1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Tang X, Lu M, Wang J, Man S, Peng W, Ma L. Recent Advances of DNA-Templated Metal Nanoclusters for Food Safety Detection: From Synthesis, Applications, Challenges, and Beyond. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5542-5554. [PMID: 38377578 DOI: 10.1021/acs.jafc.3c09621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Food safety concerns have become a significant threat to human health and well-being, catching global attention in recent years. As a result, it is imperative to research conceptually novel biosensing and effective techniques for food matrices detection. Currently, DNA-templated metal nanoclusters (DNA-MNCs) are considered as one of the most promising nanomaterials due to their excellent properties in biosensing. While DNA-MNCs have garnered increasing interest, the reviews of design strategies, applications, and futuristic prospects for biosensing have been hardly found especially in food safety. The synthesis of DNA-MNCs and their use as biosensing materials in food contamination detection, including pathogenic bacteria, toxins, heavy metals, residues of pesticides, and others were comprehensively reviewed. In addition, we summarize the properties of DNA-MNCs briefly and discuss the challenges and future trends. The application of DNA-MNCs powered biosensing has been demonstrated and actively studied, which is a promising paradigm for food safety testing that can supplement or even replace current existing methods. Despite the challenges of difficulty regulating accurately, poor stability, low quantum yield, and difficult commercial transformation, the application prospects of DNA-MNCs biosensors are promising. This review aims to provide insights and directions for the future development of DNA-MNCs based food detection technology.
Collapse
Affiliation(s)
- Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiajing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Li B, Qi J, Liu F, Zhao R, Arabi M, Ostovan A, Song J, Wang X, Zhang Z, Chen L. Molecular imprinting-based indirect fluorescence detection strategy implemented on paper chip for non-fluorescent microcystin. Nat Commun 2023; 14:6553. [PMID: 37848423 PMCID: PMC10582162 DOI: 10.1038/s41467-023-42244-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Fluorescence analysis is a fast and sensitive method, and has great potential application in trace detection of environmental toxins. However, many important environmental toxins are non-fluorescent substances, and it is still a challenge to construct a fluorescence detection method for non-fluorescent substances. Here, by means of charge transfer effect and smart molecular imprinting technology, we report a sensitive indirect fluorescent sensing mechanism (IFSM) and microcystin (MC-RR) is selected as a model target. A molecular imprinted thin film is immobilized on the surface of zinc ferrite nanoparticles (ZnFe2O4 NPs) by using arginine, a dummy fragment of MC-RR. By implementation of IFSM on the paper-based microfluidic chip, a versatile platform for the quantitative assay of MC-RR is developed at trace level (the limit of detection of 0.43 μg/L and time of 20 min) in real water samples without any pretreatment. Importantly, the proposed IFSM can be easily modified and extended for the wide variety of species which lack direct interaction with the fluorescent substrate. This work offers the potential possibility to meet the requirements for the on-site analysis and may explore potential applications of molecularly imprinted fluorescent sensors.
Collapse
Affiliation(s)
- Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
| | - Feng Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Jinming Song
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, 264003, Yantai, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, 266237, Qingdao, China.
| |
Collapse
|
4
|
Kadam US, Cho Y, Park TY, Hong JC. Aptamer-based CRISPR-Cas powered diagnostics of diverse biomarkers and small molecule targets. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:13. [PMID: 36843874 PMCID: PMC9937869 DOI: 10.1186/s13765-023-00771-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
CRISPR-Cas systems have been widely used in genome editing and transcriptional regulation. Recently, CRISPR-Cas effectors are adopted for biosensor construction due to its adjustable properties, such as simplicity of design, easy operation, collateral cleavage activity, and high biocompatibility. Aptamers' excellent sensitivity, specificity, in vitro synthesis, base-pairing, labeling, modification, and programmability has made them an attractive molecular recognition element for inclusion in CRISPR-Cas systems. Here, we review current advances in aptamer-based CRISPR-Cas sensors. We briefly discuss aptamers and the knowledge of Cas effector proteins, crRNA, reporter probes, analytes, and applications of target-specific aptamers. Next, we provide fabrication strategies, molecular binding, and detection using fluorescence, electrochemical, colorimetric, nanomaterials, Rayleigh, and Raman scattering. The application of CRISPR-Cas systems in aptamer-based sensing of a wide range of biomarkers (disease and pathogens) and toxic contaminants is growing. This review provides an update and offers novel insights into developing CRISPR-Cas-based sensors using ssDNA aptamers with high efficiency and specificity for point-of-care setting diagnostics.
Collapse
Affiliation(s)
- Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
| | - Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
| | - Tae Yoon Park
- Graduate School of Education, Yonsei University, Seoul, 03722 Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do 52828 Republic of Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
5
|
Li B, Wang Q, Sohail M, Zhang X, He H, Lin L. Facilitating the determination of microcystin toxins with bio-inspired sensors. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Liu S, Xiao J, Min X, Tan Y, Ma F, Liu L. Ultrastructure distribution of microcystin-LR and its migration mechanism by nanoanalytical investigation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Wang Y, Tan Y, Ding Y, Fu L, Qing W. Phenylalanine stabilized copper nanoclusters for specific destruction of Congo red and bacteria in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Wei X, Wang S, Zhan Y, Kai T, Ding P. Sensitive Identification of Microcystin-LR via a Reagent-Free and Reusable Electrochemical Biosensor Using a Methylene Blue-Labeled Aptamer. BIOSENSORS 2022; 12:bios12080556. [PMID: 35892453 PMCID: PMC9332554 DOI: 10.3390/bios12080556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 05/02/2023]
Abstract
We report a methylene blue (MB)-modified electrochemical aptamer (E-AB) sensor for determining microcystin-LR (MC-LR). The signal transduction of the sensor was based on changes in conformation and position of MB induced by the binding between MC-LR and the modified aptamer probe. In the absence of MC-LR, an aptamer probe was considered partially folded. After combining aptamer and MC-LR, the configuration of the aptamer probe changed and facilitated the electron transfer between MB and the electrode surface. As a result, an increased current response was observed. We optimized the parameters and evaluated the electrochemical performance of the sensor using square wave voltammetry (SWV). MC-LR was measured from 1.0 to 750.0 ng/L with a detection limit of 0.53 ng/L. The reliability of the method was verified by the determination of MC-LR in environmental real samples, such as pond water and tap water. Moreover, we demonstrated that this reagent-less biosensor could be regenerated and reused after rinsing with deionized water with good accuracy and reproducibility. As a reusable and regenerable E-AB sensor, this rapid, reagent-free, and sensitive sensing platform will facilitate routine monitoring of MC-LR in actual samples.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Shanlin Wang
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Tianhan Kai
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
- Correspondence: (T.K.); (P.D.)
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha 410078, China; (X.W.); (S.W.); (Y.Z.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
- Correspondence: (T.K.); (P.D.)
| |
Collapse
|
9
|
Lei Z, Lei P, Guo J, Wang Z. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins. Talanta 2022; 248:123607. [PMID: 35661001 DOI: 10.1016/j.talanta.2022.123607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
The existence of cyanotoxins poses serious threats to human health, it is highly desirable to develop specific and sensitive methods for rapid detection of cyanotoxins in food and water. Due to the distinct advantages of aptamer including high specificity, good stability and easy preparation, various aptamer-based sensors (aptasensors) have been proposed to promote the detection of cyanotoxins. In this review, we summarize recent advance in optical and electrochemical aptasensors for cyanotoxins sensing by integrating with versatile nanomaterials or innovative sensing strategies, such as colorimetric aptasensors, fluorescent aptasensors, surface enhancement Raman spectroscopy-based aptasensors, voltammetric aptasensors, electrochemical impedance spectroscopy-based aptasensors and photoelectrochemical aptasensors. We highlight the accomplishments and advancements of aptasensors with improved performance. Furthermore, the current challenges and future prospects in cyanotoxins detection are discussed from our perspectives, which we hope to provide more ideas for future researchers.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Peng Lei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, PR China
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
10
|
Liu L, Bai Q, Zhang X, Lu C, Li Z, Liang H, Chen L. Fluorescent Biosensor Based on Hairpin DNA Stabilized Copper Nanoclusters for Chlamydia trachomatis Detection. J Fluoresc 2022; 32:1651-1660. [PMID: 35612764 DOI: 10.1007/s10895-022-02961-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is a kind of intracellular parasitic microorganism, which can causes many diseases such as trachoma. In this strategy, a specific hairpin DNA with the probe loop as specific regions to recognize C. trachomatis DNA with strong affinity was designed, and its stem consisted of 24 AT base pairs as an effective template for hairpin DNA-CuNCs formation. In the absence of C. trachomatis DNA, the detection system showed strong orange fluorescence emission peaks at 606 nm. In the presence of C. trachomatis DNA, the conformation of DNA probe changed after hybridizing with C. trachomatis DNA. Then, the amount of hairpin DNA-CuNCs was reduced and resulted in low fluorescence emission. C. trachomatis DNA displayed a significant inhibitory effect on the synthesis of fluorescent hairpin DNA-CuNCs due to the competition between C. trachomatis DNA and the specific hairpin DNA. Under the optimal experimental conditions, different concentrations of C. trachomatis were tested and the results showed a good linear relationship in the range of 50 nM to 950 nM. Moreover, the detection limit was 18.5 nM and this detection method possessed good selectivity. Finally, the fluorescent biosensor had been successfully applied to the detection of C. trachomatis target sequence in HeLa cell lysate, providing a new strategy for the detection of C. trachomatis.
Collapse
Affiliation(s)
- Luyao Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Xuebing Zhang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Liu Y, Li B, Zhang H, Liu Y, Xie P. Participation of fluorescence technology in the cross-disciplinary detection of microcystins. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Li F, Fan P, Chen X, Lin X, Liu C, Hu C, Yang S, Xiao F. A ratiometric fluorescent strategy based on copper nanoclusters/carbon dots for sensitive detection of doxorubicin. LUMINESCENCE 2022; 37:868-875. [PMID: 35304812 DOI: 10.1002/bio.4230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Sensitive detection of doxorubicin (DOX) is critical for clinical theranostics. A novel ratiometric fluorescence strategy based on inner filter effect (IFE) has been established for sensitive detection of DOX by designing a ratiometric fluorescence probe. In the presence of DOX, the fluorescence intensity of copper nanoclusters (CuNCs) at 485 nm decreases, and the fluorescence intensity of carbon dots (CDs) at 560 nm increases. Therefore, DOX can be quantitatively detected by measuring the ratio of the fluorescence intensities at 560 and 485 nm (F560 /F485 ). The F560 /F485 ratio exhibits a linear correlation to the DOX concentration in the range from 1.0×10-8 M to 1.0×10-4 M with the detection limit of 3.7 nM. Furthermore, this method is also successfully applied to analysis of DOX in human plasma samples, affording an effective platform for drug safety management.
Collapse
Affiliation(s)
- Feifei Li
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Fan
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xinbei Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xi Lin
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Jiading Center for Disease Control and Prevention, Shanghai, China
| | - Can Liu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Congcong Hu
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fubing Xiao
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Park H, Kim G, Seo Y, Yoon Y, Min J, Park C, Lee T. Improving Biosensors by the Use of Different Nanomaterials: Case Study with Microcystins as Target Analytes. BIOSENSORS 2021; 11:525. [PMID: 34940282 PMCID: PMC8699174 DOI: 10.3390/bios11120525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
The eutrophication of lakes and rivers without adequate rainfall leads to excessive growth of cyanobacterial harmful algal blooms (CyanoHABs) that produce toxicants, green tides, and unpleasant odors. The rapid growth of CyanoHABs owing to global warming, climate change, and the development of rainforests and dams without considering the environmental concern towards lakes and rivers is a serious issue. Humans and livestock consuming the toxicant-contaminated water that originated from CyanoHABs suffer severe health problems. Among the various toxicants produced by CyanoHABs, microcystins (MCs) are the most harmful. Excess accumulation of MC within living organisms can result in liver failure and hepatocirrhosis, eventually leading to death. Therefore, it is essential to precisely detect MCs in water samples. To date, the liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) have been the standard methods for the detection of MC and provide precise results with high reliability. However, these methods require heavy instruments and complicated operation steps that could hamper the portability and field-readiness of the detection system. Therefore, in order for this goal to be achieved, the biosensor has been attracted to a powerful alternative for MC detection. Thus far, several types of MC biosensor have been proposed to detect MC in freshwater sample. The introduction of material is a useful option in order to improve the biosensor performance and construct new types of biosensors. Introducing nanomaterials to the biosensor interface provides new phenomena or enhances the sensitivity. In recent times, different types of nanomaterials, such as metallic, carbon-based, and transition metal dichalcogenide-based nanomaterials, have been developed and used to fabricate biosensors for MC detection. This study reviews the recent advancements in different nanomaterial-based MC biosensors.
Collapse
Affiliation(s)
- Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Yejin Yoon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (H.P.); (G.K.); (Y.S.); (Y.Y.)
| |
Collapse
|
14
|
Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Jin P, Yang K, Bai R, Chen M, Yang S, Fu K, He J. Development and comparison of UPLC-ESI-MS and RP-HPLC-VWD methods for determining microcystin-LR. RSC Adv 2021; 11:23002-23009. [PMID: 35480460 PMCID: PMC9034279 DOI: 10.1039/d1ra03521e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
Microcystin-LR (MC-LR) generated by cyanobacteria is a kind of potent hepatotoxin, which poses a considerable threat to human health. In the research field of MC-LR removal, the quantitative analysis in a wide concentration range of samples is inevitable. In this paper, we presented the pseudo united use of an Ultra Performance Liquid Chromatography Mass Spectrometry (UPLC-MS) and High Performance Liquid Chromatography system with a Variable Wavelength Ultraviolet Detector (HPLC-VWD) approach to detect MC-LR. The UPLC-MS system was applied to determine MC-LR in trace concentration because of its high sensitivity. However, it is generally believed that the determination of high concentration samples by UPLC-MS will cause problems such as inaccurate quantification and contamination of ion sources. In consequence, the HPLC-VWD was employed to determine the high concentration of MC-LR. The sensitivity, precision and accuracy of the two methods were compared in detail. The linear ranges of UPLC-MS and HPLC-VWD methods were from 0.08 to 10 μg L−1 and 1 to 5000 μg L−1, respectively. The detection and quantification limits of UPLC-MS were 0.03–0.05 μg L−1 and 0.08 μg L−1, and the corresponding two values of HPLC-VWD were 0.6 and 1.0 μg L−1. The recoveries of UPLC-MS and HPLC-VWD were 88.5–106.7% and 98.7–101.6%, with the relative standard deviations of 3.72–5.45% and 0.38–1.69%, respectively. The potential adsorption properties of MC-LR on filter membranes with diverse materials and pore sizes were evaluated and the negative results were obtained. The detection of MC-LR by UPLC-MS was free from matrix effects. The presented UPLC-MS and HPLC-VWD methods were used to analyze the water samples from Erhai Lake, which is located in Dali, Yunnan, China. The results of UPLC-MS analysis indicated that the MC-LR was only identified in water samples of Shuanglang Bay and Xier River, with concentrations of 0.120 and 0.303 μg L−1, whereas MC-LR was not detected by HPLC-VWD. UPLC-MS and HPLC-VWD methods were used together for MC-LR determination in a wide concentration range. UPLC-MS can be applied in trace MC-LR determination, whereas HPLC-VWD is more suitable for high concentration range detection.![]()
Collapse
Affiliation(s)
- Peng Jin
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Kai Yang
- Public Security Bureau Dali Bai Autonomous Prefecture Dali 671000 Yunnan P. R. China
| | - Ruining Bai
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Mei Chen
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Shilin Yang
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Kebo Fu
- Public Security Bureau Dali Bai Autonomous Prefecture Dali 671000 Yunnan P. R. China
| | - Jieli He
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| |
Collapse
|
16
|
Silver nanocluster-lightened catalytic hairpin assembly for enzyme-free and label-free mRNA detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
18
|
Fluorescent Copper Nanoclusters for Highly Sensitive Monitoring of Hypoxanthine in Fish. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00166-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Suo T, Sohail M, Xie S, Li B, Chen Y, Zhang L, Zhang X. DNA nanotechnology: A recent advancement in the monitoring of microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123418. [PMID: 33265072 DOI: 10.1016/j.jhazmat.2020.123418] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 06/12/2023]
Abstract
The Microcystin-Leucine-Arginine (MC-LR) is the most toxic and widely distributed microcystin, which originates from cyanobacteria produced by water eutrophication. The MC-LR has deleterious effects on the aquatic lives and agriculture, and this highly toxic chemical could severely endanger human health when the polluted food was intaken. Therefore, the monitoring of MC-LR is of vital importance in the fields including environment, food, and public health. Utilizing the complementary base pairing between DNA molecules, DNA nanotechnology can realize the programmable and predictable regulation of DNA molecules. In analytical applications, DNA nanotechnology can be used to detect targets via target-induced conformation change and the nano-assemblies of nucleic acids. Compared with the conventional analytical technologies, DNA nanotechnology has the advantages of sensitive, versatile, and high potential in real-time and on-site applications. According to the molecular basis for recognizing MC-LR, the strategies of applying DNA nanotechnology in the MC-LR monitoring are divided into two categories in this review: DNA as a recognition element and DNA-assisted signal processing. This paper introduces state-of-the-art analytical methods for the detection of MC-LR based on DNA nanotechnology and provides critical perspectives on the challenges and development in this field.
Collapse
Affiliation(s)
- Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing 211166, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
20
|
Chen J, Wang Y, Wei X, Liu Z, Xu F, Li H, He X. A novel"turn-off"fluorescence assay based on acid-copper nanoclusters in deep eutectic solvent micelles for co-aggregation inducing fluorescence enhancement and its application. Talanta 2021; 223:121731. [PMID: 33303173 DOI: 10.1016/j.talanta.2020.121731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
As mixtures, deep eutectic solvent (DES) is designability. By adjusting the long alkyl chain hydrogen bond acceptors (HBAs) or hydrogen bond donors (HBDs), the DES displays surfactant characteristics and can form micelles. Hence, a novel, simple, facile and green natural organic acids capped copper nanoclusters (Aci-CuNCs) was synthesized and the spectrum behavior of Aci-CuNCs in DES micelles was researched. It was found that the surfactant-like DES can form micellar co-aggregation with Aci-CuNCs, resulting in the fluorescence (FL) intensive of Aci-CuNCs increase. Corresponding performance of spectral properties of Aci-CuNCs in DES medium were systematically studied by fourier transform infrared spectrometer, 3D FL spectroscopy, FL emission/excitation spectra, ultraviolet absorption spectroscopy. In the mechanism exploration part, on the one hand, the existence of micellar co-aggregation was confirmed by the conductivity, the mass effect of DES, dynamic light scattering and transmission electron microscopy. On the other hand, the influence of different kinds of DESs (types of HBAs/HBDs, molar ratio) and some possible factors (ionic strength and temperature) were discussed in detail to investigate the main driving forces for the formation of micellar co-aggregates. The results of mechanism exploration prove that the long alkyl chain of DES is amphiphilic which can form micellar co-aggregation with Aci-CuNCs through hydrogen bonding. The DES micelle provides Aci-CuNCs with a relatively stable and closed micro-environment which can effectively prevent collisions with water molecules and weakening of fluorescence intensity. On the basic of the above research, a "turn-off" fluorimetric method based on Aci-CuNCs in DES medium was applied for the determination of Fe3+. Under the optimum conditions, the assay worked in the Fe3+ concentration ranges from 1 to -20 μM and had a detection limit of 0.0374 μM. Method validation study illustrates the proposed system can provide a good accuracy, repeatability and stability conditions. Furthermore, the real sample analysis result demonstrates that no obvious matrix effect is found. As a consequence, the FL assays (Aci-CuNCs-based DES) composed of natural organic acid capped CuNCs and green solvent DES provides a simple, gentle and environmentally friendly method for the detection of iron ions.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; College of Material and Chemical Engineering, Tongren University, Tongren, 554300, PR China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Xiaoxiao Wei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Heqiong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiyan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
21
|
Guo Y, Li J, Song X, Xu K, Wang J, Zhao C. Label-Free Detection of Staphylococcus aureus Based on Bacteria-Imprinted Polymer and Turn-on Fluorescence Probes. ACS APPLIED BIO MATERIALS 2021; 4:420-427. [PMID: 35014293 DOI: 10.1021/acsabm.0c00897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effective identification and quantitative determination of Staphylococcus aureus is a major public health concern. Here, an innovative strategy that combines a bacteria-imprinted polydimethylsiloxane film for bacterial recognition and fluorescence resonance energy transfer platform for turn-on fluorescence sensing is demonstrated. The bacteria-imprinted polydimethylsiloxane film was facilely fabricated to generate corresponding specific sites on the polydimethylsiloxane surface via stamp imprinting using Staphylococcus aureus as template followed by modification with 1H,1H,2H,2H-perfluorooctyltriethoxysilane. The fluorescence resonance energy transfer platform was developed through electrostatic interaction between citrate-functional copper clusters and dopamine-stabilized gold nanoparticles. When the Staphylococcus aureus are present, the 1H,1H,2H,2H-perfluorooctyltriethoxysilane-modified bacteria-imprinted polydimethylsiloxane film can precisely capture the target; subsequently, the negatively charged bacteria compete with citrate-functional copper clusters and bind to dopamine-stabilized gold nanoparticles, leading to the fluorescence recovery of citrate-functional copper clusters. The entire detection process was achieved within 135 min, showing a wide linear calibration response from 10 to 1 × 107 cfu mL-1 with a low detection limit of 11.12 cfu mL-1. Furthermore, the recoveries from spiked samples were from 97.7 to 101.90% with relative standard derivations lower than 10%. The established label-free assay of measuring Staphylococcus aureus is rapid, sensitive, specific, and efficient.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Public Health, Jilin University, Changchun 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130021, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Magnet-actuated droplet microfluidic immunosensor coupled with gel imager for detection of microcystin-LR in aquatic products. Talanta 2020; 219:121329. [DOI: 10.1016/j.talanta.2020.121329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
|
23
|
Almeida de Oliveira R, Zanato N, Cruz Vieira I. Label‐free Immunosensor for the Determination of Microcystin‐LR in Water. ELECTROANAL 2020. [DOI: 10.1002/elan.202060041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rávila Almeida de Oliveira
- Laboratory of Biosensors, Department of Chemistry Federal University of Santa Catarina 88040-900 Florianópolis, SC Brazil
| | - Nicole Zanato
- Laboratory of Biosensors, Department of Chemistry Federal University of Santa Catarina 88040-900 Florianópolis, SC Brazil
| | - Iolanda Cruz Vieira
- Laboratory of Biosensors, Department of Chemistry Federal University of Santa Catarina 88040-900 Florianópolis, SC Brazil
| |
Collapse
|
24
|
McConnell EM, Nguyen J, Li Y. Aptamer-Based Biosensors for Environmental Monitoring. Front Chem 2020; 8:434. [PMID: 32548090 PMCID: PMC7272472 DOI: 10.3389/fchem.2020.00434] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Due to their relative synthetic and chemical simplicity compared to antibodies, aptamers afford enhanced stability and functionality for the detection of environmental contaminants and for use in environmental monitoring. Furthermore, nucleic acid aptamers can be selected for toxic targets which may prove difficult for antibody development. Of particular relevance, aptamers have been selected and used to develop biosensors for environmental contaminants such as heavy metals, small-molecule agricultural toxins, and water-borne bacterial pathogens. This review will focus on recent aptamer-based developments for the detection of diverse environmental contaminants. Within this domain, aptamers have been combined with other technologies to develop biosensors with various signal outputs. The goal of much of this work is to develop cost-effective, user-friendly detection methods that can complement or replace traditional environmental monitoring strategies. This review will highlight recent examples in this area. Additionally, with innovative developments such as wearable devices, sentinel materials, and lab-on-a-chip designs, there exists significant potential for the development of multifunctional aptamer-based biosensors for environmental monitoring. Examples of these technologies will also be highlighted. Finally, a critical perspective on the field, and thoughts on future research directions will be offered.
Collapse
Affiliation(s)
| | | | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
26
|
An Y, Ren Y, Bick M, Dudek A, Hong-Wang Waworuntu E, Tang J, Chen J, Chang B. Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens Bioelectron 2020; 154:112078. [DOI: 10.1016/j.bios.2020.112078] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
27
|
Li Z, Gong C, Huo P, Deng C, Pu S. Synthesis of magnetic core–shell Fe 3O 4@PDA@Cu-MOFs composites for enrichment of microcystin-LR by MALDI-TOF MS analysis. RSC Adv 2020; 10:29061-29067. [PMID: 35521136 PMCID: PMC9055938 DOI: 10.1039/d0ra04125d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The synthetic route of the Fe3O4@PDA@Cu-MOFs microspheres and enrichment process of MC-LR.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | | | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| |
Collapse
|
28
|
Abnous K, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Lavaee P, Taghdisi SM. An ultrasensitive electrochemical sensing method for detection of microcystin-LR based on infinity-shaped DNA structure using double aptamer and terminal deoxynucleotidyl transferase. Biosens Bioelectron 2019; 144:111674. [PMID: 31518788 DOI: 10.1016/j.bios.2019.111674] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
This study develops a novel electrochemical sensing platform for microcystin-LR (MC-LR) detection. This aptasensor comprises the hybridization of double aptamer to its complementary strand (CS) on the surface of electrode and generation of an Infinity-shaped DNA structure in the absence of target by terminal deoxynucleotidyl transferase (TdT). The formation of Infinity-shaped construction leads to the development of an ultrasensitive aptasensor for MC-LR detection. In the presence of MC-LR, double aptamer is dissociated from its CS because of its high affinity for MC-LR and leaves the surface of electrode. Subsequently, no Infinity-shaped structure is formed following the introduction of TdT and a strong current signal is observed. The proposed method was employed for specific detection of MC-LR in the range from 60 pM to 1000 nM with a detection limit of 15 pM. The credibility of the approach was confirmed by detection of MC-LR in real samples like serum and tap water samples. This study provides a new aptasensor for detection of MC-LR as well as other toxin analysis.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Morteza Alinezhad Nameghi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parirokh Lavaee
- Academic Center for Education, Culture and Research, Research Institute for Industrial Biotechnology, Industrial Biotechnology on Microorganisms, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|