1
|
Vinukumar A, Shabanur Matada MS, Kuppuswamy GP, Jayan S, Vivek K, Velappa Jayaraman S, Sivalingam Y, Tocci N, Ramu Ganesan A, Conterno L. Brewer's Spent Grain-Cellulose-Coated Copper Electrode-Based Extended Gate Field-Effect Transistor for Nonenzymatic Glucose Detection toward Diagnosis of Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53405-53418. [PMID: 39319508 DOI: 10.1021/acsami.4c09180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The demand for environmentally friendly, reliable, and cost-effective electrodes for glucose sensor technology has become a major research area in the paradigm shift toward green electronics. In this regard, cellulose has emerged as a promising flexible biopolymer solution with unique properties such as biocompatibility, biodegradability, nontoxicity, renewability, and sustainability. Because of their large surface area and porous structure, fibrous cellulose substrates quickly adsorb and disperse analytes at detection sites. This work focuses on utilizing glyoxal-treated cellulose (derived from brewer's spent grain (BSG)) for the fabrication of extended gate field-effect transistor (EGFET)-based glucose sensors. This investigation extends to the utilization of BSG-cellulose for glucose detection in biomimicking electrolytes (phosphate buffer saline) to facilitate glucose detection in human blood samples. The fabricated electrode demonstrates a linear range of glucose detection from 1 to 13.5 mM with a Langmuir adsorption coefficient (K) of 0.102. Also, its selectivity toward glucose over interfering molecules such as sucrose, fructose, ascorbic acid, and uric acid under physiological conditions has been demonstrated. This cellulose-based EGFET electrode exhibits a sensitivity of 6.5 μA mM-1 cm-2 with a limit of detection (LOD) of 0.135 mM. Computational studies by density functional theory calculations confirmed the higher binding affinity of glucose molecules with glyoxal-modified cellulose (-0.95 eV) than with pristine cellulose (-0.46 eV). Here, the novelty lies in the fabrication of electrodes with biodegradable catalysts and their integration into the EGFET configuration.
Collapse
Affiliation(s)
- Akshaya Vinukumar
- Laboratory of Sensors, Energy, and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Mallikarjuna Swamy Shabanur Matada
- Laboratory of Sensors, Energy, and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Guru Prasad Kuppuswamy
- Laboratory of Sensors, Energy, and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sreeram Jayan
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kripa Vivek
- Laboratory of Sensors, Energy, and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Surya Velappa Jayaraman
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy, and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Noemi Tocci
- Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy
| | - Abirami Ramu Ganesan
- Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Kudalsveien 6, NO-8027 Bodø, Norway
| | - Lorenza Conterno
- Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy
| |
Collapse
|
2
|
Jia S, Yang B, Du J, Xie Y, Yu L, Zhang Y, Tao T, Tang W, Gong J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401664. [PMID: 38651220 DOI: 10.1002/smll.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
3
|
Hassan NF, Khattab TA, Fouda MMG, Abu Zaid AS, Aboshanab KM. Electrospun cellulose nanofibers immobilized with anthocyanin extract for colorimetric determination of bacteria. Int J Biol Macromol 2024; 257:128817. [PMID: 38103663 DOI: 10.1016/j.ijbiomac.2023.128817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
A novel smart biochromic textile sensor was developed by immobilizing anthocyanin extract into electrospun cellulose acetate nanofibers to detect bacteria for numerous potential uses, such as healthcare monitoring. Red-cabbage was employed to extract anthocyanin, which was then applied to cellulose acetate nanofibers treated with potassium aluminum sulfate as a mordant. Thus, nanoparticles (NPs) of mordant/anthocyanin (65-115 nm) were generated in situ on the surface of cellulose acetate nanofibrous film. The pH of a growing bacterial culture medium is known to change when bacteria multiply. The absorbance spectra revealed a bluish shift from 595 nm (purple) to 448 nm (green) during the growth of Gram-negative bacteria (E. coli) owing to the discharge of total volatile basic amines as secretion metabolites. On the other hand, the absorption spectra of a growing bacterial culture containing Gram-positive bacteria (L. acidophilus) showed a blue shift from 595 nm (purplish) to 478 nm (pink) as a result of releasing lactic acid as a secretion metabolite. Both absorbance spectra and CIE Lab parameters were used to determine the color shifts. Various analytical techniques were utilized to study the morphology of the anthocyanin-encapsulated electrospun cellulose nanofibers. The cytotoxic effects of the colored cellulose acetate nanofibers were tested.
Collapse
Affiliation(s)
- Nada F Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo 12622, Egypt.
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic-based Fiber Department, Textile Research and Technology Institute (TRT), National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Ahmed S Abu Zaid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
4
|
Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydr Polym 2023; 304:120509. [PMID: 36641173 DOI: 10.1016/j.carbpol.2022.120509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
In recent years, the considerable importance of healthcare and the indispensable appeal of curative issues, particularly the diagnosis of diseases, have propelled the invention of sensing platforms. With the development of nanotechnology, the integration of nanomaterials in such platforms has been much focused on, boosting their functionality in many fields. In this direction, there has been rapid growth in the utilisation of nanocellulose in sensors with medical applications. Indeed, this natural nanomaterial benefits from striking features, such as biocompatibility, cytocompatibility and low toxicity, as well as unprecedented physical and chemical properties. In this review, different classifications of nanocellulose-based sensors (biosensors, chemical and physical sensors), alongside some subcategories manufactured for health monitoring, stand out. Moreover, the types of nanocellulose and their roles in such sensors are discussed.
Collapse
|
5
|
Alaysuy O, Snari RM, Alfi AA, Aldawsari AM, Abu-Melha S, Khalifa ME, El-Metwaly NM. Development of green and sustainable smart biochromic and therapeutic bandage using red cabbage (Brassica oleracea L. Var. capitata) extract encapsulated into alginate nanoparticles. Int J Biol Macromol 2022; 211:390-399. [PMID: 35580745 DOI: 10.1016/j.ijbiomac.2022.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 05/08/2022] [Indexed: 12/28/2022]
Abstract
Novel multifunctional wound dressing with the ability to protect, cure and sense the healing process, was developed. Red-cabbage extract has been reported to exhibit bioactive compounds with the ability to function as antioxidant, antiinflammatory, anticancer, antibacterial, antifungal, and antiviral agent, as well as a natural pH-sensory chromophoric material. An anthocyanin extract was prepared from Red-cabbage (Brassica oleracea L. Var. capitata). The anthocyanins extract was encapsulated into calcium alginate in the presence of potash alum mordant, which was then applied to the surface of the cotton gauze. Red-cabbage based anthocyanin chromophoric extract was encapsulated at different concentrations into alginate-based hydrogel and immobilized into cotton gauze to provide a smart therapeutic pH-responsive wound dress to function as an antimicrobial and biochromic matrix providing a comfortable dress sensor to monitor the wound status. Decreasing the pH of a wound mimic solution caused a blue shift from 579 to 437 nm. The anthocyanin spectroscopic probe's halochromic activity demonstrated a colorimetric change from purple to pink, which was critical to the dyed cotton diagnostic assay's biochromic performance. The colorimetric parameters of the prepared dressing sensor were proved by UV-Vis absorbance and CIE Lab coordinates. Both mechanical and morphological properties of the prepared dressing were studied using different analytical methods. The effect of anthocyanin concentration on the mechanical, water vapor permeability, water absorption and morphological properties of the wound dressing were investigated. No substantial flaws in air-permeability or bend length were detected after dyeing. The colored cotton gauze samples were tested for their high colorfastness. The cytotoxicity and antimicrobial activity of the prepared biochromic cotton gauze were explored. The dyed cotton samples exhibited no cytotoxicity and improved antimicrobial activity with increasing the anthocyanin ratio on cotton surface.
Collapse
Affiliation(s)
- Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Afrah M Aldawsari
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia; King abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sraa Abu-Melha
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohamed E Khalifa
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516, Egypt.
| |
Collapse
|
6
|
Salim MH, Kassab Z, Ablouh EH, Sehaqui H, Aboulkas A, Bouhfid R, Qaiss AEK, El Achaby M. Manufacturing of macroporous cellulose monolith from green macroalgae and its application for wastewater treatment. Int J Biol Macromol 2022; 200:182-192. [PMID: 34995656 DOI: 10.1016/j.ijbiomac.2021.12.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Enormous interest in using marine biomass as a sustainable resource for water treatment has been manifested over the past few decades. Herein, the objective was to investigate the possible use of green macroalgae (Codium tomentosum) for cellulose-based foam production through a versatile and convenient process. Macroporous cellulose monolith was prepared from cellulose hydrogel using freeze-drying process, resulting in a mechanically rigid monolith with a high swelling ratio. The as-produced spongy-like porous cellulosic material was used as bio-sorbent for wastewater treatment, particularly for removing methylene blue (MB) dye from concentrated aqueous solution. The adsorption capacity of MB was subsequently studied, and the effect of adsorption process parameters was determined in a controlled batch system. From the kinetic studies, it was found that the adsorption equilibrium was reached within 660 min. Furthermore, the analysis of the adsorption kinetics reveals that the data could be fitted by a pseudo-second order model, while the adsorption isotherm could be described by Langmuir isotherm model. The maximum adsorption capacity was found to be 454 mg/g. The findings suggested that the produced cellulose monolith could be used as a sustainable adsorbent for water treatment.
Collapse
Affiliation(s)
- Mohamed Hamid Salim
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Houssine Sehaqui
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Adil Aboulkas
- Laboratoire des procédés chimiques et matériaux appliqués (LPCMA), Faculté polydisciplinaire de Béni-Mellal, Université Sultan Moulay Slimane, BP 592, 23000 Béni-Mellal, Morocco
| | - Rachid Bouhfid
- Composites and Nanocomposites Center (CNC), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Abou El Kacem Qaiss
- Composites and Nanocomposites Center (CNC), Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco.
| |
Collapse
|
7
|
Dacrory S. Development of mesoporous foam based on dicarboxylic cellulose and graphene oxide for potential oil/water separation. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
El-Naggar ME, Abu Ali OA, Saleh DI, Abu-Saied MA, Khattab TA. Preparation of green and sustainable colorimetric cotton assay using natural anthocyanins for sweat sensing. Int J Biol Macromol 2021; 190:894-903. [PMID: 34534584 DOI: 10.1016/j.ijbiomac.2021.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Herein, we develop a novel smart cotton swab as a diagnostic assay for onsite monitoring of sweat pH changes toward potential applications in monitoring human healthcare and drug exam. Anthocyanin (Ac) can be extracted from Brassica oleracea var. capitata f. rubra using a simple procedure. Then, it can be used as a direct dye into cotton fibers using potash alum as mordant (M) to fix the anthocyanin dye onto the surface of the cotton fabric (Cot). This was monitored by generating mordant/anthocyanin nanoparticles (MAcNPs) onto the fabric surface. The cotton sensor assay demonstrated colorimetric changes in the ultraviolet-visible absorbance spectral analysis associated with a blueshift from 588 to 422 nm with increasing the pH of a perspiration simulant fluid. The biochromic performance of the dyed cotton diagnostic assay depended essentially on the halochromic activity of the anthocyanin spectroscopic probe to demonstrate a color change from pink to green due to intramolecular charge transfer occurring on the anthocyanin chromophore. After dyeing, no significant defects were detected in air-permeability and bend length. High colorfastness was investigated for the dyed cotton fabrics.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dalia I Saleh
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - M A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| |
Collapse
|
9
|
|
10
|
Iitani K, Ramamurthy SS, Ge X, Rao G. Transdermal sensing: in-situ non-invasive techniques for monitoring of human biochemical status. Curr Opin Biotechnol 2021; 71:198-205. [PMID: 34455345 DOI: 10.1016/j.copbio.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Improving life expectancy necessitates prevention and early diagnosis of any disease state based on active self-monitoring of symptoms and longitudinal biochemical profiling. Non-invasive and continuous measurement of molecular biomarkers that reflect metabolism and health must however be established to realize this plan. Human samples non-invasively obtained via the skin are suitable in this context for in-situ biochemical monitoring. We present a brief classification of transdermal sampling in aqueous and gaseous phases and then introduce a new generation of transdermal monitoring devices for rapid and accurate assessment of important parameters. Finally, we have summarized the diversity of body-wide skin characteristics that have possible effects for transdermal sampling. Because of its passive nature, in-situ biochemical monitoring via transdermal sampling will potentially lead to a greater understanding of important biochemical markers and their temporal variation.
Collapse
Affiliation(s)
- Kenta Iitani
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Sai Sathish Ramamurthy
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Xudong Ge
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA
| | - Govind Rao
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA.
| |
Collapse
|
11
|
Duan C, Cheng Z, Wang B, Zeng J, Xu J, Li J, Gao W, Chen K. Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007306. [PMID: 34047461 DOI: 10.1002/smll.202007306] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
As a nanoscale renewable resource derived from lignocellulosic materials, cellulose nanocrystals (CNCs) have the features of high purity, high crystallinity, high aspect ratio, high Young's modulus, and large specific surface area. The most interesting trait is that they can form the entire films with bright structural colors through the evaporation-induced self-assembly (EISA) process under certain conditions. Structural color originates from micro-nano structure of CNCs matrixes via the interaction of nanoparticles with light, rather than the absorption and reflection of light from the pigment. CNCs are the new generation of photonic liquid crystal materials of choice due to their simple and convenient preparation processes, environmentally friendly fabrication approaches, and intrinsic chiral nematic structure. Therefore, understanding the forming mechanism of CNCs in nanoarchitectonics is crucial to multiple fields of physics, chemistry, materials science, and engineering application. Herein, a timely summary of the chiral photonic liquid crystal films derived from CNCs is systematically presented. The relationship of CNC, structural color, chiral nematic structure, film performance, and applications of chiral photonic liquid crystal films is discussed. The review article also summarizes the most recent achievements in the field of CNCs-based photonic functional materials along with the faced challenges.
Collapse
Affiliation(s)
- Chengliang Duan
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Jinpeng Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| |
Collapse
|
12
|
Al-Qahtani SD, Azher OA, Felaly R, Subaihi A, Alkabli J, Alaysuy O, El-Metwaly NM. Development of sponge-like cellulose colorimetric swab immobilized with anthocyanin from red-cabbage for sweat monitoring. Int J Biol Macromol 2021; 182:2037-2047. [PMID: 34087294 DOI: 10.1016/j.ijbiomac.2021.05.201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Novel sponge-like biochromic swab was developed via immobilization of natural anthocyanin (Cy) biomolecular probe into microporous cellulose aerogel. The current biosensor is characterized with simple preparation, environmentally-friendly, biocompatibility, biodegradability, flexibility, portability and reversibility. This biochromic sponge-like aerogel detector displayed a color change from pink to green-yellow in response to the biochemical changes occurs to sweat. This could be ascribed to intramolecular charge transfer occurs to the molecular system of Cy. Thus, the anthocyanin probe displayed colorimetric variations in UV-Vis absorption spectra via a blue shifting from 620 to 529 nm when raising the pH value of the prepared mimic sweat solution. Natural pH sensitive anthocyanin spectroscopic probe was extracted from red-cabbage plant, characterized by HPLC, and encapsulated into microporous cellulose. The microporous sponge-like cellulose swab was prepared by activating wood pulp utilizing phosphoric acid, and then subjected to freeze-drying. This anthocyanin probe is highly soluble in water. Thus, it was encapsulated as a direct dye into cellulose substrate during the freeze-drying process. To allow a better fixation of this water-soluble anthocyanin probe to the cellulose substrate, potash alum was added to the freeze-dried mixture to act as a fixing agent or mordant (M) generating Cy/M coordination complex. The produced Cy/M nanoparticles (NPs) were explored by transmission electron microscopy (TEM). The morphological features of the generated aerogels were investigated by scan electron microscope (SEM), energy-dispersive X-ray (EDX) spectra, and Fourier-transform infrared spectra (FT-IR). The cytotoxicity of the prepared aerogel-based biosensor was also evaluated. The naked-eye colorimetric changes were studied by exploring color strength, UV-Vis spectra and CIE Lab colorimetric coordinates.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omer A Azher
- Department of Laboratory Medicine, Faculty of Applied Biomedical Sciences, Al-Baha University, Saudi Arabia
| | - Rasha Felaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Abdu Subaihi
- Department of Chemistry, University College in Al-Qunfudah, Umm-Al-Qura University, Saudi Arabia
| | - J Alkabli
- Department of Chemistry, College of Science and Arts-Alkamil, University of Jeddah, Jeddah, 23218, Saudi Arabia
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt.
| |
Collapse
|
13
|
Al-Azmi A, John E. Synthesis and characterization of novel tricyanofuran hydrazone probe: solvatochromism, density-functional theory calculation and selective fluorescence, and colorimetric determination of iron (III). LUMINESCENCE 2021; 36:1220-1230. [PMID: 33792161 DOI: 10.1002/bio.4047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/16/2021] [Accepted: 03/28/2021] [Indexed: 12/14/2022]
Abstract
A tricyanofuran hydrazone (TCFH) spectroscopic probe was produced to visually recognize Fe(III) ions in aqueous environments. The synthesis was started by reacting tricyanofuran with 4-aminophenol diazonium chloride. All the synthesized compounds were characterized by spectroscopic analyses. TCFH showed distinctive solvatochromic behaviour in various organic polar solvents due to intramolecular charge transfer. Its behaviour towards sensing Fe(III) was studied using ultraviolet-visible spectrophotometry. The sensing behaviours of the proposed probe for other metal ions, namely Co(II), Cr(III), Mg(II), Pb(II), Cd(II), Ba(II), Hg(II), Mn(II), Ni(II), Cu(II), Zn(II), Ca(II), Al(III), Na(I) and K(I), were also investigated, but no spectral changes were observed, indicating the probe's potential use as a highly selective and Fe(III)-sensitive colorimetric and fluorescent chemical sensor. The TCFH probe using EtOH/H2 O (5:1; v/v) served as a colorimetric and fluorescent chemosensor for identification of Fe(III) by the naked eye owing to both its high sensitivity and selectivity towards Fe(III) compared with the other examined metal ions. The proposed TCFH probe can therefore be utilized as an effective spectroscopic sensor for Fe(III). Both colorimetric and fluorescence recognition of the analyte depended on the concentration of Fe(III) ions and was accomplished at a pH of 7. A rapid colour change from yellow to red occurred when an aqueous solution of Fe(III) ions was added. The intensity of the colour increased at higher Fe(III) concentrations. Cyclic voltammetry measurements in the dimethylformamide solvent indicated a nonreversible redox potential. This study also explained the possible mechanisms for both solvatochromism and the detection of Fe(III) through TCFH-Fe(III) complex formation. The binding constant of the generated TCFH-Fe(III) complex was explored. Computational modelling was conducted to explain the deprotonation-triggered changes that occur in the photophysical properties of TCFH dyes.
Collapse
Affiliation(s)
- Amal Al-Azmi
- Chemistry Department, Kuwait University, P. O. Box 5969, Safat, Kuwait
| | - Elizabeth John
- Chemistry Department, Kuwait University, P. O. Box 5969, Safat, Kuwait
| |
Collapse
|
14
|
Abdelrahman MS, Khattab TA, Kamel S. Development of a novel colorimetric thermometer based on poly( N-vinylcaprolactam) with push–π–pull tricyanofuran hydrazone anion dye. NEW J CHEM 2021. [DOI: 10.1039/d1nj00221j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermochromic poly(N-vinylcaprolactam-co-tricyanofuran hydrazone) [poly(VC-co-TCFH)] gel labeled with a halochromic chromophore was developed using traditional free radical polymerization.
Collapse
Affiliation(s)
- Meram S. Abdelrahman
- Dyeing
- Printing and Auxiliaries Department
- National Research Centre
- Cairo 12622
- Egypt
| | - Tawfik A. Khattab
- Dyeing
- Printing and Auxiliaries Department
- National Research Centre
- Cairo 12622
- Egypt
| | - Samir Kamel
- Chemical Industries Research Division
- National Research Centre
- Cairo 12622
- Egypt
| |
Collapse
|
15
|
Dacrory S. Antimicrobial Activity, DFT Calculations, and Molecular Docking of Dialdehyde Cellulose/Graphene Oxide Film Against Covid-19. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:2248-2260. [PMID: 33488314 PMCID: PMC7811868 DOI: 10.1007/s10924-020-02039-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 05/04/2023]
Abstract
Development of the oxidation process of cellulose has occurred to decrease the reaction time. Dialdehyd cellulose (DAC) has synthesized via periodate oxidation under microwave irradiation and Graphen oxide (GO) was synthesized by modified Hummer method. A new composite of DAC/GO has prepared from GO and DAC. The structure and morphology of DAC, GO and DAC/GO composite were evaluated via Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. Mechanical properties of DAC and DAC/GO were investigated. Additionally, the computational calculations of cellulose, DAC and GO by DFT/B3LYP/6-31G (d) basis sets were investigated. DAC/GO composite demonstrated specific antimicrobial activity against Gram-positive and Gram-negative bacteria. The molecular docking of DAC shows binding energy interaction (- 4.1, - 4.0, and - 4.0) Kcal/mol against microbial protein of Pseudomonas aeruginosa as Gram-negative bacteria PDB (2W7Q), and Staphylococcus aureus as Gram-positive bacteria PDB (1BQB) as well as Covid-19 PDB (7BZ5) respectively. DAC shows drug-like behavior when it is compared with binding energy interaction of Hydroxychloroquine against Covid-19, as a standard drug.
Collapse
Affiliation(s)
- Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, Cairo, 12622 Egypt
| |
Collapse
|
16
|
Simple Development of Novel Reversible Colorimetric Thermometer Using Urea Organogel Embedded with Thermochromic Hydrazone Chromophore. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermochromic urea (U) organogel immobilized with a thermochromic tricyanofuran hydrazone (TCFH) chromophore was developed. Thermochromic TCFH chromophore bearing two nitro functional groups on a hydrazone recognition unit was synthesized via an azo-coupling reaction of tricyanofuran (TCF) heterocyclic moiety containing an active methyl group with the diazonium chloride salt of 2,4-dinitroaniline comprising two strongly electron-withdrawing nitro groups. The molecular structure of both intermediates and TCFH dye were characterized by several analytical methods, including 1H NMR, 13C NMR, IR, mass spectroscopy (MS), and elemental analysis. The thermochromic responsiveness could be attributed to the charge delocalization of TCFH as well as to the presence of an intramolecular charge transfer. The generated organogel displayed a thermoreversible sol–gel transition associated with color change. The origin of the monitored thermochromism is a conformational change of the tricyanofuran hydrazone backbone due to the temperature-driven deprotonation–protonation reversible process. The prepared urea–tricyanofuran hydrazone (UTCFH) thermometer acted as a diagnostic tool providing an instant color change between yellow, orange, red and purple upon changing the temperature of the UTCFH organogel in dimethyl sulfoxide (DMSO). This color change was proportionally correlated with increasing the temperature from 44 to 63 °C. The UTCFH organogel composed of urea and push-π-pull hydrazone type tricyanofuran chromophore immobilized physically in the urea organogel was found to function as a temperature-driven chromic thermometer. This chromogenic UTCFH organogel in DMSO displayed a phase transition at 41–48 °C. The morphological properties of the gel internal fibrous nanostructure (80–120 nm) were monitored by scanning electron microscopy (SEM). The colorimetric measurements were monitored by UV–Vis absorption spectroscopy. The chromogenic thermometer demonstrated a good reversibility without fatigue. The mechanism accounting for thermochromism of UTCFH organogel is proposed.
Collapse
|
17
|
Siripongpreda T, Somchob B, Rodthongkum N, Hoven VP. Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. Carbohydr Polym 2020; 256:117506. [PMID: 33483028 DOI: 10.1016/j.carbpol.2020.117506] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Direct deposition of the negatively charged polyelectrolyte, carboxymethyl cellulose (CMC), into a bacterial cellulose (BC) matrix was used as a simple route to fabricate a re-swellable and biocompatible cellulose-based hydrogel. As a result of this non-destructive approach, the physical and mechanical property of the original BC were well-preserved within the resulting BC/CMC hydrogel. As a BC/CMC-based colorimetric pH sensor, it exhibited a rapid response with an easy color differentiation between each pH by the naked eye, and wide linear range of pH 4.0-9.0 with good linearity. For the detection of glucose in sweat, the BC/CMC-based colorimetric glucose sensor provided a low limit of detection (25 μM) with a wide linear detection range (0.0-0.5 mM) and high accuracy. These BC/CMC based sensors could potentially be applied as non-invasive semi-quantitative sensors for on-skin health monitoring.
Collapse
Affiliation(s)
- Tatiya Siripongpreda
- Nanoscience and Technology Interdisciplinary Program, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Benjawan Somchob
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand; Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Voravee P Hoven
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand; Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Mwafy EA, Mostafa AM. Tailored MWCNTs/SnO2 decorated cellulose nanofiber adsorbent for the removal of Cu (II) from waste water. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Keil C, Hübner C, Richter C, Lier S, Barthel L, Meyer V, Subrahmanyam R, Gurikov P, Smirnova I, Haase H. Ca-Zn-Ag Alginate Aerogels for Wound Healing Applications: Swelling Behavior in Simulated Human Body Fluids and Effect on Macrophages. Polymers (Basel) 2020; 12:E2741. [PMID: 33218195 PMCID: PMC7699170 DOI: 10.3390/polym12112741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic non-healing wounds represent a substantial economic burden to healthcare systems and cause a considerable reduction in quality of life for those affected. Approximately 0.5-2% of the population in developed countries are projected to experience a chronic wound in their lifetime, necessitating further developments in the area of wound care materials. The use of aerogels for wound healing applications has increased due to their high exudate absorbency and ability to incorporate therapeutic substances, amongst them trace metals, to promote wound-healing. This study evaluates the swelling behavior of Ca-Zn-Ag-loaded alginate aerogels and their metal release upon incubation in human sweat or wound fluid substitutes. All aerogels show excellent liquid uptake from any of the formulas and high liquid holding capacities. Calcium is only marginally released into the swelling solvents, thus remaining as alginate bridging component aiding the absorption and fast transfer of liquids into the aerogel network. The zinc transfer quota is similar to those observed for common wound dressings in human and animal injury models. With respect to the immune regulatory function of zinc, cell culture studies show a high availability and anti-inflammatory activity of aerogel released Zn-species in RAW 264.7 macrophages. For silver, the balance between antibacterial effectiveness versus cytotoxicity remains a significant challenge for which the alginate aerogels need to be improved in the future. An increased knowledge of the transformations that alginate aerogels undergo in the course of the fabrication as well as during wound fluid exposure is necessary when aiming to create advanced, tissue-compatible aerogel products.
Collapse
Affiliation(s)
- Claudia Keil
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Christopher Hübner
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Constanze Richter
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Sandy Lier
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| | - Lars Barthel
- Applied and Molecular Microbiology, Institute of Biotechnology, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.B.); (V.M.)
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.B.); (V.M.)
| | - Raman Subrahmanyam
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany; (R.S.); (I.S.)
| | - Pavel Gurikov
- Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany;
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany; (R.S.); (I.S.)
| | - Hajo Haase
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (C.H.); (C.R.); (S.L.)
| |
Collapse
|
20
|
Development of Green and Sustainable Cellulose Acetate/Graphene Oxide Nanocomposite Films as Efficient Adsorbents for Wastewater Treatment. Polymers (Basel) 2020; 12:polym12112501. [PMID: 33121200 PMCID: PMC7693400 DOI: 10.3390/polym12112501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
: Novel ecofriendly adsorbents, cellulose acetate/graphene oxide (CA-GO) nanocomposite, were prepared from sugarcane bagasse agro-waste for removing Ni2+ ions from wastewater. Graphene oxide (GO) was prepared by the oxidation of sugarcane bagasse using ferrocene under air atmosphere. Cellulose acetate (CA) was also prepared from sugarcane bagasse by extraction of cellulose through a successive treatments with sulfuric acid (10% v/v), sodium hydroxide (5% w/v), ethylenediaminetetraacetic acid, and hydrogen peroxide, and finally , followed by acetylation. CA-GO was prepared via mixing of GO and CA in the presence of calcium carbonate and different concentrations of GO, including 5, 10, 15, 20, 25, and 30 wt% relative to the weight of CA. The CA-GO nanocomposite showed porous microstructures with high surface area, which enhance their ability towars the adsorption of Ni2+ ions from wastewater. The morphological properties of the prepared adsorbents were explored by scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FT-IR). The efficiency of the CA-GO towards the adsorption of Ni2+ ions from wastewater was explored against as time, temperature, and total content of Ni2+ ions. The adsorption measurements of Ni2+ ions were investigated within the concentration range of 10-40 mg/L, time range between 15 and 90 minutes, and temperature range between 25 °C and 55 °C. The results displayed a considerable improvement in the adsorption process of Ni2+ ions by CA-GO-2 with a removal efficiency of 96.77%. The isotherms were monitored to best fit the Langmuir model. Finally, the adsorption performance of the prepared CA-GO nanocomposite films demonstrated promising properties as green, sustainable and cheap adsorbents for water pollutants.
Collapse
|
21
|
Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Anal Bioanal Chem 2020; 413:763-777. [PMID: 32989512 PMCID: PMC7809000 DOI: 10.1007/s00216-020-02939-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 01/28/2023]
Abstract
Multi-analyte sensing using exclusively laser-induced graphene (LIG)-based planar electrode systems was developed for sweat analysis. LIG provides 3D structures of graphene, can be manufactured easier than any other carbon electrode also on large scale, and in form of electrodes: hence, it is predestinated for affordable, wearable point-of-care sensors. Here, it is demonstrated that LIG facilitates all three electrochemical sensing strategies (voltammetry, potentiometry, impedance) in a multi-analyte system for sweat analysis. A potentiometric potassium-ion-selective electrode in combination with an electrodeposited Ag/AgCl reference electrode (RE) enabled the detection of potassium ions in the entire physiologically relevant range (1 to 500 mM) with a fast response time, unaffected by the presence of main interfering ions and sweat-collecting materials. A kidney-shaped interdigitated LIG electrode enabled the determination of the overall electrolyte concentration by electrochemical impedance spectroscopy at a fixed frequency. Enzyme-based strategies with amperometric detection share a common RE and were realized with Prussian blue as electron mediator and biocompatible chitosan for enzyme immobilization and protection of the electrode. Using glucose and lactate oxidases, lower limits of detection of 13.7 ± 0.5 μM for glucose and 28 ± 3 μM for lactate were obtained, respectively. The sensor showed a good performance at different pH, with sweat-collecting tissues, on a model skin system and furthermore in synthetic sweat as well as in artificial tear fluid. Response time for each analytical cycle totals 75 s, and hence allows a quasi-continuous and simultaneous monitoring of all analytes. This multi-analyte all-LIG system is therefore a practical, versatile, and most simple strategy for point-of-care applications and has the potential to outcompete standard screen-printed electrodes. Graphical abstract ![]()
Collapse
|
22
|
Abdelrahman MS, Fouda MM, Ajarem JS, Maodaa SN, Allam AA, Khattab TA. Development of colorimetric cotton swab using molecular switching hydrazone probe in calcium alginate. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128301] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Abdelghaffar F, Abdelghaffar RA, Rashed UM, Ahmed HM. Highly effective surface modification using plasma technologies toward green coloration of polyester fabrics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28949-28961. [PMID: 32418110 DOI: 10.1007/s11356-020-09081-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/27/2020] [Indexed: 05/04/2023]
Abstract
This study is anchored on the use of an eco-friendly effective plasma technique and cationization treatment to improve the hydrophobic nature of polyester (PET) fabric by incorporating hydrophilic functional groups onto the PET surface. The PET surface was initially treated with three different plasma gases prior to cationization treatment with quaternary ammonium salt (Quat 188). Madder roots were used, to produce natural dyes for the green coloration of PET fabrics in both dyeing and printing processes. The color strength (K/S) was measured to study the influence of both plasma gases and the cationization treatment on the coloration of PET fabric. Exposure to nitrogen plasma gases prior to the cationization treatment showed promising results for efficient PET coloration, resulting in the selection of nitrogen as a working gas at a flow rate of 3 l/min. The results also demonstrated that by combining the nitrogen plasma technique and cationization treatment, PET fabric with a highly effective surface was obtained, resulting in improved coloration, wettability, tensile strength, and roughness properties.
Collapse
Affiliation(s)
- Fatma Abdelghaffar
- Textile Research Industrial Division, National Research Centre, El-Behouth St. Dokki, Giza, PO 12622, Egypt.
| | - Rehab A Abdelghaffar
- Textile Research Industrial Division, National Research Centre, El-Behouth St. Dokki, Giza, PO 12622, Egypt
| | - Usama M Rashed
- Physics Dept., Faculty of Science, Al-Azhar University, Cairo, Egypt
- Center of Plasma Technology, Al-Azhar University, Cairo, Egypt
| | - Hend M Ahmed
- Textile Research Industrial Division, National Research Centre, El-Behouth St. Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
24
|
Washable Colorimetric Nanofiber Nonwoven for Ammonia Gas Detection. Polymers (Basel) 2020; 12:polym12071585. [PMID: 32708736 PMCID: PMC7408028 DOI: 10.3390/polym12071585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
The colorimetric sensor is a facile, cost-effective, and non-power-operated green energy material for gas detection. In this study, the colorimetric sensing property of a meta-aramid/dye 3 nanofiber sensor for ammonia (NH3) gas detection was investigated. This colorimetric sensor was prepared using various dye 3 concentrations via electrospinning. Morphological, thermal, structural, and mechanical analyses of the sensor were carried out by field-emission scanning electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and a universal testing machine, respectively. A homemade computer color matching machine connected with a gas flow device characterized the response of the meta-aramid/dye 3 nanofiber colorimetric sensor to various exposure levels of NH3 gas. From the results, we confirmed that this colorimetric green energy sensor could detect ammonia gas in the concentration of 1-10 ppm with a sensing response time of 10 s at room temperature. After washing with laundry detergent for 30 min, the colorimetric sensors still exhibited sensing property and reversibility.
Collapse
|
25
|
Kamel S, A. Khattab T. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. BIOSENSORS 2020; 10:E67. [PMID: 32560377 PMCID: PMC7345568 DOI: 10.3390/bios10060067] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cellulose has attracted much interest, particularly in medical applications such as advanced biosensing devices. Cellulose could provide biosensors with enhanced biocompatibility, biodegradability and non-toxicity, which could be useful for biosensors. Thus, they play a significant role in environmental monitoring, medical diagnostic tools, forensic science, and foodstuff processing safety applications. This review summarizes the recent developments in cellulose-based biosensors targeting the molecular design principles toward medical detection purposes. The recognition/detection mechanisms of cellulose-based biosensors demonstrate two major classes of measurable signal generation, including optical and electrochemical cellulosic biosensors. As a result of their simplicity, high sensitivity, and low cost, cellulose-based optical biosensors are particularly of great interest for including label-free and label-driven (fluorescent and colorimetric) biosensors. There have been numerous types of cellulose substrates employed in biosensors, including several cellulose derivatives, nano-cellulose, bacterial cellulose, paper, gauzes, and hydrogels. These kinds of cellulose-based biosensors were discussed according to their preparation procedures and detection principle. Cellulose and its derivatives with their distinctive chemical structure have demonstrated to be versatile materials, affording a high-quality platform for accomplishing the immobilization process of biologically active molecules into biosensors. Cellulose-based biosensors exhibit a variety of desirable characteristics, such as sensitivity, accuracy, convenience, quick response, and low-cost. For instance, cellulose paper-based biosensors are characterized as being low-cost and easy to operate, while nano-cellulose biosensors are characterized as having a good dispersion, high absorbance capacity, and large surface area. Cellulose and its derivatives have been promising materials in biosensors which could be employed to monitor various bio-molecules, such as urea, glucose, cell, amino acid, protein, lactate, hydroquinone, gene, and cholesterol. The future interest will focus on the design and construction of multifunctional, miniaturized, low-cost, environmentally friendly, and integrated biosensors. Thus, the production of cellulose-based biosensors is very important.
Collapse
Affiliation(s)
- Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt;
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
26
|
El-Nahrawy AM, Abou Hammad AB, Khattab TA, Haroun A, Kamel S. Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel(III) oxide nanoparticles. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104533] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Adsorption and solidification of peppermint oil on microcrystalline cellulose surface: An experimental and DFT study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Akl EM, Dacrory S, Abdel-Aziz MS, Kamel S, Fahim AM. Preparation and characterization of novel antibacterial blended films based on modified carboxymethyl cellulose/phenolic compounds. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03148-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Khattab TA, Fouda MM, Rehan M, Okla MK, Alamri SA, Alaraidh IA, AL-ghamdi AA, Soufan WH, Abdelsalam EM, Allam AA. Novel halochromic cellulose nanowhiskers from rice straw: Visual detection of urea. Carbohydr Polym 2020; 231:115740. [DOI: 10.1016/j.carbpol.2019.115740] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
|
30
|
Dacrory S, Moussa M, Turky G, Kamel S. In situ synthesis of Fe 3O 4@ cyanoethyl cellulose composite as antimicrobial and semiconducting film. Carbohydr Polym 2020; 236:116032. [PMID: 32172848 DOI: 10.1016/j.carbpol.2020.116032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023]
Abstract
Cyanoethyl cellulose (CEC)/ magnetite (Fe3O4) flexible composite film with enhanced dielectric and magnetic properties was successfully prepared. CEC has been synthesized from micro crystalline cellulose (MCC). The effects of magnetite mass fraction on the morphology, microstructure, thermal stability, and antimicrobial activity of the as-prepared composite films were investigated. The Vibrating sample magnetometer (VSM) and broadband dielectric spectrometer was also employed to study the magnetic and dielectric properties, respectively. In addition to study the computational calculation of MCC, and CEC by DFT/ B3LYP/6-31G (d) basis sets. The results showed that, the sample that is magnetite free has a diamagnetic response to the applied magnetic field, however the other samples that is loaded with magnetite show super-paramagnetic behavior indicating that the particles' sizes of the magnetite mostly below 20 nm. Also, antimicrobial activities of composite films against (G + ve), (G-ve), were investigated.
Collapse
Affiliation(s)
- Sawsan Dacrory
- Cellulose and Paper Department, National Research Centre, 33 El- Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Mohammed Moussa
- Microwave Physics & Dielectrics Department, National Research Centre, 33 El- Bohouth St., Dokki, Giza, 12622, Egypt
| | - Gamal Turky
- Microwave Physics & Dielectrics Department, National Research Centre, 33 El- Bohouth St., Dokki, Giza, 12622, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El- Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
31
|
Khattab TA, Abdelrahman MS, Rehan M. Textile dyeing industry: environmental impacts and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3803-3818. [PMID: 31838699 DOI: 10.1007/s11356-019-07137-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Color is a major attraction component of any fabric regardless of how admirable its constitution. Industrial production and utilization of synthetic dyestuffs for textile dyeing have consequently become a gigantic industry today. Synthetic dyestuffs have introduced a broad range of colorfastness and bright hues. Nonetheless, their toxic character has become a reason of serious concern to the environment. Usage of synthetic dyestuffs has adverse impacts on all forms of life. Existence of naphthol, vat dyestuffs, nitrates, acetic acid, soaping chemicals, enzymatic substrates, chromium-based materials, and heavy metals as well as other dyeing auxiliaries, makes the textile dyeing water effluent extremely toxic. Other hazardous chemicals include formaldehyde-based color fixing auxiliaries, chlorine-based stain removers, hydrocarbon-based softeners, and other non-biodegradable dyeing auxiliaries. The colloidal material existing alongside commercial colorants and oily froth raises the turbidity resulting in bad appearance and unpleasant odor of water. Furthermore, such turbidity will block the diffusion of sunlight required for the process of photosynthesis which in turn is interfering with marine life. This effluent may also result in clogging the pores of the soil leading to loss of soil productivity. Therefore, it has been critical for innovations, environmentally friendly remediation technologies, and alternative eco-systems to be explored for textile dyeing industry. Different eco-systems have been explored such as biocolors, natural mordants, and supercritical carbon-dioxide assisted waterless dyeing. Herein, we explore the different types of dyeing processes, water consumption, pollution, treatment, and exploration of eco-systems in textile dyeing industry.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Textile Industries Research Division, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| | - Meram S Abdelrahman
- Textile Industries Research Division, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mohamed Rehan
- Textile Industries Research Division, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
32
|
Miranda KW, Natarelli CVL, Thomazi AC, Ferreira GMD, Frota MM, Bastos MDSR, Mattoso LHC, Oliveira JE. Halochromic Polystyrene Nanofibers Obtained by Solution Blow Spinning for Wine pH Sensing. SENSORS (BASEL, SWITZERLAND) 2020; 20:E417. [PMID: 31940816 PMCID: PMC7014295 DOI: 10.3390/s20020417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Colorimetric sensors developed by the solution blow spinning (SBS) technique have a rapid response to a variation in different physicochemical properties. In this study, polystyrene nanofibrous (PSNF) mats containing the bromothymol blue (BTB) indicator were obtained by SBS for the pH sensing of wine sample. The incorporation of the indicator did not promote changes in fiber diameter but led to the appearance of beads, allowing for the encapsulation of BTB. The halochromic property of BTB was retained in the PSNF material, and the migration tests showed that the indicator mats presented values below the maximum acceptable limit (10 mg dm-2) established by EU Commission Regulation No. 10/2011 for foods with an alcohol content up to 20%. The present study opens the possibility of applying nanostructured materials to innovative food packaging which, through nanosensory zones, change color as a function of the food pH.
Collapse
Affiliation(s)
- Kelvi W.E. Miranda
- Graduate Program in Biomaterials Engineering, Federal University of Lavras, Lavras 37200-000, Brazil (C.V.L.N.)
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, São Carlos 13560-970, Brazil; (A.C.T.); (L.H.C.M.)
| | - Caio V. L. Natarelli
- Graduate Program in Biomaterials Engineering, Federal University of Lavras, Lavras 37200-000, Brazil (C.V.L.N.)
| | - Adriana C. Thomazi
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, São Carlos 13560-970, Brazil; (A.C.T.); (L.H.C.M.)
| | | | - Maryana M. Frota
- Food Engineering Department, Federal University of Ceara, Fortaleza 60356-000, Brazil;
| | | | - Luiz H. C. Mattoso
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, São Carlos 13560-970, Brazil; (A.C.T.); (L.H.C.M.)
| | - Juliano E. Oliveira
- Department of Engineering, Federal University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|