1
|
Mettakoonpitak J, Chanthabun A, Hatsakhun P, Sirasunthorn N, Siripinyanond A, Henry CS. Microfluidic paper-based analytical devices for simple and nondestructive durian fruit maturity assessment. Anal Chim Acta 2024; 1329:343252. [PMID: 39396311 DOI: 10.1016/j.aca.2024.343252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Accurately predicting durian maturity is a critically unresolved worldwide issue. Farmers currently determine durian ripeness based on their own observation and experience leading to inconsistencies in harvest timing. This reliance on human judgment often results in premature or overripe harvests, impacting fruit quality, yield, and market value. Existing technological solutions, such as sensors are often complex and require specialized expertise, hindering their adoption by farmers and consumers. Developing sensors that can accurately measure durian ripeness without damaging the fruit, are easy to use, and affordable remains a challenge. We introduce a microfluidic paper-based analytical device (μPAD) for on-site, safe matching to meet the demands of durian maturity evaluation. The μPAD automatically collected peduncle fluid without destroying the durian fruit for dual detection of total sugar and amino acid. For determining total sugar including sucrose, glucose, and fructose, several enzymatic steps were reduced to a single step of invertase for sucrose hydrolysis before total reducing sugar was measured using gold nanoparticle (AuNP) generation. Kinetics study of invertase on the μPAD showed Vmax and Km values of 1.42 mM min-1 and 2.17 mM, respectively, that agreed with the direct study of sucrose conversion. To increase device reliability, amino acid was also simultaneously measured with sugar using the simple ninhydrin test with the addition of SnCl2. The developed sensor provided LODs of 3.50, 3.10, 3.30 μM, and 0.02 mg mL-1 for glucose, fructose, sucrose, and amino acid respectively. The μPADs were able to nondestructively discriminate between the mature and immature durians, showing high linear correlation with the standard dry weight method. The development of this μPAD technology has the potential to revolutionize durian cultivation practices, reduce post-harvest losses, and enhance the overall sustainability and profitability of the durian value chain, and can be further developed for maturity tests of other fruits.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Atcha Chanthabun
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Patcharaporn Hatsakhun
- Microbiology Program, Department of Biology, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chanthaburi, 22000, Thailand
| | - Nichanun Sirasunthorn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Chen Y, Li Y, Wang W, Jiang L, Yin S, Guo Z, Wu W, Wang C, Lu S, Wang F, Chen X. A fluorescent NBD "turn-on" probe for the rapid and on-site analysis of fructose in food. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124612. [PMID: 38857548 DOI: 10.1016/j.saa.2024.124612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
High fructose intake is an important cause of metabolic disease. Due to the increasing prevalence of metabolic diseases worldwide, the development of an accurate and efficient tool for monitoring fructose in food is urgently needed to control the intake of fructose. Herein, a new fluorescent probe NBD-PQ-B with 7-nitrobenz-2-oxa-1, 3-diazole (NBD) as the fluorophore, piperazine (PQ) as the bridging group and phenylboronic acid (B) as the recognition receptor, was synthesized to detect fructose. The fluorescence of NBD-PQ-B increased linearly at 550 nm at an excitation wavelength of 497 nm with increasing fructose concentration from 0.1 to 20 mM. The limit of detection (LOD) of fructose was 40 μM. The pKa values of NBD-PQ-B and its fructose complexes were 4.1 and 10.0, respectively. In addition, NBD-PQ-B bound to fructose in a few seconds. The present technique was applied to determine the fructose content in beverages, honey, and watermelon with satisfactory results. Finally, the system could not only be applied in an aqueous solution with a spectrophotometer, but also be fabricated as a NBD-PQ-B/polyvinyl oxide (PEO) film by electrospinning for on-site food analysis simply with the assistance of a smartphone.
Collapse
Affiliation(s)
- Yanan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Yajing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Wenjing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Long Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Shaojie Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Ziwei Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Wenyan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Chongqing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Hassanzadeh J, Al Lawati HAJ, Bagheri N. Bifunctional oxidase-peroxidase mimicking Fe-Ce MOF on paper-based analytical devices to intensify luminol chemiluminescence: Application for measuring different sugars with a smartphone readout. Talanta 2024; 276:126219. [PMID: 38733936 DOI: 10.1016/j.talanta.2024.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
This study presents a potent paper-based analytical device (PAD) for quantifying various sugars using an innovative bi-nanozyme made from a 2-dimensional Fe/Ce metal-organic framework (FeCe-BTC). The MOF showed excellent bifunctional peroxidase-oxidase activities, efficiently catalyzing luminol's chemiluminescence (CL) reaction. As a peroxidase-like nanozyme, FeCe-BTC could facilitate the dissociation of hydrogen peroxide (H2O2) into hydroxyl radicals, which then oxidize luminol. Additionally, it was also discovered that when reacting with H2O2, the MOF turns into a mixed-valence MOF, and acts as an oxidase nanozyme. This activity is caused by the generated Ce4+ ions in the structure of MOF that can directly oxidize luminol. The MOF was directly synthesized on the PAD and cascaded with specific natural enzymes to establish simple, rapid, and selective CL sensors for the measurement of different sugars. A cell phone was also used to record light intensities, which were then correlated to the analyte concentration. The designed PAD showed a wide linear range of 0.1-10 mM for glucose, fructose, and sucrose, with detection limits of 0.03, 0.04, and 0.04 mM, respectively. It showed satisfactory results in food and biological samples with recovery values ranging from 95.8 to 102.4 %, which makes it a promising candidate for point-of-care (POC) testing for food control and medicinal purposes.
Collapse
Affiliation(s)
- Javad Hassanzadeh
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman.
| | - Nafiseh Bagheri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
4
|
He HJ, da Silva Ferreira MV, Wu Q, Karami H, Kamruzzaman M. Portable and miniature sensors in supply chain for food authentication: a review. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39066550 DOI: 10.1080/10408398.2024.2380837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Food fraud, a pervasive issue in the global food industry, poses significant challenges to consumer health, trust, and economic stability, costing an estimated $10-15 billion annually. Therefore, there is a rising demand for developing portable and miniature sensors that facilitate food authentication throughout the supply chain. This review explores the recent advancements and applications of portable and miniature sensors, including portable/miniature near-infrared (NIR) spectroscopy, e-nose and colorimetric sensors based on nanozyme for food authentication within the supply chain. After briefly presenting the architecture and mechanism, this review discusses the application of these portable and miniature sensors in food authentication, addressing the challenges and opportunities in integrating and deploying these sensors to ensure authenticity. This review reveals the enhanced utility of portable/miniature NIR spectroscopy, e-nose, and nanozyme-based colorimetric sensors in ensuring food authenticity and enabling informed decision-making throughout the food supply chain.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | | | - Qianyi Wu
- Department of Agriculture and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hamed Karami
- Department of Petroleum Engineering, Collage of Engineering, Knowledge University, Erbil, Iraq
| | - Mohammed Kamruzzaman
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
5
|
Yin X, Zhao C, Zhao Y, Zhu Y. Parallel Monitoring of Glucose, Free Amino Acids, and Vitamin C in Fruits Using a High-Throughput Paper-Based Sensor Modified with Poly(carboxybetaine acrylamide). BIOSENSORS 2023; 13:1001. [PMID: 38131761 PMCID: PMC10741689 DOI: 10.3390/bios13121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Herein, a cost-effective and portable microfluidic paper-based sensor is proposed for the simultaneous and rapid detection of glucose, free amino acids, and vitamin C in fruit. The device was constructed by embedding a poly(carboxybetaine acrylamide) (pCBAA)-modified cellulose paper chip within a hydrophobic acrylic plate. We successfully showcased the capabilities of a filter paper-based microfluidic sensor for the detection of fruit nutrients using three distinct colorimetric analyses. Within a single paper chip, we simultaneously detected glucose, free amino acids, and vitamin C in the vivid hues of cyan blue, purple, and Turnbull's blue, respectively, in three distinctive detection zones. Notably, we employed more stable silver nanoparticles for glucose detection, replacing the traditional peroxidase approach. The detection limits for glucose reached a low level of 0.049 mmol/L. Meanwhile, the detection limits for free amino acids and vitamin C were found to be 0.236 mmol/L and 0.125 mmol/L, respectively. The feasibility of the proposed sensor was validated in 13 different practical fruit samples using spectrophotometry. Cellulose paper utilizes capillary action to process trace fluids in tiny channels, and combined with pCBAA, which has superior hydrophilicity and anti-pollution properties, it greatly improves the sensitivity and practicality of paper-based sensors. Therefore, the paper-based colorimetric device is expected to provide technical support for the nutritional value assessment of fruits in the field of rapid detection.
Collapse
Affiliation(s)
- Xinru Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
| | - Cheng Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational & Technical College, Zhengzhou 451460, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
| |
Collapse
|
6
|
Aghababaie M, Foroushani ES, Changani Z, Gunani Z, Mobarakeh MS, Hadady H, Khedri M, Maleki R, Asadnia M, Razmjou A. Recent Advances In the development of enzymatic paper-based microfluidic biosensors. Biosens Bioelectron 2023; 226:115131. [PMID: 36804663 DOI: 10.1016/j.bios.2023.115131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Using microfluidic paper-based analytical devices has attracted considerable attention in recent years. This is mainly due to their low cost, availability, portability, simple design, high selectivity, and sensitivity. Owing to their specific substrates and catalytic functions, enzymes are the most commonly used bioactive agents in μPADs. Enzymatic μPADs are various in design, fabrication, and detection methods. This paper provides a comprehensive review of the development of enzymatic μPADs by considering the methods of detection and fabrication. Particularly, techniques for mass production of these enzymatic μPADs for use in different fields such as medicine, environment, agriculture, and food industries are critically discussed. This paper aims to provide a critical review of μPADs and discuss different fabrication methods as the central parts of the μPADs production categorized into printable and non-printable methods. In addition, state-of-the-art technologies such as fully printed enzymatic μPADs for rapid, low-cost, and mass production and improvement have been considered.
Collapse
Affiliation(s)
- Marzieh Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Elnaz Sarrami Foroushani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Zinat Changani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Zahra Gunani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, FInland.
| | - Mahsa Salehi Mobarakeh
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Mechanical and Aerospace Engineering, Carleton University, Colonel by Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hanieh Hadady
- Cell Science Research Centre, Royan Institute of Biotechnology, Isfahan, Iran.
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology, 424 Hafez Avenue, Tehran, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University, Shiraz, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
7
|
Feng J, Jiang H, Jin Y, Rong S, Wang S, Wang H, Wang L, Xu W, Sun B. A device-independent method for the colorimetric quantification on microfluidic sensors using a color adaptation algorithm. Mikrochim Acta 2023; 190:148. [PMID: 36952027 DOI: 10.1007/s00604-023-05731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
A general and adaptable method is proposed to reliably extract quantitative information from smartphone images of microfluidic sensors. By analyzing and processing the color information of selected standard substances, the influence of light conditions, device differences, and human factors could be significantly reduced. Machine learning and multivariate fitting methods were proved to be effective for chroma correction, and a key element was the training of sample size and the fitting form, respectively. A custom APP was developed and validated using a high-sensitivity chromium ion quantification paper chip. The average chroma deviations under different conditions were reduced by more than 75% in RGB color space, and the concentration test error was reduced by more than half compared with the commonly used method. The proposed approach could be a beneficial supplement to existing and potential colorimetry-based detection methods.
Collapse
Affiliation(s)
- Junjie Feng
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China.
| | - Huiyun Jiang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Yan Jin
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Shenghui Rong
- Ocean University of China, School of Electronic Engineering, 238 Songling Road, Qingdao, 266100, China
| | - Shiqiang Wang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Haozhi Wang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Lin Wang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Wei Xu
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China
| | - Bing Sun
- SINOPEC Research Institute of Safety Engineering Co., Ltd., State Key Laboratory of Safety and Control for Chemicals, 339 Songling Road, Qingdao, 266100, China.
| |
Collapse
|
8
|
Wang X, Wang Y, Guo C, Zhang X, Wang Y, Lv L, Wang X, Wei M. A pattern-free paper enzyme biosensor for one-step detection of fish freshness indicator hypoxanthine with a microfluidic aggregation effect. Food Chem 2023; 405:134811. [DOI: 10.1016/j.foodchem.2022.134811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
|
9
|
Wang Q, Lv L, Chi W, Bai Y, Gao W, Zhu P, Yu J. Porphyrin-Based Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Peroxidase-like Activity as a Colorimetric Biosensing Platform. BIOSENSORS 2023; 13:188. [PMID: 36831954 PMCID: PMC9953433 DOI: 10.3390/bios13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) and glucose play a key role in many cellular signaling pathways. The efficient and accurate in situ detection of H2O2 released from living cells has attracted extensive research interests. Herein, a new porphyrin-based porous covalent organic framework (TAP-COF) was fabricated via one-step condensation of 1,6,7,12-tetrachloroperylene tetracarboxylic acid dianhydride and 5,10,15,20-tetrakis (4-aminophenyl)porphyrin iron(III). The obtained TAP-COF has high surface areas, abundant surface catalytic active sites, and highly effective electron transport due to its precisely controllable donor-acceptor arrangement and 3D porous structure. Then, the new TAP-COF exhibited excellent peroxidase-like catalytic activity, which could effectively catalyze oxidation of the substrate 3,3',5,5'-tetramethylbenzidine by H2O2 to produce a typical blue-colored reaction. On this basis, simple, rapid and selective colorimetric methods for in situ H2O2 detection were developed with the detection limit of 2.6 nM in the wide range of 0.01 to 200 μM. The colorimetric approach also could be used for in situ detection of H2O2 released from living MCF-7 cells. This portable sensor based on a COF nanozyme not only opens a new path for point-of-care testing, but also has potential applications in the field of cell biology and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Lv
- Jinan Agricultural Product Quality and Safety Center, Jinan 250316, China
| | - Wenhao Chi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Xiong X, Guo C, Yan G, Han B, Wu Z, Chen Y, Xu S, Shao P, Song H, Xu X, Han J. Simultaneous Cross-type Detection of Water Quality Indexes via a Smartphone-App Integrated Microfluidic Paper-Based Platform. ACS OMEGA 2022; 7:44338-44345. [PMID: 36506192 PMCID: PMC9730490 DOI: 10.1021/acsomega.2c05938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Water quality guarantee in remote areas necessitates the development of portable, sensitive, fast, cost-effective, and easy-to-use water quality detection methods. The current work reports on a microfluidic paper-based analytical device (μPAD) integrated with a smartphone app for the simultaneous detection of cross-type water quality parameters including pH, Cu(II), Ni(II), Fe(III), and nitrite. The shapes, baking time, amount, and ratios of reaction reagent mixtures of wax μPAD were optimized to improve the color uniformity and intensity effectively. An easy-to-use smartphone app was established for recording, analyzing, and directly reading the colorimetric signals and target concentrations on μPAD. The results showed that under the optimum conditions, the current analytical platform has reached the detection limits of 0.4, 1.9, 2.9, and 1.1 ppm for nitrite, Cu(II), Ni(II), and Fe(III), respectively, and the liner ranges are 2.3-90 ppm (nitrite), 3.8-400 ppm (Cu(II)), 2.9-1000 ppm (Ni(II)), 2.8-500 ppm (Fe(III)), and 5-9 (pH). The proposed portable smartphone-app integrated μPAD detection system was successfully applied to real industrial wastewater and river water quality monitoring. The proposed method has great potential for field water quality detection.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| | - Chengwang Guo
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Gengyang Yan
- School
of Computer Science and Technology, Beijing
Institute of Technology, Beijing100081, China
| | - Bingxin Han
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Zan Wu
- Institute
of Analysis and Testing, Beijing Academy
of Science and Technology, Beijing Center for Physical and Chemical
Analysis, Beijing100089, China
| | - Yueqian Chen
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
| | - Shiqi Xu
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| | - Peng Shao
- Institute
of Analysis and Testing, Beijing Academy
of Science and Technology, Beijing Center for Physical and Chemical
Analysis, Beijing100089, China
| | - Hong Song
- School
of Computer Science and Technology, Beijing
Institute of Technology, Beijing100081, China
| | - Xiyan Xu
- School
of Chemistry and Chemical Engineering, Beijing
Institute of Technology, Beijing102488, China
| | - Junfeng Han
- Centre
for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum
Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing100081, China
- Yangtze
Delta Region Academy of Beijing Institute of Technology, Jiaxing314000, China
| |
Collapse
|
11
|
Lara-Cruz GA, Jaramillo-Botero A. Molecular Level Sucrose Quantification: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:9511. [PMID: 36502213 PMCID: PMC9740140 DOI: 10.3390/s22239511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Sucrose is a primary metabolite in plants, a source of energy, a source of carbon atoms for growth and development, and a regulator of biochemical processes. Most of the traditional analytical chemistry methods for sucrose quantification in plants require sample treatment (with consequent tissue destruction) and complex facilities, that do not allow real-time sucrose quantification at ultra-low concentrations (nM to pM range) under in vivo conditions, limiting our understanding of sucrose roles in plant physiology across different plant tissues and cellular compartments. Some of the above-mentioned problems may be circumvented with the use of bio-compatible ligands for molecular recognition of sucrose. Nevertheless, problems such as the signal-noise ratio, stability, and selectivity are some of the main challenges limiting the use of molecular recognition methods for the in vivo quantification of sucrose. In this review, we provide a critical analysis of the existing analytical chemistry tools, biosensors, and synthetic ligands, for sucrose quantification and discuss the most promising paths to improve upon its limits of detection. Our goal is to highlight the criteria design need for real-time, in vivo, highly sensitive and selective sucrose sensing capabilities to enable further our understanding of living organisms, the development of new plant breeding strategies for increased crop productivity and sustainability, and ultimately to contribute to the overarching need for food security.
Collapse
Affiliation(s)
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali 760031, Colombia
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Shchemelev IS, Smirnova MA, Ivanov AV, Ferapontov NB. Application of Complex Forming Impregnated Polyvinyl Alcohol for the Determination of Carbohydrates by Optical Micrometry. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ratanawimarnwong N, Suksomphot V, Sornpipatpong K, Lengwan S, Donpudsa S, Choengchan N, Mantim T. Microfluidic paper-based analytical device for determination of sucrose in sugarcane juice using Benedict's reagent. Anal Bioanal Chem 2022; 414:7783-7791. [PMID: 36068346 DOI: 10.1007/s00216-022-04312-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/01/2022]
Abstract
This work presents a microfluidic paper-based analytical device (μPAD) for the determination of sucrose using the Benedict's test. An asymmetric dumbbell-shaped hydrophobic barrier was produced by rubber stamping the barrier pattern onto a laboratory filter paper. Hydrochloric acid and solution containing sucrose were successively deposited onto the sample reservoir of the μPAD attached to a glass slide. The device was placed in a plastic bag and dipped into boiling water for accelerating the hydrolysis of sucrose into the reducing sugars. Then the Benedict's reagent was added at the narrow straight channel connecting the two circular zones of the μPAD, which was replaced in the plastic bag and heated again for reduction of Cu(II) by the reducing sugars. Precipitate of brick-red copper(I) oxide was formed. The image of the μPAD was recorded by a smartphone. The ratio of the red to blue intensities gave linear correlation with the concentration of sucrose in the range of 0.5-10% w/v. The relative standard deviation of the measurement was less than 5% for 2 and 4% w/v sucrose (n = 10), with limit of determination, calculated using standard deviation of regression divided by slope of calibration, of 0.26% w/v sucrose. The method was successfully validated using the dinitrosalicylic acid method for sucrose measurement. Percent recoveries of sucrose were evaluated using ten sugarcane samples. The recoveries were in the range of 89 to 101%, demonstrating that there were no significant sample matrix effects on the quantification.
Collapse
Affiliation(s)
- Nuanlaor Ratanawimarnwong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand. .,Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Bangkok, Thailand.
| | - Vanlada Suksomphot
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Khemika Sornpipatpong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Supamit Lengwan
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Suchao Donpudsa
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Nuthawut Choengchan
- Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Bangkok, Thailand.,Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology, Bangkok, 10520, Thailand
| | - Thitirat Mantim
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.,Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Bangkok, Thailand
| |
Collapse
|
14
|
Kochetkov KA, Bystrova NA, Pavlov PA, Oshchepkov MS, Oshchepkov AS. Microfluidic Asymmetrical Synthesis and Chiral Analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Chen LF, Lin MT, Noreldeen HA, Peng HP, Deng HH, He SB, Chen W. Fructose oxidase-like activity of CuO nanoparticles supported by phosphate for a tandem catalysis-based fructose sensor. Anal Chim Acta 2022; 1220:340064. [DOI: 10.1016/j.aca.2022.340064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
|
16
|
Al Lawati HAJ, Hassanzadeh J, Bagheri N. A handheld 3D-printed microchip for simple integration of the H 2O 2-producing enzymatic reactions with subsequent chemiluminescence detection: Application for sugars. Food Chem 2022; 383:132469. [PMID: 35183966 DOI: 10.1016/j.foodchem.2022.132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Herein, a novel lab-on-a-chip (LoC) device fabricated by 3D printing based on H2O2-producing enzymatic reactions with sensitive chemiluminescence (CL) detection was developed to measure different sugars, including glucose, fructose, sucrose, and maltose, in honey, juice, and rice flour samples. The pumpless microchip included two main parts, separated by new cone-shape blocking valves; part A for sample introduction and subsequent enzymatic reaction, besides the CL reagent (luminol) container, and part B for detection. The specific enzyme(s) were embedded into the pores of the zinc zeolite-imidazole framework (ZIF-8) to improve their storage stability. By opening the valves, H2O2 produced by enzymatic reaction and luminol could flow through the designed channels into the detection zone on part B, where a 2D cobalt-imidazole framework was embedded to improve the luminol-H2O2 CL emission. The obtained signal was proportional to the considered sugar concentration, with the detection limits range of 20-268 µM.
Collapse
Affiliation(s)
- Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Oman.
| | - Javad Hassanzadeh
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Oman
| | - Nafiseh Bagheri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod 123, Oman
| |
Collapse
|
17
|
Quantification of Glucose, fructose and 1,5-Anhydroglucitol in plasma of diabetic patients by ultra performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1200:123277. [PMID: 35533424 DOI: 10.1016/j.jchromb.2022.123277] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM), a worldwide disease that affects the quality of human life and social development. Glucose, fructose and 1,5-anhydroglucitol are closely related to diabetes mellitus. However, few methods have been reported to achieve these three carbohydrates in the blood simultaneously. In this study, a UPLC-MS/MS method allowing to quantify glucose, fructose, and 1,5-anhydroglucitol simultaneously in human plasma was developed. The analysis was performed by UPLC-MS/MS system with HILIC column. This new method provided satisfactory results in terms of calibration curves with good linearity (R2 > 0.99) over 3 order of magnitude range, precision (coefficient of variation of intra-day and inter-day: 0.72-10.23% and 2.21-13.8%), accuracy (results of intra-day and inter-day: 97-113%, 100-107%), matrix effects (87-109%), recovery (93-119%), carry-over (0.004-0.014%), as well as stability (0.04-6.9%) within the acceptance criteria. The reproducible, precise and accurate method with suitable dynamic ranges was successfully applied to the analysis of glucose, fructose and 1,5-anhydroglucitol in T2DM under different pathophysiological conditions.
Collapse
|
18
|
Li K, Xu X, Liu W, Yang S, Huang L, Tang S, Zhang Z, Wang Y, Chen F, Qian K. A Copper-Based Biosensor for Dual-Mode Glucose Detection. Front Chem 2022; 10:861353. [PMID: 35444996 PMCID: PMC9014126 DOI: 10.3389/fchem.2022.861353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Glucose is a source of energy for daily activities of the human body and is regarded as a clinical biomarker, due to the abnormal glucose level in the blood leading to many endocrine metabolic diseases. Thus, it is indispensable to develop simple, accurate, and sensitive methods for glucose detection. However, the current methods mainly depend on natural enzymes, which are unstable, hard to prepare, and expensive, limiting the extensive applications in clinics. Herein, we propose a dual-mode Cu2O nanoparticles (NPs) based biosensor for glucose analysis based on colorimetric assay and laser desorption/ionization mass spectrometry (LDI MS). Cu2O NPs exhibited excellent peroxidase-like activity and served as a matrix for LDI MS analysis, achieving visual and accurate quantitative analysis of glucose in serum. Our proposed method possesses promising application values in clinical disease diagnostics and monitoring.
Collapse
Affiliation(s)
- Kai Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Xiaoyu Xu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shouzhi Yang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuai Tang
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Ziyue Zhang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuning Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuning Wang, ; Fangmin Chen, ; Kun Qian,
| | - Fangmin Chen
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin, China
- *Correspondence: Yuning Wang, ; Fangmin Chen, ; Kun Qian,
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuning Wang, ; Fangmin Chen, ; Kun Qian,
| |
Collapse
|
19
|
Hassanzadeh J, Al Lawati HAJ, Bagheri N. On paper synthesis of multifunctional CeO 2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens Bioelectron 2022; 207:114184. [PMID: 35339073 DOI: 10.1016/j.bios.2022.114184] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
This study reports an economical and portable point-of-care (POC) monitoring device based on artificial multi-enzyme cascade systems for multiple detection purposes. The device was made up of a disposable three dimensional microfluidic paper-based analytical device (3D μPAD) with multiple detection zones and a smartphone readout. On-paper synthesis of a multifunctional mimetic composite, based on the CeO2 nanoparticles embedded in the amino-functionalized Fe metal-organic frameworks (CeO2@NH2-MIL-88B(Fe)), for cascade reactions was the main achievement of this work. The 3D μPAD was applied for simultaneous quantification of glucose, fructose, sucrose and maltose, and the detection process consisted of the enzymatic reaction of each sugar by anchored enzymes on the metal-organic frameworks (MOF) and successive oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Utilizing the new artificial mimicking system improved the color development uniformity and resulted in a reliable detection tool, with excellent detection limits in the range of 20-280 μM. It was directly applied to analyze the sugars levels of human total blood, urine, semen, honey and juice samples with the relative errors of less than 7.7% compared with the HPLC method. The cost-effective and easy-to-use μPAD has a great potential to be used in either medical diagnostics or the food industry. Also, it can be considered as a competitive POC method for patients in disadvantaged communities or emergencies.
Collapse
Affiliation(s)
- Javad Hassanzadeh
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman.
| | - Nafiseh Bagheri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
20
|
Guan T, Xu Z, Wang J, Liu Y, Shen X, Li X, Sun Y, Lei H. Multiplex optical bioassays for food safety analysis: Toward on-site detection. Compr Rev Food Sci Food Saf 2022; 21:1627-1656. [PMID: 35181985 DOI: 10.1111/1541-4337.12914] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Food safety analysis plays a significant role in controlling food contamination and supervision. In recent years, multiplex optical bioassays (MOBAs) have been widely applied to analyze multiple hazards due to their efficiency and low cost. However, due to the challenges such as multiplexing capacity, poor sensitivity, and bulky instrumentation, the further application of traditional MOBAs in food screening has been limited. In this review, effective strategies regarding food safety MOBAs are summarized, such as spatial-resolution modes performed in multi-T lines/dots strips or arrays of strip/microplate/microfluidic chip/SPR chip and signal-resolution modes employing distinguishable colorimetric/luminescence/fluorescence/surface plasma resonance/surface-enhanced Raman spectrum as signal tags. Following this, new trends on how to design engineered sensor architecture and exploit distinguishable signal reporters, how to improve both multiplexing capacity and sensitivity, and how to integrate these formats into smartphones so as to be mobile are summarized systematically. Typically, in the case of enhancing multiplexing capacity and detection throughput, microfluidic array chips with multichannel architecture would be a favorable approach to overcome the spatial and physical limitations of immunochromatographic assay (ICA) test strips. Moreover, noble metal nanoparticles and single-excitation, multiple-emission luminescence nanomaterials hold great potential in developing ultrasensitive MOBAs. Finally, the exploitation of innovative multiplexing strategy hybridized with powerful and widely available smartphones opens new perspectives to MOBAs. In future, the MOBAs should be more sensitive, have higher multiplexing capacity, and easier instrumentation.
Collapse
Affiliation(s)
- Tian Guan
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yingju Liu
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Kumar PS, Bhand S, Das AK, Goel S. Microfluidic paper device with on-site heating to produce reactive peroxide species for enhanced smartphone enabled chemiluminescence signal. Talanta 2022; 236:122858. [PMID: 34635242 DOI: 10.1016/j.talanta.2021.122858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 09/05/2021] [Indexed: 01/29/2023]
Abstract
Chemiluminescence signal amplification (CLSA) is of huge interest because of its sensitive detection in various applications such as food analysis, biomedical diagnosis and environmental monitoring. Due to this, there is a manifold attention to develop rapidly prototyped and miniaturized devices for CLSA. In this context, herein, a novel CLSA approach is demonstrated on a 3D printed microfluidic paper-based analytical device (μPADs), fabricated using Fused deposition modeling (FDM) printing technology. Influence of working temperature, ranging 30 °C-110 °C, on CL signal generation from well-established Luminol/Co+2 - H2O2 reaction was analyzed using a screen-printed flexible heater onto the 3D printed reaction platform. A smartphone-based capturing/detection system provided the amenability for a point-of-care testing system. For the first time, strong and stable CLSA was found with about 255% ± 5% increase in its signal intensity without using any additional external enhancers. The on-site working temperature was directly in proportional to the intensity of CL signal generated from Luminol/Co+2 - H2O2 reaction under optimum conditions, wherein the device had a wide linear range from 50 nM to 1 μM with a detection limit of 35 nM for H2O2 detection. The reliability of the developed amplification method was tested for practicability to detect the concentration of H2O2 in milk as real sample analysis. Overall, such CLSA mechanism in miniaturized μPADs will have strong potential for multiple CL based detection and monitoring application.
Collapse
Affiliation(s)
- Pavar Sai Kumar
- MEMS, Microfluidics and Nano Electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Sunil Bhand
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Goa Campus, Goa, 403726, India
| | - Ashis Kumar Das
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Sanket Goel
- MEMS, Microfluidics and Nano Electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
22
|
Deng Y, Li Q, Zhou Y, Qian J. Fully Inkjet Printing Preparation of a Carbon Dots Multichannel Microfluidic Paper-Based Sensor and Its Application in Food Additive Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57084-57091. [PMID: 34797049 DOI: 10.1021/acsami.1c14435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic paper-based sensors as a new type of microsample detection technology are widely used in medical diagnosis, environmental monitoring, and food safety testing. Inkjet printing has the advantages of simplicity, speed, flexibility, high resolution, low cost, and efficient mass production and has become one of the most cutting-edge technologies in the manufacture of paper-based sensors. In this work, a fully inkjet printing preparation method was proposed for paper-based sensors, which can achieve high-precision, multichannel, and visual fluorescence detection. Three kinds of fluorescent carbon dots (CDs; r-CDs, b-CDs, and y-CDs) were fabricated into inkjet ink by adding a suitable ratio of solvent, PEG, and surfactant FS3100 to control its viscosity, surface tension, and other influencing factors, obtaining the best-visualized fluorescence response on paper. To optimize the full inkjet printing process of the paper-based sensor, we studied the influence of factors such as the hydrophobic material AKD formula, postprocessing conditions, and the structure of the hydrophilic and hydrophobic channels on the paper-based detection accuracy, and it was found that proper AKD concentration, curing time, and temperature can make AKD fully react with paper-based surface groups and produce more hydrophobic groups on the surface and inside of the filter paper, which can form paper-based microfluidic sensors with clear boundaries and fast transmission speed at low cost and high efficiency. The fabricated sensor is used for the fluorometric determination of vitamin C (AA), NO2-, and sunset yellow (SY) at the same time, and the limits of visual detection by eyes are 6 mmol/L (NO2-), 60 μmol/L (SY), and 40 mmol/L (AA). The mechanism of inkjet printing is investigated in detail, which is simple, reliable, and easy to realize mass production and can realize highly sensitive, on-site, and visual detection for food additives.
Collapse
Affiliation(s)
- Yafeng Deng
- School of Printing and Packaging, Wuhan University, Wuhan 430079, Hubei, China
| | - Qingzhi Li
- School of Printing and Packaging, Wuhan University, Wuhan 430079, Hubei, China
| | - Yihua Zhou
- School of Printing and Packaging, Wuhan University, Wuhan 430079, Hubei, China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University, Wuhan 430079, Hubei, China
| |
Collapse
|
23
|
Ortiz-Martínez M, Flores-DelaToba R, González-González M, Rito-Palomares M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. BIOSENSORS 2021; 11:482. [PMID: 34940239 PMCID: PMC8699572 DOI: 10.3390/bios11120482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
A point-of-care (POC) can be defined as an in vitro diagnostic test that can provide results within minutes. It has gained enormous attention as a promising tool for biomarkers detection and diagnosis, as well as for screening of chronic noncommunicable diseases such as diabetes mellitus. Diabetes mellitus type 2 is one of the metabolic disorders that has grown exponentially in recent years, becoming one of the greatest challenges to health systems. Early detection and accurate diagnosis of this disorder are essential to provide adequate treatments. However, efforts to reduce incidence should remain not only in these stages but in developing continuous monitoring strategies. Diabetes-monitoring tools must be accessible and affordable; thus, POC platforms are attractive, especially paper-based ones. Paper-based POCs are simple and portable, can use different matrixes, do not require highly trained staff, and are less expensive than other platforms. These advantages enhance the viability of its application in low-income countries and hard-to-reach zones. This review aims to present a critical summary of the main components required to create a sensitive and affordable enzymatic paper-based POC, as well as an oriented analysis to highlight the main limitations and challenges of current POC devices for diabetes type 2 monitoring and future research opportunities in the field.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| |
Collapse
|
24
|
Lipińska W, Grochowska K, Siuzdak K. Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1156. [PMID: 33925155 PMCID: PMC8146701 DOI: 10.3390/nano11051156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
More than 50 years have passed since Clark and Lyon developed the concept of glucose biosensors. Extensive research about biosensors has been carried out up to this day, and an exponential trend in this topic can be observed. The scope of this review is to present various enzyme immobilization methods on gold nanoparticles used for glucose sensing over the past five years. This work covers covalent bonding, adsorption, cross-linking, entrapment, and self-assembled monolayer methods. The experimental approach of each modification as well as further results are described. Designated values of sensitivity, the limit of detection, and linear range are used for the comparison of immobilization techniques.
Collapse
Affiliation(s)
| | | | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland; (W.L.); (K.G.)
| |
Collapse
|
25
|
Ng JS, Hashimoto M. 3D-PAD: Paper-Based Analytical Devices with Integrated Three-Dimensional Features. BIOSENSORS 2021; 11:84. [PMID: 33802637 PMCID: PMC8002416 DOI: 10.3390/bios11030084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
This paper describes the use of fused deposition modeling (FDM) printing to fabricate paper-based analytical devices (PAD) with three-dimensional (3D) features, which is termed as 3D-PAD. Material depositions followed by heat reflow is a standard approach for the fabrication of PAD. Such devices are primarily two-dimensional (2D) and can hold only a limited amount of liquid samples in the device. This constraint can pose problems when the sample consists of organic solvents that have low interfacial energies with the hydrophobic barriers. To overcome this limitation, we developed a method to fabricate PAD integrated with 3D features (vertical walls as an example) by FDM 3D printing. 3D-PADs were fabricated using two types of thermoplastics. One thermoplastic had a low melting point that formed hydrophobic barriers upon penetration, and another thermoplastic had a high melting point that maintained 3D features on the filter paper without reflowing. We used polycaprolactone (PCL) for the former, and polylactic acid (PLA) for the latter. Both PCL and PLA were printed with FDM without gaps at the interface, and the resulting paper-based devices possessed hydrophobic barriers consisting of PCL seamlessly integrated with vertical features consisting of PLA. We validated the capability of 3D-PAD to hold 30 μL of solvents (ethanol, isopropyl alcohol, and acetone), all of which would not be retained on conventional PADs fabricated with solid wax printers. To highlight the importance of containing an increased amount of liquid samples, a colorimetric assay for the formation of dimethylglyoxime (DMG)-Ni (II) was demonstrated using two volumes (10 μL and 30 μL) of solvent-based dimethylglyoxime (DMG). FDM printing of 3D-PAD enabled the facile construction of 3D structures integrated with PAD, which would find applications in paper-based chemical and biological assays requiring organic solvents.
Collapse
Affiliation(s)
- James S. Ng
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore;
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore;
- SUTD-MIT International Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
26
|
Zhang B, Hu X, Jia Y, Li J, Zhao Z. Polyaniline@Au organic-inorganic nanohybrids with thermometer readout for photothermal immunoassay of tumor marker. Mikrochim Acta 2021; 188:63. [PMID: 33537897 DOI: 10.1007/s00604-021-04719-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
A photothermal immunoassay using a thermometer as readout based on polyaniline@Au organic-inorganic nanohybrids was built. Temperature output is acquired due to the photothermal effect of the photothermal nanomaterial. Polyaniline@Au organic-inorganic nanohybrids were synthesized by interfacial reactions with high photothermal conversion efficiency. A sandwich structure of the immunocomplex was prepared on a microplate for determination of carcinoembryonic antigen (CEA) by polyaniline@Au organic-inorganic nanohybrids as nanolabel. The released heat based on light-to-heat conversion from the photothermal nanolabel under NIR irradiation is detectable using the thermometer. The increased temperature is directly proportional to CEA concentration. The linear range of the photothermal immunoassay is 0.20 to 25 ng mL-1 with determination limit of 0.17 ng mL-1. Polyaniline@Au organic-inorganic nanohybrids with high photothermal conversion efficiency was synthesized as labels to construct photothermal immunosensor. The sandwich-type immunoassay was built on 96 hole plate based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected quantitatively by thermometer readout.
Collapse
Affiliation(s)
- Bing Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xing Hu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yejing Jia
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jing Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhihuan Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
27
|
Pinheiro T, Marques AC, Carvalho P, Martins R, Fortunato E. Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3576-3590. [PMID: 33449630 DOI: 10.1021/acsami.0c19089] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plasmonic properties of gold nanoparticles (AuNPs) are a promising tool to develop sensing alternatives to traditional, enzyme-catalyzed reactions. The need for sensing alternatives, especially in underdeveloped areas of the world, has given rise to the application of nonenzymatic sensing approaches paired with cellulosic substrates to biochemical analysis. Herein, we present three individual, low-step, wet-chemistry, colorimetric assays for three target biomarkers, namely, glucose, uric acid, and free cholesterol, relevant in diabetes control and their translation into paper-based assays and microfluidic platforms for multiplexed analysis. For glucose determination, an in situ AuNPs synthesis approach was applied into the developed μPAD, giving semiquantitative measures in the physiologically relevant range. For uric acid and cholesterol determination, modified AuNPs were used to functionalize paper with a gold-on-paper approach with the optical properties changing based on different aggregation degrees and hydrophobic properties of particles dependent on analyte concentration. These paper-based assays show sensitivity ranges and limits of detection compatible for target analyte level determination and detection limits comparable to those of similar enzymatic, colorimetric systems, relying only on plasmonic transduction without the need for enzymatic activity or other chromogenic substrates. The resulting paper-based assays were integrated into a single 3D, multiplex paper-based device using paper microfluidics, showing the capability for performing different colorimetric assays with distinct requirements in terms of sample flow and sample uptake in test zones using a combination of both horizontal and vertical flows inside the same device. The presented device allows for multiparametric, colorimetric measures of different metabolite levels from a single complex sample matrix drop using digital color analysis, showing the potential for development of low-cost, low-complexity tools for diagnostics toward the point-of-care.
Collapse
Affiliation(s)
- Tomás Pinheiro
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Ana C Marques
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Patrícia Carvalho
- SINTEF Materials and Chemistry, PB 124, Blindern, NO-0314 Oslo, Norway
| | - Rodrigo Martins
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Departamento de Ciência de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa and CEMOP/UNINOVA, Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
28
|
Li W, Zhang X, Li T, Ji Y, Li R. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal Chim Acta 2021; 1148:238196. [PMID: 33516379 DOI: 10.1016/j.aca.2020.12.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The popularization of paper-based analytical devices (PADs) in analytical science has fostered research on enhancing their analytical performance for accurate and sensitive assays. With their superb recognition capability and structural stability, molecularly imprinted polymers (MIPs) have been extensively employed as biomimetic receptors for capturing target analytes in various complex matrices. The integration of MIPs as recognition elements with PADs (MIP-PADs) has opened new opportunities for advanced analytical devices with elevated selectivity and sensitivity, as well as a shorter assay time and a lower cost. This review covers recent advances in MIP-PAD fabrication and engineering based on multifarious signal transduction systems such as colorimetry, fluorescence, electrochemistry, photoelectrochemistry, and chemiluminescence. The application of MIP-PADs in the fields of biomedical diagnostics, environmental analysis, and food safety monitoring is also reviewed. Further, the advantages, challenges, and perspectives of MIP-PADs are discussed.
Collapse
Affiliation(s)
- Wang Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xiaoyue Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
29
|
Abstract
3D hierarchical graphitic carbon nanowalls encapsulating cobalt nanoparticles HPC-Co were prepared in high yield from solid-state pyrolysis of cobalt 2,2′-bipyridine chloride complex. Annealing of HPC-Co in air gave HPC-CoO, which consists of a mixture of crystallite Co3O4 nanospheres and nanorods bursting out of mesoporous carbon. Both nanocomposites were fully characterized using SEM, TEM, BET, and powder X-ray diffraction. The elemental composition of both nanocomposites examined using SEM elemental mapping and TEM elemental mapping supports the successful doping of nitrogen. The powder X-ray diffraction studies supported the formation of hexagonal cobalt in HPC-Co, and cubic crystalline Co3O4 with cubic cobalt in HPC-CoO. HPC-Co and HPC-CoO can be used as a modified carbon electrode in cyclic voltammetry experiments for the detection of fructose with limit of detection LOD 0.5 mM. However, the single-frequency impedimetric method has a wider dynamic range of 8.0–53.0 mM and a sensitivity of 24.87 Ω mM−1 for the electrode modified with HPC-Co and 8.0–87.6 mM and a sensitivity of 1.988 Ω mM−1 for the electrode modified with HPC-CoO. The LOD values are 3 and 4 mM, respectively. The effect of interference increases in the following order: ascorbic acid, ethanol, urea, and glucose. A simple method was used with negligible interference from glucose to measure the percentage of fructose in a corn syrup sample with an HPC-CoO electrode. A specific capacitance of 47.0 F/g with 76.6% retentivity was achieved for HPC-Co and 28.2 F/g with 87.9% for HPC-CoO for 3000 charge–discharge cycles. Thus, (1) has better sensitivity and specific capacitance than (2), because (1) has a higher surface area and less agglomerated cobalt nanoparticles than (2).
Collapse
|
30
|
Lu Y, Wu X, Yuan L, Li Y, Wang P, Yu J, Tian P, Liu W. A rapid liquid chromatography‐electrospray ionization‐ion mobility spectrometry method for monitoring nine representative metabolites in the seedlings of cucumber and wheat. J Sep Sci 2020; 44:709-716. [DOI: 10.1002/jssc.202000811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yaling Lu
- Beijing Key Lab of Bioprocess, College of Life Science and Technology Beijing University of Chemical Technology Beijing P. R. China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Xiangping Wu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Lei Yuan
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Yingdi Li
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Penghui Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin Tarim University Alar P. R. China
| | - Jianna Yu
- College of Chemical Engineering Xiangtan University Xiangtan P. R. China
| | - Pingfang Tian
- Beijing Key Lab of Bioprocess, College of Life Science and Technology Beijing University of Chemical Technology Beijing P. R. China
| | - Wenjie Liu
- College of Chemical Engineering Xiangtan University Xiangtan P. R. China
| |
Collapse
|
31
|
Xiong X, Zhang J, Wang Z, Liu C, Xiao W, Han J, Shi Q. Simultaneous Multiplexed Detection of Protein and Metal Ions by a Colorimetric Microfluidic Paper-based Analytical Device. BIOCHIP JOURNAL 2020; 14:429-437. [PMID: 33144923 PMCID: PMC7594977 DOI: 10.1007/s13206-020-4407-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022]
Abstract
In order to improve the efficiency of disease diagnosis and environmental monitoring, it is desirable to detect the concentration of proteins and metal ions simultaneously, since the current popular diagnostic platform can only detect proteins or metal ions independently. In this work, we developed a colorimetric microfluidic paper-based analytical device (µPAD) for simultaneous determination of protein (bovine serum albumin, BSA) and metal ions [Fe(III) and Ni(II)]. The µPAD consisted of one central zone, ten reaction zones and ten detection zones in one device, in which reaction solutions were effectively optimized for different types of chromogenic reactions. Fe(III), Ni(II) and BSA can be easily identified by the colored products, and their concentrations are in good accordance with color depth based on the established standard curves. The detection limits are 0.1 mM for Fe(III), 0.5 mM for Ni(II) and 1µM for BSA, respectively. Best of all, we demonstrated the efficiency of the µPAD with accurate detection of Fe(III), Ni (II) and BSA from river water samples within 15 minutes. The µPAD detection is efficient, instrument-free, and easy-to-use, holding great potential for simultaneous detection of cross type analytes in numerous diagnostic fields.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081 China.,Micronano Centre, Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081 China
| | - Junlin Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| | - Zhou Wang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| | - Chenchen Liu
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| | - Wende Xiao
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081 China.,Micronano Centre, Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081 China
| | - Junfeng Han
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081 China.,Micronano Centre, Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081 China
| | - Qingfan Shi
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
32
|
Pinheiro T, Ferrão J, Marques AC, Oliveira MJ, Batra NM, Costa PMFJ, Macedo MP, Águas H, Martins R, Fortunato E. Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. NANOMATERIALS 2020; 10:nano10102027. [PMID: 33066658 PMCID: PMC7602483 DOI: 10.3390/nano10102027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Due to its properties, paper represents an alternative to perform point-of-care tests for colorimetric determination of glucose levels, providing simple, rapid, and inexpensive means of diagnosis. In this work, we report the development of a novel, rapid, disposable, inexpensive, enzyme-free, and colorimetric paper-based assay for glucose level determination. This sensing strategy is based on the synthesis of gold nanoparticles (AuNPs) by reduction of a gold salt precursor, in which glucose acts simultaneously as reducing and capping agent. This leads to a direct measurement of glucose without any enzymes or depending on the detection of intermediate products as in conventional enzymatic colorimetric methods. Firstly, we modelled the synthesis reaction of AuNPs to determine the optical, morphological, and kinetic properties and their manipulation for glucose sensing, by determining the influence of each of the reaction precursors towards the produced AuNPs, providing a guide for the manipulation of nucleation and growth. The adaptation of this synthesis into the developed paper platform was tested and calibrated using different standard solutions with physiological concentrations of glucose. The response of the colorimetric signals obtained with this paper-based platform showed a linear behavior until 20 mM, required for glycemic control in diabetes, using the Red × Value/Grey feature combination as a calibration metric, to describe the variations in color intensity and hue in the spot test zone. The colorimetric sensor revealed a detection limit of 0.65 mM, depending on calibration metric and sensitivity of 0.013 AU/mM for a linear sensitivity range from 1.25 to 20 mM, with high specificity for the determination of glucose in complex standards with other common reducing interferents and human serum.
Collapse
Affiliation(s)
- Tomás Pinheiro
- CENIMAT/i3N, Materials Science Department, Faculdade de Ciência e Tecnologia–Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal; (T.P.); (J.F.); (A.C.M.); (M.J.O.); (H.Á.); (R.M.)
| | - João Ferrão
- CENIMAT/i3N, Materials Science Department, Faculdade de Ciência e Tecnologia–Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal; (T.P.); (J.F.); (A.C.M.); (M.J.O.); (H.Á.); (R.M.)
| | - Ana C. Marques
- CENIMAT/i3N, Materials Science Department, Faculdade de Ciência e Tecnologia–Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal; (T.P.); (J.F.); (A.C.M.); (M.J.O.); (H.Á.); (R.M.)
| | - Maria J. Oliveira
- CENIMAT/i3N, Materials Science Department, Faculdade de Ciência e Tecnologia–Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal; (T.P.); (J.F.); (A.C.M.); (M.J.O.); (H.Á.); (R.M.)
| | - Nitin M. Batra
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (N.M.B.); (P.M.F.J.C.)
| | - Pedro M. F. J. Costa
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (N.M.B.); (P.M.F.J.C.)
| | - M. Paula Macedo
- CEDOC, Chronic Disease Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 1150-190 Lisbon, Portugal;
- Education and Research Centre, APDP-Diabetes Portugal (APDP-ERC), 1250-203 Lisbon, Portugal
| | - Hugo Águas
- CENIMAT/i3N, Materials Science Department, Faculdade de Ciência e Tecnologia–Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal; (T.P.); (J.F.); (A.C.M.); (M.J.O.); (H.Á.); (R.M.)
| | - Rodrigo Martins
- CENIMAT/i3N, Materials Science Department, Faculdade de Ciência e Tecnologia–Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal; (T.P.); (J.F.); (A.C.M.); (M.J.O.); (H.Á.); (R.M.)
| | - Elvira Fortunato
- CENIMAT/i3N, Materials Science Department, Faculdade de Ciência e Tecnologia–Universidade Nova de Lisboa, 2829-516 Lisbon, Portugal; (T.P.); (J.F.); (A.C.M.); (M.J.O.); (H.Á.); (R.M.)
- Correspondence:
| |
Collapse
|
33
|
Ng JS, Hashimoto M. Fabrication of paper microfluidic devices using a toner laser printer. RSC Adv 2020; 10:29797-29807. [PMID: 35518222 PMCID: PMC9056319 DOI: 10.1039/d0ra04301j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
This paper describes a method to fabricate microfluidic paper-based analytical devices (μPADs) using a toner laser printer. Multiple methods have been reported for the fabrication of μPADs for point-of-care diagnostics and environmental monitoring. Despite successful demonstrations, however, existing fabrication methods depend on particular printers, in-house instruments, and synthetic materials. In particular, recent discontinuation of the solid wax printer has made it difficult to fabricate μPADs with readily available instruments. Herein we reported the fabrication of μPADs using the most widely available type of printer: a toner laser printer. Heating of printed toner at 200 °C allowed the printed toner to reflow, and the spreading of the hydrophobic polymer through the filter paper was characterized. Using the developed μPADs, we conducted model colorimetric assays for glucose and bovine serum albumin (BSA). We found that heating of filter paper at 200 °C for 60 min caused the pyrolysis of cellulose in the paper. The pyrolysis resulted in the formation of aldehydes that could interfere with molecular assays involving redox reactions. To overcome this problem, we confirmed that the removal of the aldehyde could be readily achieved by washing the μPADs with aqueous bleach. Overall, the developed fabrication method should be compatible with most toner laser printers and will make μPADs accessible in resource-limited circumstances.
Collapse
Affiliation(s)
- James S Ng
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore +65 6499 4867
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore +65 6499 4867
- SUTD-MIT International Design Centre, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|