are changing the landscape of modern drug analysis in their coupling with liquid chromatography-mass spectrometry (LC-MS) analytical techniques, a general term that includes high-performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography (UHPLC), as well as any variation of MS, such as tandem (MS/MS), multiple-stage (MSn), and high-resolution (HRMS) mass spectrometry. Some notes are also provided on coupling with less-performing techniques, such as high-performance liquid chromatography with ultraviolet (HPLC-UV) and diode array detection (HPLC-DAD) detection. Finally, we provide a general review of the difficulties and benefits of the proposed approaches and the future prospects of this research area.
Collapse
Affiliation(s)
- Mohammadreza Mahdavijalal
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.M.); (M.P.)
| | - Carmine Petio
- Psychiatric Diagnosis and Care Services, Local Health Unit Company (AUSL) of Bologna—IRCCS St. Orsola-Malpighi, 40138 Bologna, Italy;
| | - Giovanni Staffilano
- Cardiology and Intensive Care Unit, Local Health Company (ASL) of Teramo, 64100 Teramo, Italy;
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum—University of Bologna, 47921 Rimini, Italy
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.M.); (M.P.)
| |
Collapse
|
6
|
Hrichi H, Kouki N, Elkanzi NAA. Chromatographic Methods for the Analysis of the Antipsychotic Drug Clozapine and Its Major Metabolites: A Review. J Chromatogr Sci 2024:bmae016. [PMID: 38576210 DOI: 10.1093/chromsci/bmae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Clozapine (CLZ), a second-generation antipsychotic, can effectively reduce schizophrenia, bipolar disorder and major depression symptoms. This review provides an overview of all reported chromatographic methods (62 references) for the quantification of CLZ and its two main metabolites, norclozapine and clozapine N-oxide in pharmaceutical formulations, biological matrices and environmental samples.
Collapse
Affiliation(s)
- Hajer Hrichi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Noura Kouki
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Nadia Ali Ahmed Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
7
|
Pour PH, Suzaei FM, Daryanavard SM. Greenness assessment of microextraction techniques in therapeutic drug monitoring. Bioanalysis 2024; 16:249-278. [PMID: 38466891 PMCID: PMC11216521 DOI: 10.4155/bio-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Aim: In this study, we evaluated the greenness and whiteness scores for microextraction techniques used in therapeutic drug monitoring. Additionally, the cons and pros of each evaluated method and their impacts on the provided scores are also discussed. Materials & methods: The Analytical Greenness Sample Preparation metric tool and white analytical chemistry principles are used for related published works (2007-2023). Results & conclusion: This study provided valuable insights for developing methods based on microextraction techniques with a balance in greenness and whiteness areas. Some methods based on a specific technique recorded higher scores, making them suitable candidates as green analytical approaches, and some others achieved high scores both in green and white areas with a satisfactory balance between principles.
Collapse
Affiliation(s)
- Parastoo Hosseini Pour
- Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, 79177, Iran
| | - Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition and Standard of Qeshm (MHCS Company), Qeshm Island, 79511, Iran
| | | |
Collapse
|
8
|
Zhang Z, Han W, Qing J, Meng T, Zhou W, Xu Z, Chen M, Wen L, Cheng Y, Ding L. Functionalized magnetic metal organic framework nanocomposites for high throughput automation extraction and sensitive detection of antipsychotic drugs in serum samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133189. [PMID: 38071772 DOI: 10.1016/j.jhazmat.2023.133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Due to the complexity of biological sample matrix, the automated and high-throughput pretreatment technology is urgently needed for monitoring the antipsychotic drugs for mental patients. In this study, functionalized magnetic zirconium-based organic framework nanocomposites (Fe3O4@SiO2@Zr-MOFs) were successfully designed and synthesized by the layer-by-layer growth. Among them, Fe3O4@SiO2@UiO-67-COOH showed the best adsorption performance, and at the same time it exhibited excellent water dispersibility, high thermal stability, chemical stability and high hydrophobicity. Results of adsorption kinetics, isotherm and FT-IR showed that the adsorption process was dominated by chemical adsorption (hydrogen bond, electrostatic interaction, π-π interaction) and monolayer adsorption. Moreover, the smaller pore size improved the protein exclusion rate which reached 98.9-99.8%. Based on the above result, the synthesized magnetic nanoparticles were introduced to 96-well automatic extractor, antipsychotic drugs in 96 serum samples were automatically extracted within 9 min, which most greatly saved the time and labor costs and avoided artificial errors. By further integrating with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), antipsychotic drugs can be detected in the range of 0.2-3.0 ng mL-1 with a quantitative limit of 0.06-0.9 ng mL-1. The recoveries of antipsychotic drugs and their metabolites in serum ranged from 95.7% to 112.3% within 1.4-6.5% of RSD. These features indicate that the proposed method is promising for high throughput and sensitively monitoring of drugs and other hazardous substances.
Collapse
Affiliation(s)
- Zelin Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wei Han
- Technical Center, Tianjin Customs, Tianjin 300041, PR China
| | - Jiang Qing
- Ningbo HEIGER Electrics Co., Ltd, Ningbo 315300, PR China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China.
| |
Collapse
|
9
|
Xiong J, Tian L, Shen X, Huang C. Comparison of the applicability of electromembrane extraction and liquid-phase microextraction for extraction of non-polar basic drugs from different biological samples: Using clozapine as the model analyte. J Sep Sci 2024; 47:e2300745. [PMID: 38356226 DOI: 10.1002/jssc.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Understanding and comparing the applicability of electromembrane extraction (EME) and liquid-phase microextraction (LPME) is crucial for selecting an appropriate microextraction approach. In this work, EME and LPME based on supported liquid membranes were compared using biological samples, including whole blood, urine, saliva, and liver tissue. After optimization, efficient EME and LPME of clozapine from four biological samples were achieved. EME provided higher recovery and faster mass transfer for blood and liver tissue than LPME. These advantages were attributed to the electric field disrupting clozapine binding to interfering substances. For urine and saliva, EME demonstrated similar recoveries while achieving faster mass transfer rates. Finally, efficient EME and LPME were validated and evaluated combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The coefficient of determination of all methods was greater than 0.999, and all methods showed acceptable reproducibility (≤14%), accuracy (90%-110%), and matrix effect (85%-112%). For liver and blood with high viscosity and complex matrices, EME-LC-MS/MS provided better sensitivity than LPME-LC-MS/MS. The above results indicated that both EME and LPME could be used to isolate non-polar basic drugs from different biological samples, although EME demonstrated higher recovery rates for liver tissue and blood.
Collapse
Affiliation(s)
- Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Linxin Tian
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Yan Z, Li Y, Lin A, Yang X, Lu Z, Zhang H, Tang J, Zhao J, Niu D, Zhang T, Zhao X, Li K. Development of a trace quantitative method to investigate caffeine distribution in the Yellow and Bohai Seas, China, and assessment of its potential neurotoxic effect on fish larvae. MARINE POLLUTION BULLETIN 2023; 195:115492. [PMID: 37690407 DOI: 10.1016/j.marpolbul.2023.115492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Caffeine is an emerging contaminant in aquatic environments. The study utilized a validated method to investigate the presence and distribution of caffeine in the surface water of the Yellow and Bohai Seas, urban rivers, and the Yantai estuary area. The analytical method conforms to EPA guidelines and exhibits a limit of quantification that is 200 times lower than that of prior investigations. The study revealed that the highest concentration of 1436.4 ng/L was found in convergence of ocean currents in the Yellow and Bohai Seas. The presence of larger populations and the process of urban industrialization have been observed to result in elevated levels of caffeine in offshore regions, confirming that caffeine can serve as a potential indicator of anthropogenic contamination. Fish larvae exhibited hypoactivity in response to caffeine exposure at environmentally relevant concentrations. The study revealed that caffeine pollution can have adverse effects on marine and offshore ecosystems. This emphasizes the importance of decreasing neurotoxic pollution in the aquatic environment.
Collapse
Affiliation(s)
- Zhi Yan
- School of Ocean, Yantai University, Yantai 264005, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ainuo Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Huilin Zhang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China
| | - Jianhui Tang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jianmin Zhao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Donglei Niu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Zhao
- School of Ocean, Yantai University, Yantai 264005, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
11
|
Ferreira V, Folgueira C, García-Altares M, Guillén M, Ruíz-Rosario M, DiNunzio G, Garcia-Martinez I, Alen R, Bookmeyer C, Jones JG, Cigudosa JC, López-Larrubia P, Correig-Blanchar X, Davis RJ, Sabio G, Rada P, Valverde ÁM. Hypothalamic JNK1-hepatic fatty acid synthase axis mediates a metabolic rewiring that prevents hepatic steatosis in male mice treated with olanzapine via intraperitoneal: Additional effects of PTP1B inhibition. Redox Biol 2023; 63:102741. [PMID: 37230004 DOI: 10.1016/j.redox.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Olanzapine (OLA), a widely used second-generation antipsychotic (SGA), causes weight gain and metabolic alterations when administered orally to patients. Recently, we demonstrated that, contrarily to the oral treatment which induces weight gain, OLA administered via intraperitoneal (i.p.) in male mice resulted in body weight loss. This protection was due to an increase in energy expenditure (EE) through a mechanism involving the modulation of hypothalamic AMPK activation by higher OLA levels reaching this brain region compared to those of the oral treatment. Since clinical studies have shown hepatic steatosis upon chronic treatment with OLA, herein we further investigated the role of the hypothalamus-liver interactome upon OLA administration in wild-type (WT) and protein tyrosine phosphatase 1B knockout (PTP1B-KO) mice, a preclinical model protected against metabolic syndrome. WT and PTP1B-KO male mice were fed an OLA-supplemented diet or treated via i.p. Mechanistically, we found that OLA i.p. treatment induces mild oxidative stress and inflammation in the hypothalamus in a JNK1-independent and dependent manner, respectively, without features of cell dead. Hypothalamic JNK activation up-regulated lipogenic gene expression in the liver though the vagus nerve. This effect concurred with an unexpected metabolic rewiring in the liver in which ATP depletion resulted in increased AMPK/ACC phosphorylation. This starvation-like signature prevented steatosis. By contrast, intrahepatic lipid accumulation was observed in WT mice treated orally with OLA; this effect being absent in PTP1B-KO mice. We also demonstrated an additional benefit of PTP1B inhibition against hypothalamic JNK activation, oxidative stress and inflammation induced by chronic OLA i.p. treatment, thereby preventing hepatic lipogenesis. The protection conferred by PTP1B deficiency against hepatic steatosis in the oral OLA treatment or against oxidative stress and neuroinflammation in the i.p. treatment strongly suggests that targeting PTP1B might be also a therapeutic strategy to prevent metabolic comorbidities in patients under OLA treatment in a personalized manner.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - María García-Altares
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Giada DiNunzio
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Christoph Bookmeyer
- Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - John G Jones
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | | | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Xavier Correig-Blanchar
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain; Institut D'Investigacio Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Roger J Davis
- Program in Molecular Medicine, Chan Medical School, University of Massachusetts, Worcester, USA
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| |
Collapse
|
12
|
Soares S, Rosado T, Barroso M, Gallardo E. Solid Phase-Based Microextraction Techniques in Therapeutic Drug Monitoring. Pharmaceutics 2023; 15:pharmaceutics15041055. [PMID: 37111541 PMCID: PMC10142207 DOI: 10.3390/pharmaceutics15041055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Therapeutic drug monitoring is an established practice for a small group of drugs, particularly those presenting narrow therapeutic windows, for which there is a direct relationship between concentration and pharmacological effects at the site of action. Drug concentrations in biological fluids are used, in addition to other clinical observation measures, to assess the patient's status, since they are the support for therapy individualization and allow assessing adherence to therapy. Monitoring these drug classes is of great importance, as it minimizes the risk of medical interactions, as well as toxic effects. In addition, the quantification of these drugs through routine toxicological tests and the development of new monitoring methodologies are extremely relevant for public health and for the well-being of the patient, and it has implications in clinical and forensic situations. In this sense, the use of new extraction procedures that employ smaller volumes of sample and organic solvents, therefore considered miniaturized and green techniques, is of great interest in this field. From these, the use of fabric-phase extractions seems appealing. Noteworthy is the fact that SPME, which was the first of these miniaturized approaches to be used in the early '90s, is still the most used solventless procedure, providing solid and sound results. The main goal of this paper is to perform a critical review of sample preparation techniques based on solid-phase microextraction for drug detection in therapeutic monitoring situations.
Collapse
Affiliation(s)
- Sofia Soares
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses-Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, Ubimedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| |
Collapse
|
13
|
Fariha R, Deshpande PS, Rothkopf E, Jabrah M, Spooner A, Okoh OD, Tripathi A. An in-depth analysis of four classes of antidepressants quantification from human serum using LC-MS/MS. Sci Rep 2023; 13:2115. [PMID: 36747000 PMCID: PMC9902619 DOI: 10.1038/s41598-023-29229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Depression is a growing global crisis, with females at a higher rate of diagnosis than males. While the percentage of patients on prescribed antidepressants have tripled over the last two decades, we are still at a crossroad where the discrepancy lies between finding a drug to suit a patient and monitoring the abundance of it in the body to prevent unwanted side effects. Liquid Chromatography tandem mass spectrometry (LC-MS/MS) has garnered the attention of clinicians as a technique to accurately monitor therapeutic drugs in human serum with high specificity and accuracy. This may be a potential solution, but the challenge persists in the realm of sample preparation, where a method is automatable. We have developed and validated an LC-MS/MS-based assay for simultaneous quantification of 4 different classes of commonly prescribed antidepressants in women that is automated using a JANUS G3 Robotic Liquid Handler. Our method utilizes a simple sample preparation technique, utilizing only 20 μL of a serum sample, to accurately measure Bupropion, Citalopram, Desipramine, Imipramine, Olanzapine, Sertraline and Vilazodone across a range of 1.0 to 230 ng/mL. Our method exhibits a linearity of R2 ≥ 0.99 when detected in MRM mode and % CV of ≤ 20% for all analytes across the board. In addition, we have designed a prototype that can be utilized at a clinical mass spectrometry lab and assessed the long-term use of this prototype using an accelerated stability study. Overall, our developed method has the potential to be translated to clinical settings to monitor postpartum depression for a large number of patient samples using automation.
Collapse
Affiliation(s)
- Ramisa Fariha
- Brown University Center for Biomedical Engineering, Providence, RI, USA
| | | | - Emma Rothkopf
- Brown University Center for Biomedical Engineering, Providence, RI, USA
| | - Mohannad Jabrah
- Brown University Center for Biomedical Engineering, Providence, RI, USA
| | - Adam Spooner
- Brown University Center for Biomedical Engineering, Providence, RI, USA
| | | | - Anubhav Tripathi
- Brown University Center for Biomedical Engineering, Providence, RI, USA.
| |
Collapse
|
14
|
Cabarcos-Fernández P, Álvarez-Freire I, Tabernero-Duque M, Bermejo-Barrera A. Quantitative determination of clozapine in plasma using an environmentally friendly technique. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Grajales D, Vázquez P, Ruíz-Rosario M, Tudurí E, Mirasierra M, Ferreira V, Hitos AB, Koller D, Zubiaur P, Cigudosa JC, Abad-Santos F, Vallejo M, Quesada I, Tirosh B, Leibowitz G, Valverde ÁM. The second-generation antipsychotic drug aripiprazole modulates the serotonergic system in pancreatic islets and induces beta cell dysfunction in female mice. Diabetologia 2022; 65:490-505. [PMID: 34932133 PMCID: PMC8803721 DOI: 10.1007/s00125-021-05630-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. METHODS We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5-6.0 mg kg-1 day-1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. RESULTS Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. CONCLUSIONS/INTERPRETATION Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Tudurí
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Vítor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Iván Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Boaz Tirosh
- The Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Variants in COMT, CYP3A5, CYP2B6, and ABCG2 Alter Quetiapine Pharmacokinetics. Pharmaceutics 2021; 13:pharmaceutics13101573. [PMID: 34683865 PMCID: PMC8540141 DOI: 10.3390/pharmaceutics13101573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Quetiapine is an atypical antipsychotic widely used for the treatment of schizophrenia and the depressive episodes of bipolar disorder. The aim of this work was to investigate the effect of variants in relevant pharmacogenes in the pharmacokinetics of quetiapine and to exploratorily evaluate adverse drug reaction (ADR) incidence based on genetic polymorphism. Specifically, 49 healthy volunteers enrolled in two bioequivalence clinical trials were included in this study. In addition, 80 variants in 19 relevant pharmacogenes were genotyped, including cytochrome P450 (CYP) genes, catechol-O-methyl transferase (COMT), other enzymes (e.g., UGT1A1 or UGT1A4), and transporters (e.g., SLCO1B1, ABCB1, or ABCG2). The COMT rs13306278 T allele was significantly related to quetiapine-increased exposure. We demonstrated the existence of quetiapine derivatives with a catechol-like structure (7,8-dihydroxi-quetiapine and 7,8-dihydroxi-N-desalkyl-quetiapine), which would be COMT metabolites and would explain quetiapine accumulation through CYP2D6 and CYP3A4 negative feedback. Moreover, CYP3A5 and CYP2B6 phenotypes were related to quetiapine exposure variability, which confirms (for CYP3A5) and suggests (for CYP2B6) that these enzymes play an important role in quetiapine’s metabolism. Finally, the ABCG2 rs2231142 T allele was related to quetiapine accumulation. Further studies are required to confirm the clinical relevance of our findings.
Collapse
|
17
|
Meloche M, Jutras M, St-Jean I, de Denus S, Leclair G. Isocyanate derivatization coupled with phospholipid removal microelution-solid phase extraction for the simultaneous quantification of (S)-metoprolol and (S)-α-hydroxymetoprolol in human plasma with LC-MS/MS. J Pharm Biomed Anal 2021; 204:114263. [PMID: 34274593 DOI: 10.1016/j.jpba.2021.114263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022]
Abstract
A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated for the quantification of (S)-metoprolol (MET) and its main metabolite, (S)-α-hydroxymetoprolol (OH-MET). Human plasma samples (50 μL) were spiked with both analytes and their deuterated internal standards (IS) (S)-MET-(d7) and α-OH-MET-(d5). Phospholipid removal microelution-solid phase extraction (PRM-SPE) was performed using a 4-step protocol with Oasis PRiME MCX μElution 96-well cartridges. The eluates were reconstituted in 100 μL of acetonitrile with 50 μg/mL (S)-α-methylbenzyl isocyanate (MBIC) for chiral derivatization. After 60 min at room temperature, the reaction was quenched using 100 μL of water 2 % formic acid. Chromatographic separation of the derivatized analytes was performed on a Kinetex phenyl-hexyl core-shell stationary phase with an elution gradient. Mobile phases were composed of a mixture of water and methanol, with ammonium formate and formic acid as buffers. Total runtime was 15 min. Analyte detection was performed by an AB/SCIEX 4000 QTRAP mass spectrometer with multiple reaction monitoring. Chromatograms showed MBIC successfully reacted with racemic MET, α-OH-MET, and their respective IS. Detection by positive electrospray ionization did not reveal derivatized by-products. Quantification ranges were validated for (S)-MET and (S)-α-OH-MET between 0.5-500 and 1.25-500 ng/mL, respectively, with correlation coefficients (r2) >0.9906. The PRM-SPE assay showed low matrix effects (86.9-104.0 %) and reproducible recoveries (69.4-78.7 %) at low, medium, and high quality control (QC) levels. Precision and accuracy were all comprised between 85-115 % for all three QCs, and between 80-120 % for the lower limit of quantification, for intra- and inter-day values (n = 6, 3 consecutive days). Non-derivatized analytes were stable at room temperature, after 3 freeze-thaw cycles, and stored for 30 days at -80 °C (n = 4). Reinjection reproducibility of a previously validated batch was achieved after 8 days under auto-sampler conditions, indicating the stability of (S)-MET and (S)-α-OH-MET derivatives. Its clinical use was established in a cohort of 50 patients and could be used to further investigate the clinical impact of (S)-MET concentrations.
Collapse
Affiliation(s)
- Maxime Meloche
- Faculty of Pharmacy, Université de Montréal, H3T 1J4, Montreal, Quebec, Canada; Montreal Heart Institute, H1T 1C8, Montreal, Quebec, Canada; Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, H1T 1C8, Montreal, Quebec, Canada.
| | - Martin Jutras
- Faculty of Pharmacy, Université de Montréal, H3T 1J4, Montreal, Quebec, Canada.
| | - Isabelle St-Jean
- Faculty of Pharmacy, Université de Montréal, H3T 1J4, Montreal, Quebec, Canada.
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, H3T 1J4, Montreal, Quebec, Canada; Montreal Heart Institute, H1T 1C8, Montreal, Quebec, Canada; Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, H1T 1C8, Montreal, Quebec, Canada.
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, H3T 1J4, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
López-Yerena A, Domínguez-López I, Vallverdú-Queralt A, Pérez M, Jáuregui O, Escribano-Ferrer E, Lamuela-Raventós RM. Metabolomics Technologies for the Identification and Quantification of Dietary Phenolic Compound Metabolites: An Overview. Antioxidants (Basel) 2021; 10:846. [PMID: 34070614 PMCID: PMC8229076 DOI: 10.3390/antiox10060846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In the search for natural products with properties that may protect against or slow down chronic and degenerative diseases (e.g., cancer, and cardiovascular and neurodegenerative conditions), phenolic compounds (PC) with benefits for human health have been identified. The biological effects of PC in vivo depend on their bioavailability, intestinal absorption, metabolism, and interaction with target tissues. The identification of phenolic compounds metabolites (PCM), in biological samples, after food ingestion rich in PC is a first step to understand the overall effect on human health. However, their wide range of physicochemical properties, levels of abundance, and lack of reference standards, renders its identification and quantification a challenging task for existing analytical platforms. The most frequent approaches to metabolomics analysis combine mass spectrometry and NMR, parallel technologies that provide an overview of the metabolome and high-power compound elucidation. In this scenario, the aim of this review is to summarize the pre-analytical separation processes for plasma and urine samples and the technologies applied in quantitative and qualitative analysis of PCM. Additionally, a comparison of targeted and non-targeted approaches is presented, not available in previous reviews, which may be useful for future metabolomics studies of PCM.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Inés Domínguez-López
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Olga Jáuregui
- Scientific and Technological Center (CCiTUB), University of Barcelona, 08028 Barcelona, Spain;
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Pharmaceutical Nanotechnology Group I+D+I Associated Unit to CSIC, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (I.D.-L.); (A.V.-Q.); (M.P.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Adachi K, Beppu S, Nishiyama K, Shimizu M, Yamazaki H. Pharmacokinetics of duloxetine self-administered in overdose with quetiapine and other antipsychotic drugs in a Japanese patient admitted to hospital. J Pharm Health Care Sci 2021; 7:6. [PMID: 33531089 PMCID: PMC7856802 DOI: 10.1186/s40780-021-00189-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Background Combinations of antidepressant duloxetine (at doses of 40–60 mg/day) and other antipsychotics are frequently used in clinical treatment; however, several fatal and nonfatal cases of duloxetine overdose have been documented. We experienced a patient who had taken an overdose of duloxetine (780 mg) in combination with other drugs in a suicide attempt. Case presentation The patient was a 37-year-old man (body weight, 64 kg) with a history of gender identity disorder and depression. He intentionally took an overdose of duloxetine in combination with three other antipsychotic drugs (18 mg flunitrazepam, 850 mg quetiapine, and 1100 mg trazodone) and was emergently admitted to Kyoto Medical Center. The patient’s plasma concentration of duloxetine during ambulance transport was 57 ng/ml, and the level was still as high as 126 ng/mL at 32 h after administration. Duloxetine disappeared most slowly from plasma, in contrast to quetiapine, which was the fastest to clear among the four medicines determined in this patient. The observed concentrations of duloxetine in this overdose patient were generally within the 95% confidence intervals of the plasma concentration curves predicted using a physiologically based pharmacokinetic (PBPK) model. Conclusion Even if more than 1 h (the generally recommended period) has passed after administration of duloxetine in such overdose cases, gastric lavage and/or administration of activated charcoal may be effective in clinical practice up to 6 h because of the typically slow elimination behavior illustrated by the PBPK model. Pharmacokinetic profiles visualized using PBPK modeling can inform treatment decisions in cases of drug overdose for medicines such as duloxetine in emergency clinical practice.
Collapse
Affiliation(s)
- Koichiro Adachi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.,Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Satoru Beppu
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Kei Nishiyama
- Kyoto Medical Center, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
20
|
Koller D, Almenara S, Mejía G, Saiz-Rodríguez M, Zubiaur P, Román M, Ochoa D, Navares-Gómez M, Santos-Molina E, Pintos-Sánchez E, Abad-Santos F. Metabolic Effects of Aripiprazole and Olanzapine Multiple-Dose Treatment in a Randomised Crossover Clinical Trial in Healthy Volunteers: Association with Pharmacogenetics. Adv Ther 2021; 38:1035-1054. [PMID: 33278020 PMCID: PMC7889573 DOI: 10.1007/s12325-020-01566-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022]
Abstract
Introduction Aripiprazole and olanzapine are atypical antipsychotics. Both drugs can induce metabolic changes; however, the metabolic side effects produced by aripiprazole are more benign. The aim of the study was to evaluate if aripiprazole and olanzapine alter prolactin levels, lipid and glucose metabolism and hepatic, haematological, thyroid and renal function. Methods Twenty-four healthy volunteers received a daily oral dose of 10 mg aripiprazole and 5 mg olanzapine tablets for 5 days in a crossover randomised clinical trial and were genotyped for 51 polymorphisms in 18 genes by qPCR. Drug plasma concentrations were measured by LC–MS. The biochemical and haematological analyses were performed by enzymatic methods. Results Olanzapine induced hyperprolactinaemia but aripiprazole did not. Dopamine D3 receptor (DRD3) Ser/Gly and ATP binding cassette subfamily B member 1 (ABCB1) rs10280101, rs12720067 and rs11983225 polymorphisms and cytochrome P450 3A (CYP3A) phenotype had an impact on plasma prolactin levels. C-peptide concentrations were higher after aripiprazole administration and were influenced by catechol-O-methyltransferase (COMT) rs4680 and rs13306278 polymorphisms. Olanzapine and the UDP glucuronosyltransferase family 1 member A1 (UGT1A1) rs887829 polymorphism were associated with elevated glucose levels. CYP3A poor metabolizers had increased insulin levels. Volunteers’ weight decreased significantly during aripiprazole treatment and a tendency for weight gain was observed during olanzapine treatment. Triglyceride concentrations decreased as a result of olanzapine and aripiprazole treatment, and varied on the basis of CYP3A phenotypes and the apolipoprotein C-III (APOC3) rs4520 genotype. Cholesterol levels were also decreased and depended on 5-hydroxytryptamine receptor 2A (HTR2A) rs6314 polymorphism. All hepatic enzymes, platelet and albumin levels, and prothrombin time were altered during both treatments. Additionally, olanzapine reduced the leucocyte count, aripiprazole increased free T4 and both decreased uric acid concentrations. Conclusions Short-term treatment with aripiprazole and olanzapine had a significant influence on the metabolic parameters. However, it seems that aripiprazole provokes less severe metabolic changes. Trial Registration Clinical trial registration number (EUDRA-CT): 2018-000744-26 Graphical Abstract ![]()
Electronic Supplementary Material The online version of this article (10.1007/s12325-020-01566-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Susana Almenara
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
- Research Unit, Fundación Burgos Por La Investigación de La Salud, Hospital Universitario de Burgos, Burgos, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Elena Santos-Molina
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Elena Pintos-Sánchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
- UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
| |
Collapse
|
21
|
Koller D, Almenara S, Mejía G, Saiz-Rodríguez M, Zubiaur P, Román M, Ochoa D, Wojnicz A, Martín S, Romero-Palacián D, Navares-Gómez M, Abad-Santos F. Safety and cardiovascular effects of multiple-dose administration of aripiprazole and olanzapine in a randomised clinical trial. Hum Psychopharmacol 2021; 36:1-12. [PMID: 32991788 DOI: 10.1002/hup.2761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To assess adverse events (AEs) and safety of aripiprazole (ARI) and olanzapine (OLA) treatment. METHODS Twenty-four healthy volunteers receiving five daily oral doses of 10 mg ARI and 5 mg OLA in a crossover clinical trial were genotyped for 46 polymorphisms in 14 genes by qPCR. Drug plasma concentrations were measured by high-performance liquid chromatography tandem mass spectrometry. Blood pressure (BP) and 12-lead electrocardiogram were measured in supine position. AEs were also recorded. RESULTS ARI decreased diastolic BP on the first day and decreased QTc on the third and fifth day. OLA had a systolic and diastolic BP, heart rate and QTc lowering effect on the first day. Polymorphisms in ADRA2A, COMT, DRD3 and HTR2A genes were significantly associated to these changes. The most frequent adverse drug reactions (ADRs) to ARI were somnolence, headache, insomnia, dizziness, restlessness, palpitations, akathisia and nausea while were somnolence, dizziness, asthenia, constipation, dry mouth, headache and nausea to OLA. Additionally, HTR2A, HTR2C, DRD2, DRD3, OPRM1, UGT1A1 and CYP1A2 polymorphisms had a role in the development of ADRs. CONCLUSIONS OLA induced more cardiovascular changes; however, more ADRs were registered to ARI. In addition, some polymorphisms may explain the difference in the incidence of these effects among subjects.
Collapse
Affiliation(s)
- Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Susana Almenara
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,Research Unit, Fundación Burgos por la Investigación de la Salud, Hospital Universitario de Burgos, Burgos, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Samuel Martín
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Daniel Romero-Palacián
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| |
Collapse
|
22
|
Usui K, Fujita Y, Kamijo Y, Igari Y, Funayama M. LC-MS/MS method for rapid and accurate detection of caffeine in a suspected overdose case. J Pharmacol Toxicol Methods 2020; 107:106946. [PMID: 33276087 DOI: 10.1016/j.vascn.2020.106946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
Excessive intake of caffeine, otherwise known to be a safe and mild central nervous system stimulant, causes nausea, vomiting, convulsions, tachycardia, and eventually fatal arrhythmias and death. Caffeine intoxication, a global problem, has been increasing in Japan since 2013. Thus, there is a need for rapid and accurate diagnosis of caffeine poisoning in forensic and clinical toxicology investigations. Herein, we demonstrate rapid and accurate caffeine quantitation by liquid chromatography tandem mass spectrometry using the standard addition method in a fatal case. Biological samples were diluted 500-100,000-fold and subjected to a simple pretreatment (adding caffeine standard and internal standard and passing through a lipid removal cartridge). The multiple reaction monitoring transitions were 195 → 138 for quantitation, 195 → 110 for the qualifier ion, and 204 → 144 for the internal standard (caffeine-d9). The standard plots were linear over 0-900 ng/mL (r2 = 0.9994-0.9999) for biological samples, and the reproducibility (%RSD) of the method was 1.53-6.97% (intraday) and 1.59-10.4% (interday). Fatal levels of caffeine (332 μg/mL) and toxic to fatal levels of olanzapine (625 ng/mL), along with other pharmaceuticals were detected in the external iliac venous blood. The cause of death was determined to be multi-drug poisoning, predominantly caused by caffeine. Our method is useful for not only forensic cases but also the rapid diagnosis of caffeine overdose in emergency clinical settings.
Collapse
Affiliation(s)
- Kiyotaka Usui
- Division of Forensic Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Emergency Medical Center and Poison Center, Saitama Medical University Hospital, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan.
| | - Yuji Fujita
- Division of Emergency Medicine, Department of Emergency, Disaster and General Medicine, Iwate Medical University School of Medicine, Iwate, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun Morioka, Iwate 028-3694, Japan.
| | - Yoshito Kamijo
- Emergency Medical Center and Poison Center, Saitama Medical University Hospital, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan.
| | - Yui Igari
- Division of Forensic Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Masato Funayama
- Division of Forensic Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
23
|
Electromembrane extraction of chlorprothixene, haloperidol and risperidone from whole blood and urine. J Chromatogr A 2020; 1629:461480. [DOI: 10.1016/j.chroma.2020.461480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023]
|
24
|
Koller D, Saiz-Rodríguez M, Zubiaur P, Ochoa D, Almenara S, Román M, Romero-Palacián D, de Miguel-Cáceres A, Martín S, Navares-Gómez M, Mejía G, Wojnicz A, Abad-Santos F. The effects of aripiprazole and olanzapine on pupillary light reflex and its relationship with pharmacogenetics in a randomized multiple-dose trial. Br J Clin Pharmacol 2020; 86:2051-2062. [PMID: 32250470 PMCID: PMC7495280 DOI: 10.1111/bcp.14300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Aims Pupillography is a noninvasive and cost‐effective method to determine autonomic nerve activity. Genetic variants in cytochrome P450 (CYP), dopamine receptor (DRD2, DRD3), serotonin receptor (HTR2A, HTR2C) and ATP‐binding cassette subfamily B (ABCB1) genes, among others, were previously associated with the pharmacokinetics and pharmacodynamics of antipsychotic drugs. Our aim was to evaluate the effects of aripiprazole and olanzapine on pupillary light reflex related to pharmacogenetics. Methods Twenty‐four healthy volunteers receiving 5 oral doses of 10 mg aripiprazole and 5 mg olanzapine tablets were genotyped for 46 polymorphisms by quantitative polymerase chain reaction. Pupil examination was performed by automated pupillometry. Aripiprazole, dehydro‐aripiprazole and olanzapine plasma concentrations were measured by high‐performance liquid chromatography–tandem mass spectrometry. Results Aripiprazole affected pupil contraction: it caused dilatation after the administration of the first dose, then caused constriction after each dosing. It induced changes in all pupillometric parameters (P < .05). Olanzapine only altered minimum pupil size (P = .046). Polymorphisms in CYP3A, HTR2A, UGT1A1, DRD2 and ABCB1 affected pupil size, the time of onset of constriction, pupil recovery and constriction velocity. Aripiprazole, dehydro‐aripiprazole and olanzapine pharmacokinetics were significantly affected by polymorphisms in CYP2D6, CYP3A, CYP1A2, ABCB1 and UGT1A1 genes. Conclusions In conclusion, aripiprazole and its main metabolite, dehydro‐aripiprazole altered pupil contraction, but olanzapine did not have such an effect. Many polymorphisms may influence pupillometric parameters and several polymorphisms had an effect on aripiprazole, dehydro‐aripiprazole and olanzapine pharmacokinetics. Pupillography could be a useful tool for the determination of autonomic nerve activity during antipsychotic treatment.
Collapse
Affiliation(s)
- Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Susana Almenara
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Daniel Romero-Palacián
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Alejandro de Miguel-Cáceres
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Samuel Martín
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Pharmacology Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa, UICEC Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
25
|
Chen Z, Gao Y, Zhong D. Technologies to improve the sensitivity of existing chromatographic methods used for bioanalytical studies. Biomed Chromatogr 2020; 34:e4798. [PMID: 31994210 DOI: 10.1002/bmc.4798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Chromatographic method has long been recognized as the most widely used separation method in bioanalytical research. However, the relatively low sensitivity of existing chromatographic methods remains a significant challenge, as the requirements for experimental procedures become more demanding. This review discusses the main causes for the low sensitivity of chromatographic methods and aims to introduce different technologies for enhancing their sensitivity in the following aspects: (i) different pretreatment methods for improving clean-up efficiency and recovery; (ii) derivatization step for altering the chromatographic behavior of analytes and enhancing MS ionization efficiency; (iii) optimal LC-MS conditions and appropriate separation mechanism; and (iv) applications of other chromatographic methods, including miniaturized LC, 2D-LC, 2D-GC, and supercritical fluid chromatography. Altogether, this review is devoted to summarizing the recent technologies reported in the literature and providing new strategies for the detection of bioanalytes.
Collapse
Affiliation(s)
- Zhendong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiong Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dafang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Beccaria M, Cabooter D. Current developments in LC-MS for pharmaceutical analysis. Analyst 2020; 145:1129-1157. [DOI: 10.1039/c9an02145k] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liquid chromatography (LC) based techniques in combination with mass spectrometry (MS) detection have had a large impact on the development of new pharmaceuticals in the past decades.
Collapse
Affiliation(s)
- Marco Beccaria
- KU Leuven
- Department for Pharmaceutical and Pharmacological Sciences
- Pharmaceutical Analysis
- Leuven
- Belgium
| | - Deirdre Cabooter
- KU Leuven
- Department for Pharmaceutical and Pharmacological Sciences
- Pharmaceutical Analysis
- Leuven
- Belgium
| |
Collapse
|
27
|
Simultaneous Quantification of Antipsychotic and Antiepileptic Drugs and Their Metabolites in Human Saliva Using UHPLC-DAD. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24162953. [PMID: 31416290 PMCID: PMC6720458 DOI: 10.3390/molecules24162953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/22/2023]
Abstract
Neuroleptics and antiepileptics are excreted in saliva, which can, therefore, be very useful in determining their concentration in the body. This study presents a method developed to simultaneously identify five neuroleptics-olanzapine, quetiapine, risperidone, aripiprazole, and clozapine-and the antiepileptic carbamazepine together with their metabolites: N-demethyl olanzapine, norquetiapine, 9-OH-risperidone, dehydroaripiprazole, N-desmethylclozapine, and carbamazepine-10,11 epoxide. Chlordiazepoxide was used as the internal standard. Strata-X-C columns were used for isolation of the compounds. Chromatographic analysis was carried out using UHPLC with a diode array detector (DAD). A mixture of acetonitrile and water with the addition of formic acid and 0.1% triethylamine was used as the mobile phase. The developed method was validated by determining the linearity for all analytes in the range 10-1000 ng/mL and the value of R2 > 0.99. Intra- and inter-day precision were also determined, and the relative standard deviation (RSD) value in both cases did not exceed 15%. To determine the usefulness of the developed method, saliva samples were collected from 40 people of both sexes treated with the tested active substances both in monotherapy and in polypragmasy. In all cases, the active substances tested were identified.
Collapse
|
28
|
Caramelo D, Rosado T, Oliveira V, Rodilla JM, Rocha PMM, Barroso M, Gallardo E. Determination of antipsychotic drugs in oral fluid using dried saliva spots by gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 2019; 411:6141-6153. [PMID: 31292703 DOI: 10.1007/s00216-019-02005-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/01/2022]
Abstract
The present work describes the optimization and validation of an analytical method for the determination of six antipsychotic drugs (chlorpromazine, levomepromazine, cyamemazine, clozapine, haloperidol, and quetiapine) in oral fluid samples after solvent extraction from dried saliva spots, by gas chromatography coupled to tandem mass spectrometry. The method was fully validated, and the included parameters were selectivity, linearity, limits of quantification, precision and accuracy, stability, and recovery. The method was linear for all compounds from 10 to 400 ng/mL, except for haloperidol (5-100 ng/mL), presenting coefficients of determination higher than 0.99. Inter- and intra-day precision and accuracy were in conformity with the criteria usually seen in bioanalytical method validation; i.e., coefficients of variation were lower than 15% and an accuracy of 15% or better for all studied drugs. The recoveries obtained with this miniaturized technique ranged from 63 to 97%. The herein described method is the first to be reported using the dried saliva spots approach for the analysis of these antypshychotic drugs, proving great sensitivity apart from its simple and fast procedure. The method was considered a good alternative to the conventional techniques to be applied in clinical and toxicological analyses, even more taking into account the extremely low sample volume used (50 μL). Graphical abstract.
Collapse
Affiliation(s)
- Débora Caramelo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.,Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284, Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.,Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284, Covilhã, Portugal
| | - Victor Oliveira
- Centro Hospitalar Cova da Beira, E.P.E, Departamento de Psiquiatria e Saúde Mental, Quinta do Alvito, 6200-251, Covilhã, Portugal
| | - Jesus M Rodilla
- Materiais Fibrosos e Tecnologias Ambientais - FibEnTech, Departamento de Química, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001, Covilhã, Portugal.,Departamento de Química, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Pedro M M Rocha
- Departamento de Química, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses - Delegação do Sul, Manuel Bento de Sousa 3, 1150-334, Lisbon, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal. .,Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284, Covilhã, Portugal.
| |
Collapse
|