1
|
Hensel RC, Di Vizio B, Materòn EM, Shimizu FM, Angelim MKSC, de Souza GF, Módena JLP, Moraes-Vieira PMM, de Azevedo RB, Litti L, Agnoli S, Casalini S, Oliveira ON. Enhanced performance of impedimetric immunosensors to detect SARS-CoV-2 with bare gold nanoparticles and graphene acetic acid. Talanta 2025; 281:126903. [PMID: 39326119 DOI: 10.1016/j.talanta.2024.126903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Immunosensors based on electrical impedance spectroscopy allow for label-free, real-time detection of biologically relevant molecules and pathogens, without requiring electro-active materials. Here, we investigate the influence of bare gold nanoparticles (AuNPs), synthesized via laser ablation in solution, on the performance of an impedimetric immunosensor for detecting severe acute respiratory syndrome coronavirus (SARS-CoV-2). Graphene acetic acid (GAA) was used in the active layer for immobilizing anti-SARS-CoV-2 antibodies, owing to its high density of carboxylic groups. Immunosensors incorporating AuNPs exhibited superior performance compared to those relying solely on GAA, achieving a limit of detection (LoD) of 3 x 10-20 g/mL to detect the Spike Receptor Binding Domain (RBD) protein of SARS-CoV-2 and of 2 PFU/mL for inactivated virus. Moreover, these immunosensors presented high selectivity against the H1N1 influenza virus. We anticipate that this platform will be versatile and applicable in the early diagnosis of various diseases and viral infections, thereby facilitating Point-of-Care testing.
Collapse
Affiliation(s)
- Rafael C Hensel
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| | - Biagio Di Vizio
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Elsa M Materòn
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil; Sao Carlos Institute of Chemistry, University of Sao Paulo, São Carlos, Brazil
| | - Flávio M Shimizu
- Institute of Physics Gleb Wataghin, University of Campinas, Campinas, Brazil
| | - Monara Kaelle S C Angelim
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela F de Souza
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - José L P Módena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology - University of Campinas, Campinas, Brazil
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Lucio Litti
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Stefano Casalini
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Brazil.
| |
Collapse
|
2
|
Li H, Wang X, Wu H, Wang W, Zheng A, Zhu J, Liang L, Sun H, Lu L, Lv J, Yu Q, Wang H, Yu B. Simultaneous noninvasive ultrasensitive detection of prostate specific antigen and lncRNA PCA3 using multiplexed dual optical microfibers with strong plasmonic nanointerfaces. Biosens Bioelectron 2024; 264:116672. [PMID: 39151263 DOI: 10.1016/j.bios.2024.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Low accuracy of diagnosing prostate cancer (PCa) was easily caused by only assaying single prostate specific antigen (PSA) biomarker. Although conventional reported methods for simultaneous detection of two specific PCa biomarkers could improve the diagnostic efficiency and accuracy, low detection sensitivity restrained their use in extreme early-stage PCa clinical assay applications. In order to overcome above drawbacks, this paper herein proposed a multiplexed dual optical microfibers separately functionalized with gold nanorods (GNRs) and Au nanobipyramids (Au NBPs) nanointerfaces with strong localized surface plasmon resonance (LSPR) effects. The sensors could simultaneously detect PSA protein biomarker and long noncoding RNA prostate cancer antigen 3 (lncRNA PCA3) with ultrahigh sensitivity and remarkable specificity. Consequently, the proposed dual optical microfibers multiplexed biosensors could detect the PSA protein and lncRNA PCA3 with ultra-low limit-of-detections (LODs) of 3.97 × 10-15 mol/L and 1.56 × 10-14 mol/L in pure phosphorus buffer solution (PBS), respectively, in which the obtained LODs were three orders of magnitude lower than existed state-of-the-art PCa assay technologies. Additionally, the sensors could discriminate target components from complicated physiological environment, that showing noticeable biosensing specificity of the sensors. With good performances of the sensors, they could successfully assay PSA and lncRNA PCA3 in undiluted human serum and urine simultaneously, respectively. Consequently, our proposed multiplexed sensors could real-time high-sensitivity simultaneously detect complicated human samples, that providing a novel valuable approach for the high-accurate diagnosis of early-stage PCa individuals.
Collapse
Affiliation(s)
- Hongtao Li
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China.
| | - Xu Wang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hao Wu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Weisheng Wang
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Aiyun Zheng
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jun Zhu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Lili Liang
- Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices, Institute of Information Technology, Handan University, Handan, 056005, China
| | - Huojiao Sun
- School of Electrical and Optoelectronic Engineering, West Anhui University, Luan, 237012, China
| | - Liang Lu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jialiang Lv
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Qi Yu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hongzhi Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China; Institute of Urology, Anhui Medical University, Hefei, 230031, China.
| | - Benli Yu
- School of Physics and Optoelectronic Engineering, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
3
|
Broomfield J, Kalofonou M, Bevan CL, Georgiou P. Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics. BIOSENSORS 2024; 14:443. [PMID: 39329818 PMCID: PMC11430765 DOI: 10.3390/bios14090443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO's REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.
Collapse
Affiliation(s)
- Joseph Broomfield
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Melpomeni Kalofonou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Pantelis Georgiou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Mokni M, Tlili A, Khalij Y, Attia G, Zerrouki C, Hmida W, Othmane A, Bouslama A, Omezzine A, Fourati N. Designing a Simple Electrochemical Genosensor for the Detection of Urinary PCA3, a Prostate Cancer Biomarker. MICROMACHINES 2024; 15:602. [PMID: 38793175 PMCID: PMC11123437 DOI: 10.3390/mi15050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
This study investigates the feasibility of a simple electrochemical detection of Prostate Cancer Antigen 3 (PCA3) fragments extracted from patients' urine, using a thiolated single-strand DNA probe immobilized on a gold surface without using a redox probe. To enhance the PCA3 recognition process, we conducted a comparative analysis of the hybridization location using two thiolated DNA probes: Probe 1 targets the first 40 bases, while Probe 2 targets the fragment from bases 47 to 86. Hybridization with PCA3 followed, using square wave voltammetry. The limit of detection of the designed genosenors were of the order of (2.2 ng/mL), and (1.6 ng/mL) for Probes 1 and 2, respectively, and the subsequent sensitivities were of the order of (0.09 ± 0.01) µA-1 · µg-1 · mL and (0.10 ± 0.01) µA-1 · µg-1 · mL. Specificity tests were then conducted with the sensor functionalized with Probe 2, as it presents better analytical performances. The electrochemical results indicate that the designed sensor can clearly discriminate a complementary target from a non-complementary one. A further modeling of the calibration curves with the Power Law/Hill model indicates that the dissociation constant increases by one order of magnitude, confirming the ability of the designed sensor to perfectly discriminate complementary targets from non-complementary ones.
Collapse
Affiliation(s)
- Meriem Mokni
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
| | - Amal Tlili
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
- LIMA Laboratory, Faculty of Medicine of Monastir, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Yassine Khalij
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
| | - Ghada Attia
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
| | - Chouki Zerrouki
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
| | - Wissem Hmida
- Sahloul University Hospital, Urology Department, Street Route Ceinture Sahloul, Sousse 4054, Tunisia;
| | - Ali Othmane
- LIMA Laboratory, Faculty of Medicine of Monastir, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Ali Bouslama
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
- Faculty of Pharmacy of Monastir, University of Monastir, Avenue Ibn Sina, Monastir 5000, Tunisia
| | - Asma Omezzine
- Biochemistry Department, LR12SP11, Sahloul University Hospital, Route Ceinture Sahloul, Sousse 4054, Tunisia; (Y.K.); (A.B.); (A.O.)
- Faculty of Pharmacy of Monastir, University of Monastir, Avenue Ibn Sina, Monastir 5000, Tunisia
| | - Najla Fourati
- SATIE Laboratory, UMR CNRS 8029, Cnam, 292 rue Saint Martin, 75003 Paris, France; (M.M.); (A.T.); (G.A.); (C.Z.)
| |
Collapse
|
5
|
Fu L, Karimi-Maleh H. Leveraging electrochemical sensors to improve efficiency of cancer detection. World J Clin Oncol 2024; 15:360-366. [PMID: 38576591 PMCID: PMC10989266 DOI: 10.5306/wjco.v15.i3.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Electrochemical biosensors have emerged as a promising technology for cancer detection due to their high sensitivity, rapid response, low cost, and capability for non-invasive detection. Recent advances in nanomaterials like nanoparticles, graphene, and nanowires have enhanced sensor performance to allow for cancer biomarker detection, like circulating tumor cells, nucleic acids, proteins and metabolites, at ultra-low concentrations. However, several challenges need to be addressed before electrochemical biosensors can be clinically implemented. These include improving sensor selectivity in complex biological media, device miniaturization for implantable applications, integration with data analytics, handling biomarker variability, and navigating regulatory approval. This editorial critically examines the prospects of electrochemical biosensors for efficient, low-cost and minimally invasive cancer screening. We discuss recent developments in nanotechnology, microfabrication, electronics integration, multiplexing, and machine learning that can help realize the potential of these sensors. However, significant interdisciplinary efforts among researchers, clinicians, regulators and the healthcare industry are still needed to tackle limitations in selectivity, size constraints, data interpretation, biomarker validation, toxicity and commercial translation. With committed resources and pragmatic strategies, electrochemical biosensors could enable routine early cancer detection and dramatically reduce the global cancer burden.
Collapse
Affiliation(s)
- Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang Province, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan Province, China
- School of Engineering, Lebanese American University, Byblos 1102 2801, Lebanon
| |
Collapse
|
6
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
7
|
Kokabi M, Tahir MN, Singh D, Javanmard M. Advancing Healthcare: Synergizing Biosensors and Machine Learning for Early Cancer Diagnosis. BIOSENSORS 2023; 13:884. [PMID: 37754118 PMCID: PMC10526782 DOI: 10.3390/bios13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Cancer is a fatal disease and a significant cause of millions of deaths. Traditional methods for cancer detection often have limitations in identifying the disease in its early stages, and they can be expensive and time-consuming. Since cancer typically lacks symptoms and is often only detected at advanced stages, it is crucial to use affordable technologies that can provide quick results at the point of care for early diagnosis. Biosensors that target specific biomarkers associated with different types of cancer offer an alternative diagnostic approach at the point of care. Recent advancements in manufacturing and design technologies have enabled the miniaturization and cost reduction of point-of-care devices, making them practical for diagnosing various cancer diseases. Furthermore, machine learning (ML) algorithms have been employed to analyze sensor data and extract valuable information through the use of statistical techniques. In this review paper, we provide details on how various machine learning algorithms contribute to the ongoing development of advanced data processing techniques for biosensors, which are continually emerging. We also provide information on the various technologies used in point-of-care cancer diagnostic biosensors, along with a comparison of the performance of different ML algorithms and sensing modalities in terms of classification accuracy.
Collapse
Affiliation(s)
| | | | | | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA; (M.K.); (M.N.T.); (D.S.)
| |
Collapse
|
8
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
9
|
Li CH, Chan MH, Chang YC, Hsiao M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010364. [PMID: 36615558 PMCID: PMC9822408 DOI: 10.3390/molecules28010364] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Molecular biology applications based on gold nanotechnology have revolutionary impacts, especially in diagnosing and treating molecular and cellular levels. The combination of plasmonic resonance, biochemistry, and optoelectronic engineering has increased the detection of molecules and the possibility of atoms. These advantages have brought medical research to the cellular level for application potential. Many research groups are working towards this. The superior analytical properties of gold nanoparticles can not only be used as an effective drug screening instrument for gene sequencing in new drug development but also as an essential tool for detecting physiological functions, such as blood glucose, antigen-antibody analysis, etc. The review introduces the principles of biomedical sensing systems, the principles of nanomaterial analysis applied to biomedicine at home and abroad, and the chemical surface modification of various gold nanoparticles.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Sinha K, Uddin Z, Kawsar H, Islam S, Deen M, Howlader M. Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Using machine learning and an electronic tongue for discriminating saliva samples from oral cavity cancer patients and healthy individuals. Talanta 2022; 243:123327. [DOI: 10.1016/j.talanta.2022.123327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
|
12
|
Moranova L, Stanik M, Hrstka R, Campuzano S, Bartosik M. Electrochemical LAMP-based assay for detection of RNA biomarkers in prostate cancer. Talanta 2022; 238:123064. [PMID: 34801892 DOI: 10.1016/j.talanta.2021.123064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Current molecular diagnostics of prostate cancer relies on detection of elevated levels of PSA protein in serum, but its specificity has been questioned due to its higher levels also in non-malignant prostate diseases. A long non-coding RNA biomarker, PCA3, demonstrated excellent specificity for prostate cancer, and thus has become an interesting alternative to PSA monitoring. Its detection utilizes mostly reverse transcription PCR with optical detection, making the protocol longer and more expensive. To avoid PCR, we have developed an electrochemical assay coupled with LAMP, an isothermal amplification technique showing high sensitivities at constant temperatures and shorter reaction times. We amplified PCA3 RNA as well as PSA mRNA (serving as a control), hybridized LAMP products on magnetic beads and measured them with chronoamperometry at carbon electrode chips. We show good sensitivity and specificity for both biomarkers in prostate cancer cell lines, and successful detection of PCA3 in clinical samples, i.e., urine samples from 11 prostate cancer patients and 7 healthy controls, where we obtained excellent correlation with clinical data. This is to our knowledge a first such attempt to apply electrochemistry to determine two RNA biomarkers directly in urine samples of prostate cancer patients in a minimally invasive diagnostics format.
Collapse
Affiliation(s)
- Ludmila Moranova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Stanik
- Department of Urologic Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Martin Bartosik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
13
|
Haroon M, Tahir M, Nawaz H, Majeed MI, Al-Saadi AA. Surface-enhanced Raman scattering (SERS) spectroscopy for prostate cancer diagnosis: A review. Photodiagnosis Photodyn Ther 2021; 37:102690. [PMID: 34921990 DOI: 10.1016/j.pdpdt.2021.102690] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
The present review focuses on the diagnosis of prostate cancer using surface enhanced Raman scattering (SERS) spectroscopy. On the basis of literature search, SERS-based analysis for prostate cancer detection of different sample types is reported in the present study. Prostate cancer is responsible for nearly one-tenth of all cell cancer deaths among men. Significant efforts have been dedicated to establish precise and sensitive monitoring techniques to detect prostate cancer biomarkers in different types of body samples. Among the various spectro-analytical techniques investigated to achieve this objective, SERS spectroscopy has been proven as a promising approach that provides noticeable enhancements of the Raman sensitivity when the target biomolecules interact with a nanostructured surface. The purpose of this review is to give a brief overview of the SERS-basedapproach and other spectro-analytical strategies being used for the detection and quantification of prostate cancer biomarkers. The revolutionary development of SERS methods for the diagnosis of prostate cancer has been discussed in more details based on the reported literature. It has been noticed that the SERS-based immunoassay presents reliable results for the prostate cancer quantification. The EC-SERS, which integrates electrochemistry with the SERS model, could also offer a potential ultrasensitive strategy, although its application in prostate cancer analysis has been still limited.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | | | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center (IRC) in Refinery and Advanced Chemicals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
14
|
Takita S, Nabok A, Lishchuk A, Smith D. Optimization of Apta-Sensing Platform for Detection of Prostate Cancer Marker PCA3. Int J Mol Sci 2021; 22:ijms222312701. [PMID: 34884504 PMCID: PMC8657731 DOI: 10.3390/ijms222312701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023] Open
Abstract
This work is a continuation of our research into the development of simple, reliable, and cost-effective methods for the early diagnosis of prostate cancer (PCa). The proposed method is based on the electrochemical detection of the PCA3 biomarker of PCa (long non-coded RNA transcript expressed in urine) using a specific aptamer labeled with a redox group (methylene blue). The electrochemical measurements (cyclic voltammograms) obtained from electrodes functionalized with the aptamer were complemented in this work by another biosensing technique: total internal reflection ellipsometry (TIRE). In addition to proving the concept of the detection of PCA3 in low concentrations down to 90 pM, this study improved our understanding of the processes by which PCA3 binds to its specific aptamer. The high specificity of the binding of PCA3 to the aptamer was assessed by studying the binding kinetics, which yielded an affinity constant (KD) of 2.58 × 10−9 M. Additional XPS measurements confirmed the strong covalent binding of aptamers to gold and showed spectral features associated with PCA3 to aptamer binding.
Collapse
Affiliation(s)
- Sarra Takita
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK;
- Correspondence: ; Tel.: +44-114-2256905
| | - Anna Lishchuk
- Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, UK;
| | - David Smith
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| |
Collapse
|
15
|
Cao X, Song Q, Sun Y, Mao Y, Lu W, Li L. A SERS-LFA biosensor combined with aptamer recognition for simultaneous detection of thrombin and PDGF-BB in prostate cancer plasma. NANOTECHNOLOGY 2021; 32:445101. [PMID: 34298537 DOI: 10.1088/1361-6528/ac1754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
An innovative surface-enhanced Raman spectroscopy and lateral flow assay (SERS-LFA) biosensor combined with aptamer recognition had been developed for the convenient, rapid, sensitive and accurate detection of thrombin and platelet-derived growth factor-BB (PDGF-BB) associated with prostate cancer simultaneously. During the biosensor operation, thrombin and PDGF-BB in the sample were recognized and combined by thiol-modified aptamers immobilized on Au-Ag hollow nanoparticles (Au-Ag HNPs) surface and biotinylated aptamers immobilized on the test lines of the biosensor. Thus, thrombin and PDGF-BB were simultaneously captured between detection aptamers and capture aptamers in a sandwich structure. Finite difference time domain simulation confirmed that 'hot spots' appeared at the gaps of Au-Ag HNPs dimer in the enhanced electromagnetic field compared to that of a single Au-Ag HNP, indicating that the aggregated Au-Ag HNPs owned a good SERS signal amplification effect. The detection limits of thrombin and PDGF-BB in human plasma were as low as 4.837 pg ml-1and 3.802 pg ml-1, respectively. Moreover, the accuracy of the biosensor which was applied to detect thrombin and PDGF-BB in prostate cancer plasma had been verified. This designed biosensor had broad application prospects in the clinical diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Qilong Song
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenbo Lu
- Shanxi Normal University, College of Chemistry and Material Science, Linfen, 041004, People's Republic of China
| | - Li Li
- Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.
Collapse
|
17
|
Choi JH, Ha T, Shin M, Lee SN, Choi JW. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021; 9:928. [PMID: 34440132 PMCID: PMC8392676 DOI: 10.3390/biomedicines9080928] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids, including DNA and RNA, have received prodigious attention as potential biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and instability in body fluids, precise and sensitive detection is highly important. Taking advantage of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review will provide valuable information for the sensitive detection of nucleic acids and early diagnosis of cancers.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| |
Collapse
|
18
|
Sánchez-Salcedo R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Dual electrochemical genosensor for early diagnosis of prostate cancer through lncRNAs detection. Biosens Bioelectron 2021; 192:113520. [PMID: 34311209 DOI: 10.1016/j.bios.2021.113520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/03/2023]
Abstract
The prostate specific antigen (PSA) test is the gold standard for the screening of prostate cancer (PCa), despite its limited clinical specificity. Long noncoding RNAs are released from the tumor tissue to the urine and show great potential for improving specificity in PCa diagnosis. This work reports on a sandwich-type hybridization assay to detect both the urinary biomarker prostate cancer antigen 3 (PCA3) and an endogenous control, the PSA mRNA. Multiple fluorescein-tagged hybridization assistant probes are used to promote the selective capture of this long noncoding RNA, and sensitivity by incorporating multiple redox enzymes per target molecule, after addition of antifluorescein Fab fragment-peroxidase conjugate. This strategy alleviates the problems associated with the low natural abundance of this marker, its large size, and complex secondary structure. The individual genosensors exhibit good sensitivity (2.48 ± 0.01 μA nM-1 and 6.4 ± 0.3 μA nM-1 for PCA3 and PSA, respectively), with wide linear ranges (from 25 pM to 10 nM for PCA3 and 1 nM for PSA), and detection limits in the low picomolar range (4.4 pM and 1.5 pM for PCA3 and PSA, respectively). This analytical performance is retained in the dual configuration without significant cross-talk, despite using the same enzyme label. The usefulness of this dual platform was demonstrated by analyzing RNA extracts from the prostate cancer cell line LNCaP and from urine samples of prostate cancer patients.
Collapse
Affiliation(s)
- Raquel Sánchez-Salcedo
- Departamento de Química Física y Analítica. Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica. Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica. Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica. Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
19
|
Control of Surface Properties of Hyaluronan/Chitosan Multilayered Coatings for Tumor Cell Capture. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is a slow-growing neoplasm that has, when diagnosed in its early stages, great chances of cure. During initial tumor development, current diagnostic methods fail to have the desired accuracy, thus, it is necessary to develop or improve current detection methods and prognostic markers for PCa. In this scenario, films composed of hyaluronic acid (HA) and chitosan (CHI) have demonstrated significant capture potential of prostate tumor cells (PC3 line), exploring HA as a CD44 receptor ligand and direct mediator in cell-film adhesion. Here, we present a strategy to control structural and cell adhesion properties of HA/CHI films based on film assembly conditions. Films were built via Layer-by-layer (LbL) deposition, where the pH conditions (3.0 and 5.0) and number of bilayers (3.5, 10.5, and 20.5) were controlled. The characterization of these films was carried out using profilometry, ultraviolet-visible (UV-VIS), atomic force microscopy (AFM) and contact angle measurements. Multilayer HA/CHI films produced at pH 3.0 gave optimum surface wettability and availability of free carboxyl groups. In turn, at pH 5.0, the coverings were thinner and presented a smoother surface. Films prepared with 3.5 bilayers showed greater tumor cell capture regardless of the pH condition, while films containing 10.5 and 20.5 bilayers presented a significant swelling process, which compromised their cell adhesion potential. This study shows that surface chemistry and morphology are critical factors for the development of biomaterials designed for several cell adhesion applications, such as rapid diagnostic, cell signaling, and biosensing mechanisms.
Collapse
|
20
|
Vermeulen M, Smith K, Eremin K, Rayner G, Walton M. Application of Uniform Manifold Approximation and Projection (UMAP) in spectral imaging of artworks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119547. [PMID: 33588368 DOI: 10.1016/j.saa.2021.119547] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 05/20/2023]
Abstract
This study assesses the potential of Uniform Manifold Approximation and Projection (UMAP) as an alternative tool to t-distributed Stochastic Neighbor Embedding (t-SNE) for the reduction and visualization of visible spectral images of works of art. We investigate the influence of UMAP parameters-such as, correlation distance, minimum embedding distance, as well as number of embedding neighbors- on the reduction and visualization of spectral images collected from Poèmes Barbares (1896), a major work by the French artist Paul Gauguin in the collection of the Harvard Art Museums. The use of a cosine distance metric and number of neighbors equal to 10 preserves both the local and global structure of the Gauguin dataset in a reduced two-dimensional embedding space thus yielding simple and clear groupings of the pigments used by the artist. The centroids of these groups were identified by locating the densest regions within the UMAP embedding through a 2D histogram peak finding algorithm. These centroids were subsequently fit to the dataset by non-negative least square thus forming maps of pigments distributed across the work of art studied. All findings were correlated to macro XRF imaging analyses carried out on the same painting. The described procedure for reduction and visualization of spectral images of a work of art is quick, easy to implement, and the software is opensource thus promising an improved strategy for interrogating reflectance images from complex works of art.
Collapse
Affiliation(s)
- Marc Vermeulen
- Northwestern University / Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS), 2145 Sheridan Road, Evanston, IL, United States
| | - Kate Smith
- Harvard Art Museums, Straus Center for Conservation and Technical Studies, 32 Quincy St, Cambridge, MA, United States
| | - Katherine Eremin
- Harvard Art Museums, Straus Center for Conservation and Technical Studies, 32 Quincy St, Cambridge, MA, United States
| | - Georgina Rayner
- Harvard Art Museums, Straus Center for Conservation and Technical Studies, 32 Quincy St, Cambridge, MA, United States
| | - Marc Walton
- Northwestern University / Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS), 2145 Sheridan Road, Evanston, IL, United States.
| |
Collapse
|
21
|
Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal Chim Acta 2021; 1161:338403. [DOI: 10.1016/j.aca.2021.338403] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
|
22
|
Neto MP, Soares AC, Oliveira ON, Paulovich FV. Machine Learning Used to Create a Multidimensional Calibration Space for Sensing and Biosensing Data. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mário Popolin Neto
- Federal Institute of São Paulo (IFSP), 14804-296 Araraquara, Brazil
- Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Andrey Coatrini Soares
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Fernando V. Paulovich
- Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), 13566-590 São Carlos, Brazil
- Faculty of Computer Science (FCS), Dalhousie University (DAL), B3H 4R2 Nova Scotia, Canada
| |
Collapse
|
23
|
Electrochemical Detection of Prostate Cancer Biomarker PCA3 Using Specific RNA-Based Aptamer Labelled with Ferrocene. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper reports on a feasibility study of electrochemical in-vitro detection of prostate cancer biomarker PCA3 (prostate cancer antigen 3) in direct assay with specific RNA aptamer labelled with a redox group (ferrocene) and immobilized on a screen-printed gold electrode surface. The cyclic voltammograms and electrochemical impedance spectroscopy methods yield encouraging results on the detection of PCA3 in a range of concentrations from 1 μg/mL down to 0.1 ng/mL in buffer solutions. Both anodic and cathodic current values in cyclic voltammograms measurements and charge transfer resistance values in electrochemical impedance spectroscopy experiments correlate with the PCA3 concentration in the sample. Kinetics studies of the binding of the PCA3 to our aptamer demonstrated high specificity of the reaction with a characteristic affinity constant of approximately 4·10−10 molar. The results of this work provide a background for the future development of novel, highly sensitive and cost-effective diagnostic methodologies for prostate cancer detection.
Collapse
|