1
|
Barabadi H, Kamali M, Jounaki K, Karami K, Sadeghian-Abadi S, Jahani R, Hosseini O, Amidi S. Trametes versicolor laccase-derived silver nanoparticles: Green synthesis, structural characterization and multifunctional biological properties. Biochem Biophys Res Commun 2024; 740:150995. [PMID: 39561649 DOI: 10.1016/j.bbrc.2024.150995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Isolated enzymes serve as advantageous platforms for the fabrication of nanomaterials. The objective of this study was to fabricate silver nanoparticles (AgNPs) incorporated with Trametes versicolor laccase and evaluate their diverse biological properties. The AgNPs fabricated through laccase-mediated methods were characterized using various characterization techniques including UV-visible (UV-vis) spectroscopy, Energy-dispersive X-ray (EDX) spectroscopy, Dynamic light scattering (DLS) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and Field emission scanning electron microscopy (FE-SEM). The results showed that the laccase-incorporated AgNPs were spherical in shape with a Z-average diameter of 19.40 nm and a zeta potential of -19.2 mV. The AgNPs exhibited significant dose-dependent in vitro α-amylase, urease, and DPPH free radical inhibitory activities, with maximum inhibitions of 83.49 ± 1.06 %, 68.95 ± 3.60 %, and 67.36 ± 3.40 %, respectively, at a concentration of 1000 μg mL-1. Furthermore, the intrinsic pathway-mediated anticoagulant activity of the fabricated AgNPs was confirmed through the activated partial thromboplastin time (aPTT) assay, which serves as a global coagulation assay. Additionally, the laccase-incorporated AgNPs demonstrated antibacterial properties against both standard gram-positive strains of Staphylococcus epidermidis and Streptococcus mutans, with minimum inhibitory concentration (MIC) values of 2 and 4 μg mL-1, and minimum bactericidal concentration (MBC) values of 16 and 16 μg mL-1, respectively. The dose-dependent antibacterial performance of the AgNPs against both bacterial populations was also confirmed through flow cytometry. Moreover, the AgNPs exhibited 61.53 ± 3.17 % and 63.03 ± 1.44 % biofilm degradation against S. epidermidis and S. mutans, respectively, at the maximum tested concentration (20∗MIC).
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Melika Kamali
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Karami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Sharma KS, Panchal K, Kumar D. Inhibit-AND logic gate enabled versatile BoF-AgNPs as ultrasensitive and selective nanoprobe for Mn(II) ions and nanocatalyst for rapid MB decoloration. Talanta 2024; 279:126579. [PMID: 39067206 DOI: 10.1016/j.talanta.2024.126579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
There is great interest in fabricating devices that can detect and remove water pollutants, especially heavy metal ions and dyes from wastewater, to promote sustainable water use. In this study, an extract of Borassus flabellifer leaves (BoF-LE) was used to synthesize silver nanoparticles (BoF-AgNPs), with the BoF-LE serving as a reducing and capping agent. The sensitivity and selectivity of BoF-AgNPs for Mn(II) ions were tested by comparing with the control sample and other competent metal ions. Our results showed that BoF-AgNPs are extremely sensitive and selective in detecting Mn(II) ions, with a detection limit of 0.3 ppb. HR-TEM, UV-Vis spectroscopy, and DLS investigations were used to confirm that BoF-AgNPs detect Mn(II) ions by an aggregation-based mechanism. Additionally, it was found that BoF-AgNPs are effective in rapidly decolorizing MB dye, as demonstrated by their ability to decolorize MB by 92.66% within 7 min. This study is the first to report successful synthesis of BoF-AgNPs and their two applications, which are enabled with an Inhibit-AND logic gate. Using BoF-AgNPs to detect and degrade water pollutants may promote sustainable water use.
Collapse
Affiliation(s)
- Kritika S Sharma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Kajal Panchal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
3
|
Francis AL, Namasivayam SKR, Samrat K. Potential of silver nanoparticles synthesized from Justicia adhatoda metabolites for inhibiting biofilm on urinary catheters. Microb Pathog 2024; 196:106957. [PMID: 39326803 DOI: 10.1016/j.micpath.2024.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
In the present study, we investigated the anti-biofilm effect of urinary catheters fabricated with biogenic nanoparticles synthesized from metabolites of Justicia adhatoda under in vitro conditions against human pathogenic bacteria. Silver nanoparticles were synthesized in the reaction mixture composed of 2 % w/v of 0.1 M of precursor (silver nitrate) and 0.2 g of the metabolites obtained from ethanolic extract of Justicia adhatoda. Characterization of the nanoparticles was done by UV visible spectroscopy, fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X ray diffraction (XRD) to confirm the structural and functional properties. Primary conformation of nanoparticles synthesis by UV visible spectroscopy revealed the notable absorption spectra at 425 nm with a wavelength shift around 450 nm, likely due to surface plasmon resonance excitation. SEM analysis showed spherical, monodisperse, nano scale particles with a size range of 50-60 nm. Crystaline phase of the synthesized nanoparticles was confirmed by x ray diffraction studies which showed the distinct peaks at (2θ) 27.90, 32.20, 46.30, 54.40, and 67.40, corresponding to (111), (200), (220), (222), and (311) planes of nano scale silver. The biocompatibility of these nanoparticles was assessed through zebrafish embryonic toxicity study which showed more than 90 % of embryos were alive and healthy. No marked changes on the blood cells also confirmed best hemocompatibility of the nanoparticles. Synthesized nanoparticles thus obtained were fabricated on the urinary catheter and the fabrication was confirmed by FTIR and SEM analysis. Notable changes in the absorption peaks, uniform coating and embedding of silver nanoparticles studied by FTIR and SEM analysis confirmed the fabrication of silver nanoparticles. The coated catheters demonstrated significant antibacterial activity against pathogenic bacterial strains, including E. coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Anti-biofilm studies, conducted using a modified microtiter plate crystal violet assay, revealed effective inhibition of both bacterial adhesion and biofilm development. 85 % of biofilm inhibition was recorded against both the tested strains. The coating method presented in this study shows promise for enhancing infection resistance in commonly used medical devices like urinary catheters, thus addressing device-associated infections.
Collapse
Affiliation(s)
- A L Francis
- Centre of Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Centre of Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India.
| | - K Samrat
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| |
Collapse
|
4
|
Azzi M, Laib I, Bouafia A, Medila I, Tliba A, Laouini SE, Alsaeedi H, Cornu D, Bechelany M, Barhoum A. Antimutagenic and anticoagulant therapeutic effects of Ag/Ag 2O nanoparticles from Olea europaea leaf extract: mitigating metribuzin-induced hepato-and nephrotoxicity. Front Pharmacol 2024; 15:1485525. [PMID: 39508051 PMCID: PMC11538059 DOI: 10.3389/fphar.2024.1485525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Silver nanoparticles (Ag/Ag₂O NPs) have garnered attention for their potent antioxidant, antimicrobial, and anti-inflammatory properties, showing promise for therapeutic applications, particularly in mitigating chemical-induced toxicity. Objective This study aimed to synthesize Ag/Ag₂O NPs using Olea europaea (olive) leaf extract as a green, eco-friendly reducing agent and evaluate their protective effects against metribuzin-induced toxicity in Wistar rats, focusing on oxidative stress, hematological parameters, and lipid profiles, with specific dose optimization. Methodology Ag/Ag₂O NPs were synthesized using Olea europaea leaf extract, and their properties were confirmed via XRD, FTIR, SEM, EDS, and UV-visible spectroscopy. Wistar rats exposed to metribuzin (110 mg/kg/day) were treated with two doses of Ag/Ag₂O NPs (0.062 mg/kg and 0.125 mg/kg). Hematological and biochemical markers were assessed to evaluate the NPs' protective effects. Results Physicochemical characterization confirmed the successful formation of Ag/Ag₂O NPs loaded with phytochemicals, exhibiting crystallite sizes of 23 nm and 19 nm, a particle size of 25 nm, and significant peaks in XRD, FTIR, and UV-Vis spectra indicating the formation of Ag/Ag₂O. Metribuzin exposure led to significant hematological disruptions (elevated WBC, reduced RBC and hemoglobin) and worsened lipid profiles (increased cholesterol, LDL, and triglycerides). The lower NP dose (0.062 mg/kg) improved WBC, RBC, hemoglobin, and platelet counts, normalized lipid levels, and positively influenced biochemical markers such as serum creatinine and uric acid. In contrast, the higher NP dose (0.125 mg/kg) showed mixed results, with some improvements but an increase in triglycerides and continued elevation of ASAT and ALAT enzyme levels. Conclusion Ag/Ag₂O NPs synthesized via green methods using olive leaf extract effectively mitigated metribuzin-induced toxicity, especially at lower doses, by improving oxidative stress markers and hematological and biochemical profiles. Dose optimization is crucial to maximize therapeutic benefits and minimize adverse effects, underscoring their potential in treating chemical-induced toxicity.
Collapse
Affiliation(s)
- Manel Azzi
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Ifriqya Medila
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, University of El Oued, El Oued, Algeria
| | - Ali Tliba
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Salah Eddine Laouini
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, El Oued, Algeria
| | - Huda Alsaeedi
- Lab. VTRS, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Pany S, Prasad Sahu R, Ranjit M, Pati S, Suar M, Keshari Samal S. Bio-fabrication of ZnONPs using Mimosa pudica Extract to Combat Multidrug Resistant Uropathogens. J IND ENG CHEM 2024; 136:317-330. [DOI: 10.1016/j.jiec.2024.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Hedayatipanah M, Gholami L, Farmany A, Alikhani MY, Hooshyarfard A, Hashemiyan FS. Green synthesis of silver nanoparticles and evaluation of their effects on the Porphyromonas gingivalis bacterial biofilm formation. Clin Exp Dent Res 2024; 10:e887. [PMID: 38798089 PMCID: PMC11128748 DOI: 10.1002/cre2.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the impact of silver nanoparticles (AgNPs) synthesized from propolis on the formation of Porphyromonas gingivalis biofilms. MATERIAL AND METHODS AgNPs were synthesized from propolis, and their inhibitory effect on P. gingivalis biofilm formation was assessed. Different concentrations of AgNPs (0.1%, 0.3%, and 0.5%) were tested to determine the dose-dependent antibacterial activity. RESULTS The results of this study indicated that AgNPs exhibited an inhibitory effect on P. gingivalis biofilm formation. The antibacterial activity of AgNPs was dose-dependent, with concentrations of 0.1%, 0.3%, and 0.5% showing effectiveness. Notably, the concentration of 0.5% demonstrated the most significant anti-biofilm formation activity. CONCLUSION The results of this study suggest that AgNPs synthesized from propolis have potential as an effective option for enhancing periodontal treatment outcomes. The inhibitory effect of AgNPs on P. gingivalis biofilm formation highlights their potential as alternative antimicrobial agents in the management of periodontal diseases.
Collapse
Affiliation(s)
- Morad Hedayatipanah
- Department of Periodontics, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| | - Leila Gholami
- Department of Periodontics, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| | - Abbas Farmany
- Dental Implant Research Center, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| | - Mohammad Yusef Alikhani
- Department of Microbiology, Faculty of Medicine, Infection Disease Research CenterHamadan University of Medical SciencesHamadanIran
| | - Amirarsalan Hooshyarfard
- Department of Periodontics, Dental Material Research Center, Faculty of Dentistry, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Fahime Sadat Hashemiyan
- Department of Periodontics, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
7
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
8
|
Faid AH, Ramadan MA. Reducing the effective dose of cisplatin using cobalt modified silver nano-hybrid as a carriers on MCF7 and HCT cell models. BMC Chem 2024; 18:69. [PMID: 38600590 PMCID: PMC11007969 DOI: 10.1186/s13065-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Cancer is a deadly illness with a convoluted pathogenesis. The most prevalent restrictions that frequently result in treatment failure for cancer chemotherapy include lack of selectivity, cytotoxicity, and multidrug resistance. Thus, considerable efforts have been focused in recent years on the establishment of a modernistic sector termed nano-oncology, which offers the option of employing nanoparticles (NPs) with the objective of detecting, targeting, and treating malignant disorders. NPs offer a focused approach compared to conventional anticancer methods, preventing negative side effects. In the present work, a successful synthetic process was used to create magnetic cobalt cores with an AgNPs shell to form bimetallic nanocomposites CoAg, then functionalized with Cis forming novel CoAg@Cis nanohybrid. The morphology and optical properties were determined by TEM, DLS, FTIRs and UV-vis spectroscopy, furthermore, anticancer effect of CoAg and CoAg@Cis nanohybrids were estimated using MTT assay on MCF7 and HCT cell lines. Our results showed that Co@Ag core shell is about 15 nm were formed with dark CoNPs core and AgNPs shell with less darkness than the core, moreover, CoAg@Cis has diameter about 25 nm which are bigger in size than Co@Ag core shell demonstrating the loading of Cis. It was observed that Cis, CoAg and CoAg@Cis induced a decline in cell survival and peaked at around 65%, 73%and 66% on MCF7 and 80%, 76%and 78% on HCT at 100 µg/ml respectively. Compared to Cis alone, CoAg and CoAg@Cis caused a significant decrease in cell viability. These findings suggest that the synthesized CoAg can be used as a powerful anticancer drug carrier.
Collapse
Affiliation(s)
- Amna H Faid
- Department of Laser Science and Interaction, National Institute of Laser Enhanced Science (NILES) Cairo University, Giza, Egypt.
| | - Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Science (NILES) Cairo University (CU), Giza, Egypt
| |
Collapse
|
9
|
Elmetwalli A, Abdel-Monem MO, El-Far AH, Ghaith GS, Albalawi NAN, Hassan J, Ismail NF, El-Sewedy T, Alnamshan MM, ALaqeel NK, Al-Dhuayan IS, Hassan MG. Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment. Med Oncol 2024; 41:106. [PMID: 38575697 PMCID: PMC10995097 DOI: 10.1007/s12032-024-02330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 04/06/2024]
Abstract
Recent advances in nanotechnology have offered novel ways to combat cancer. By utilizing the reducing capabilities of Lactobacillus acidophilus, silver nanoparticles (AgNPs) are synthesized. The anti-cancer properties of AgNPs have been demonstrated in previous studies against several cancer cell lines; it has been hypothesized that these compounds might inhibit AMPK/mTOR signalling and BCL-2 expression. Consequently, the current research used both in vitro and in silico approaches to study whether Lactobacillus acidophilus AgNPs could inhibit cell proliferation autophagy and promote apoptosis in HepG2 cells. The isolated strain was identified as Lactobacillus acidophilus strain RBIM based on 16 s rRNA gene analysis. Based on our research findings, it has been observed that this particular strain can generate increased quantities of AgNPs when subjected to optimal growing conditions. The presence of silanols, carboxylates, phosphonates, and siloxanes on the surface of AgNPs was confirmed using FTIR analysis. AgNPs were configured using UV-visible spectroscopy at 425 nm. In contrast, it was observed that apoptotic cells exhibited orange-coloured bodies due to cellular shrinkage and blebbing initiated by AgNP treatment, compared to non-apoptotic cells. It is worth mentioning that AgNPs exhibited remarkable selectivity in inducing cell death, specifically in HepG2 cells, unlike normal WI-38 cells. The half-maximum inhibitory concentration (IC50) values for HepG2 and WI-38 cells were 4.217 µg/ml and 154.1 µg/ml, respectively. AgNPs induce an upregulation in the synthesis of inflammation-associated cytokines, including (TNF-α and IL-33), within HepG2 cells. AgNPs co-treatment led to higher glutathione levels and activating pro-autophagic genes such as AMPK.Additionally, it resulted in the suppression of mTOR, MMP-9, BCL-2, and α-SMA gene expression. The docking experiments suggest that the binding of AgNPs to the active site of the AMPK enzyme leads to inhibiting its activity. The inhibition of AMPK ultimately results in the suppression of the mechanistic mTOR and triggers apoptosis in HepG2 cells. In conclusion, the results of our study indicate that the utilization of AgNPs may represent a viable strategy for the eradication of liver cancerous cells through the activation of apoptosis and the enhancement of immune system reactions.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Gehad S Ghaith
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | | | - Jihan Hassan
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia F Ismail
- Health Information Management Program, Biochemistry, Faculty of Health Science Technology, Borg El Arab Technological University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mashael Mashal Alnamshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf K ALaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Ibtesam S Al-Dhuayan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
10
|
Petcu G, Ciobanu EM, Paun G, Neagu E, Baran A, Trica B, Neacsu A, Atkinson I, Bucuresteanu R, Badaluta A, Ditu LM, Parvulescu V. Hybrid Materials Obtained by Immobilization of Biosynthesized Ag Nanoparticles with Antioxidant and Antimicrobial Activity. Int J Mol Sci 2024; 25:4003. [PMID: 38612814 PMCID: PMC11012143 DOI: 10.3390/ijms25074003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Ag nanoparticles (AgNPs) were biosynthesized using sage (Salvia officinalis L.) extract. The obtained nanoparticles were supported on SBA-15 mesoporous silica (S), before and after immobilization of 10% TiO2 (Degussa-P25, STp; commercial rutile, STr; and silica synthesized from Ti butoxide, STb). The formation of AgNPs was confirmed by X-ray diffraction. The plasmon resonance effect, evidenced by UV-Vis spectra, was preserved after immobilization only for the sample supported on STb. The immobilization and dispersion properties of AgNPs on supports were evidenced by TEM microscopy, energy-dispersive X-rays, dynamic light scattering, photoluminescence and FT-IR spectroscopy. The antioxidant activity of the supported samples significantly exceeded that of the sage extract or AgNPs. Antimicrobial tests were carried out, in conditions of darkness and white light, on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Higher antimicrobial activity was evident for SAg and STbAg samples. White light increased antibacterial activity in the case of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa). In the first case, antibacterial activity increased for both supported and unsupported AgNPs, while in the second one, the activity increased only for SAg and STbAg samples. The proposed antibacterial mechanism shows the effect of AgNPs and Ag+ ions on bacteria in dark and light conditions.
Collapse
Affiliation(s)
- Gabriela Petcu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Elena Madalina Ciobanu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Gabriela Paun
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania
| | - Elena Neagu
- National Institute for Research-Development of Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, P.O. Box 17-16, 060031 Bucharest, Romania
| | - Adriana Baran
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Andreea Neacsu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| | - Razvan Bucuresteanu
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Alexandra Badaluta
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Lia Mara Ditu
- Microbiology Department, Faculty of Biology, University of Bucharest, Intr. Portocalelor 1-3, 060101 Bucharest, Romania (A.B.)
| | - Viorica Parvulescu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, Spl. Independentei 202, 060021 Bucharest, Romania; (G.P.); (A.B.); (A.N.); (I.A.)
| |
Collapse
|
11
|
Mekky AE, Abdelaziz AEM, Youssef FS, Elaskary SA, Shoun AA, Alwaleed EA, Gaber MA, Al-Askar AA, Alsamman AM, Yousef A, AbdElgayed G, Suef RA, Selim MA, Saied E, Khedr M. Unravelling the Antimicrobial, Antibiofilm, Suppressing Fibronectin Binding Protein A ( fnba) and cna Virulence Genes, Anti-Inflammatory and Antioxidant Potential of Biosynthesized Solanum lycopersicum Silver Nanoparticles. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:515. [PMID: 38541241 PMCID: PMC10972527 DOI: 10.3390/medicina60030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 01/06/2025]
Abstract
Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 μg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.
Collapse
Affiliation(s)
- Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, P.O. Box 42522, Port-Said 42522, Egypt;
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shymaa A. Elaskary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El-Kom 32511, Egypt
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Eman A. Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Alhadary M. Alsamman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat 32897, Egypt;
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Reda A. Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed Khedr
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| |
Collapse
|
12
|
Zhang Y, Tang Y, Liao Q, Qian Y, Zhu L, Yu DG, Xu Y, Lu X, Kim I, Song W. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J Mater Chem B 2024; 12:2054-2069. [PMID: 38305698 DOI: 10.1039/d3tb02619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Microporous organic polymers (MOPs) and metal oxide hybrid composites are considered valuable coating materials because of their versatility derived from the synergistic combination of MOPs' inherent dispersibility and the distinctive properties of metal oxides. In this study, we present the synthesis of sea-urchin-like MOPs hybridised with silver oxide nanoparticles (Ag2O NPs) to fabricate antibacterial composites suitable for potential antibacterial coating applications. Ag2O NP-decorated urchin-like MOPs (Ag2O@UMOPs) were synthesised by employing a combination of two methods: a one-pot Lewis acid-base interaction-mediated self-assembly and a straightforward impregnation process. The as-prepared Ag2O@UMOPs demonstrated high antibacterial efficacy against both E. coli (G-) and S. aureus (G+). The antibacterial mechanism of Ag2O@UMOPs mainly involved the synergistic effects of accumulation of Ag2O@UMOPs, the release of Ag+ ions, and the generation of reactive oxygen species. The exceptional processability and biosafety of Ag2O@UMOPs make them ideal organic coating materials for convenient application on various substrates. These remarkable features of Ag2O@UMOPs provide an effective platform for potential antibacterial applications in biological sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Qian Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Linglin Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, No. 139 Yan An Xi Road, Shanghai, 200040, P. R. China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yixin Xu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| |
Collapse
|
13
|
Ghasemi S, Dabirian S, Kariminejad F, Koohi DE, Nemattalab M, Majidimoghadam S, Zamani E, Yousefbeyk F. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Sci Rep 2024; 14:4130. [PMID: 38374139 PMCID: PMC10876668 DOI: 10.1038/s41598-024-54702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
Multi-drug resistant (MDR) bacteria are considered a serious public health threat. Also, increasing rate of resistance to anticancer drugs, as well as their toxicity, is another point of concern. Therefore, the new antibacterial and anticancer agents are always needed. The synthesizing silver nanoparticles (AgNPs) using medicinal plants, is an effective approach for developing novel antibacterial and anticancer agents. Rubus discolor, a native species of the Caucasus region, produces leaves that are typically discarded as a by-product of raspberry production. The present study has focused on optimizing the green synthesis of AgNPs using R. discolor leaves extract through response surface methodology. The optimal values for AgNPs synthesis were an AgNO3 concentration of 7.11 mM, a time of 17.83 h, a temperature of 56.51 °C, and an extract percentage of 29.22. The production of AgNPs was confirmed using UV-visible spectroscopy (λmax at 456.01 nm). TEM analysis revealed well-dispersed AgNPs (an average size of 37 nm). The XRD analysis confirmed the crystalline structure. The EDX detected a strong peak at 3 keV corresponded to Ag. The zeta potential value (- 44.2 mV) indicated the stability of nanoparticles. FT-IR spectra showed the presence of various functional groups from plant compounds, which play an important role in the capping and bio-reduction processes. The AgNPs revealed impressive antibacterial activities against MDR Escherichia coli and Pseudomonas aeruginosa (MIC ranging from 0.93 to 3.75 mg ml-1). The phytochemical analysis indicated the presence of phenolics, tannins, and flavonoids on the surface of AgNPs. They also showed significant cytotoxic effects on A431, MCF-7, and HepG2 cells (IC50 values ranging from 11 to 49.1 µg ml-l).
Collapse
Affiliation(s)
- Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Dabirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Faezeh Kariminejad
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Diba Eghbali Koohi
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Sina Majidimoghadam
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Ni Q, Zhu T, Wang W, Guo D, Li Y, Chen T, Zhang X. Green Synthesis of Narrow-Size Silver Nanoparticles Using Ginkgo biloba Leaves: Condition Optimization, Characterization, and Antibacterial and Cytotoxic Activities. Int J Mol Sci 2024; 25:1913. [PMID: 38339192 PMCID: PMC10856183 DOI: 10.3390/ijms25031913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Natural products derived from medicinal plants offer convenience and therapeutic potential and have inspired the development of antimicrobial agents. Thus, it is worth exploring the combination of nanotechnology and natural products. In this study, silver nanoparticles (AgNPs) were synthesized from the leaf extract of Ginkgo biloba (Gb), having abundant flavonoid compounds. The reaction conditions and the colloidal stability were assessed using ultraviolet-visible spectroscopy. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to characterize the AgNPs. AgNPs exhibited a spherical morphology, uniform dispersion, and diameter ranging from ~8 to 9 nm. The FTIR data indicated that phytoconstituents, such as polyphenols, flavonoids, and terpenoids, could potentially serve as reducing and capping agents. The antibacterial activity of the synthesized AgNPs was assessed using broth dilution and agar well diffusion assays. The results demonstrate antibacterial effects against both Gram-positive and Gram-negative strains at low AgNP concentrations. The cytotoxicity of AgNPs was examined in vitro using the CCK-8 method, which showed that low concentrations of AgNPs are noncytotoxic to normal cells and promote cell growth. In conclusion, an environmentally friendly approach for synthesizing AgNPs from Gb leaves yielded antibacterial AgNPs with minimal toxicity, holding promise for future applications in the field of biomedicine.
Collapse
Affiliation(s)
- Qi Ni
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Ting Zhu
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Wenjie Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Dongdong Guo
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Yixiao Li
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Tianyu Chen
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an 710069, China; (Q.N.); (T.Z.); (W.W.); (D.G.); (T.C.)
| | - Xiaojun Zhang
- School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| |
Collapse
|
15
|
Alvi A, Alqassim S, Khan NA, Khatoon B, Akbar N, Kawish M, Faizi S, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Antibacterial effects of quercetagetin are significantly enhanced upon conjugation with chitosan engineered copper oxide nanoparticles. Biometals 2024; 37:171-184. [PMID: 37792257 DOI: 10.1007/s10534-023-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
The development of antibiotic alternatives that entail distinctive chemistry and modes of action is necessary due to the threat posed by drug resistance. Nanotechnology has gained increasing attention in recent years, as a vehicle to enhance the efficacy of existing antimicrobials. In this study, Chitosan copper oxide nanoparticles (CHI-CuO) were synthesized and were further loaded with Quercetagetin (QTG) to achieve the desired (CHI-CuO-QTG). Size distribution, zeta potential and morphological analysis were accomplished. Next, the developed CHI-CuO-QTG was assessed for synergistic antibacterial properties, as well as cytotoxic attributes. Bactericidal assays revealed that CHI-CuO conjugation showed remarkable effects and enhanced QTG effects against a range of Gram + ve and Gram - ve bacteria. The MIC50 of QTG against S. pyogenes was 107 µg/mL while CHI-CuO-QTG reduced it to 9 µg/mL. Similar results were observed when tested against S. pneumoniae. Likewise, the MIC50 of QTG against S. enterica was 38 µg/mL while CHI-CuO-QTG reduced it to 7 µg/mL. For E. coli K1, the MIC50 of QTG was 42 µg/mL while with CHI-CuO-QTG it was 23 µg/mL. Finally, the MIC50 of QTG against S. marcescens was 98 µg/mL while CHI-CuO-QTG reduced it to 10 µg/mL. Notably, the CHI-CuO-QTG nano-formulation showed limited damage when tested against human cells using lactate dehydrogenase release assays. Importantly, bacterial-mediated human cell damage was reduced by prior treatment of bacteria using drug nano-formulations. These findings are remarkable and clearly demonstrate that drug-nanoparticle formulations using nanotechnology is an important avenue in developing potential therapeutic interventions against microbial infections.
Collapse
Affiliation(s)
- Adeelah Alvi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates
| | - Saif Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates.
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
| | - Bushra Khatoon
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Noor Akbar
- Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Shaheen Faizi
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmad M Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, 21944, Taif, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, 65799, Al-Baha, Saudi Arabia
| | - Ruqaiyyah Siddiqui
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Ankudze B, Neglo D, Nsiah F. Green synthesis of silver nanoparticles from discarded shells of velvet tamarind (Dialium cochinchinense) and their antimicrobial synergistic potentials and biofilm inhibition properties. Biometals 2024; 37:143-156. [PMID: 37695459 DOI: 10.1007/s10534-023-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
In the field of nanomedicine, biogenic metal nanoparticles are commonly synthesized using edible plant products as bio-reducing or stabilizing agents. In this study, discarded shell of velvet tamarind fruit is explored as a potent reducing agent for biogenic synthesis of silver nanoparticles (VeV-AgNPs). Silver nanoparticles were formed in minutes under sunlight exposure, which was considerably fast compared to under ambient conditions. The optical, structural and morphological studies revealed that the nanoparticle colloidal solution consisted of particles with quasi-spherical and rodlike morphologies. To investigate antimicrobial properties, eight microorganisms were exposed to the VeV-AgNPs. The results indicated that VeV-AgNPs had enhanced antimicrobial activity, with a recorded minimum inhibitory concentration (MIC) of 3.9 µg/mL against E. coli. Further studies were conducted to examine the biofilm inhibition properties and synergistic effect of the VeV-AgNPs. The findings showed a biofilm inhibition potential of around 98% against E. coli, and the particles were also found to increase the efficacy of standard antimicrobial agents. The combinatory effect with standard antifungal and antibacterial agents ranged from synergistic to antagonistic effects against the tested microorganisms. These results suggest that silver nanoparticles produced from discarded shells of velvet tamarind are potent and could be used as a potential drug candidate to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bright Ankudze
- Department of Chemistry Education, University of Education, P. O. Box 25, Winneba, Ghana.
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Francis Nsiah
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
17
|
Akhi A, Hasan A, Saha N, Howlader S, Bhattacharjee S, Dey K, Atique Ullah AKM, Bhuiyan FR, Chakraborty AK, Akhtar US, Shaikh MAA, Dey BK, Bhattacharjee S, Ganguli S. Ophiorrhiza mungos-Mediated Silver Nanoparticles as Effective and Reusable Adsorbents for the Removal of Methylene Blue from Water. ACS OMEGA 2024; 9:4324-4338. [PMID: 38313493 PMCID: PMC10831830 DOI: 10.1021/acsomega.3c05992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Green synthesis of silver nanoparticles (AgNPs) using a plant extract has attracted significant attention in recent years. It is found as an alternative for other physicochemical approaches because of its simplicity, low cost, and eco-friendly rapid steps. In the present study, Ophiorrhiza mungos (Om)-mediated AgNPs have been shown to be effective bioadsorbents for methylene blue (MB) dye removal (88.1 ± 1.74%) just after 1 h at room temperature in the dark from an aqueous medium for the first time. Langmuir and Freundlich isotherms fit the experimental results having the correlation coefficient constants R2 = 0.9956 and R2 = 0.9838, respectively. From the Langmuir fittings, the maximum adsorption capacity and adsorption intensity were found to be 80.451 mg/g and 0.041, respectively, indicating the excellent performance and spontaneity of the process. Taking both models under consideration, interestingly, our findings indicated a fairly cooperative multilayer adsorption that might have been governed by chemisorption and physisorption, whereas the adsorption kinetics followed the pseudo-second-order kinetics mechanism. The positive and low values of enthalpy (ΔH0 = 4.91 kJ/mol) confirmed that adsorption is endothermic and physical in nature; however, the negative free energy and positive entropy value (ΔS0 = 53.69 J/mol K) suggested that the adsorption is spontaneous. The biosynthesized adsorbent was successfully reused up to the fifth cycle. A proposed reaction mechanism for the adsorption process of MB dye onto Om-AgNPs is suggested. The present study may offer a novel finding such as an effective and sustainable approach for the removal of MB dye from water using biosynthesized Om-AgNPs as reusable adsorbents at a comparatively faster rate at a low dose for industrial applications.
Collapse
Affiliation(s)
- Aklima
A Akhi
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Abid Hasan
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Nakshi Saha
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabbir Howlader
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabonty Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Kamol Dey
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - A. K. M. Atique Ullah
- Nanoscience
and Technology Research Laboratory, Atomic Energy Center, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Farhana Rumzum Bhuiyan
- Laboratory
of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ashok Kumar Chakraborty
- Department
of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Umme Sarmeen Akhtar
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Benu Kumar Dey
- Department
of Chemistry and Pro-Vice-Chancellor (Academic), University of Chittagong, Chattogram 4331, Bangladesh
| | - Samiran Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Sumon Ganguli
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
18
|
Daphedar AB, Majani SS, Kaddipudi PJ, Hujaratti RB, Kakkalmeli SB, Shati AA, Alfaifi MY, Elbehairi SEI, Shivamallu C, Jinendra U, Kollur SP. Evaluation of antioxidant and antibacterial activities of silver nanoparticles derived from Limonia acidissima L. fruit extract. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2024; 8:100399. [DOI: 10.1016/j.crgsc.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
19
|
Sarani M, Roostaee M, Adeli-Sardou M, Kalantar-Neyestanaki D, Mousavi SAA, Amanizadeh A, Barani M, Amirbeigi A. Green synthesis of Ag and Cu-doped Bismuth oxide nanoparticles: Revealing synergistic antimicrobial and selective cytotoxic potentials for biomedical advancements. J Trace Elem Med Biol 2024; 81:127325. [PMID: 37922658 DOI: 10.1016/j.jtemb.2023.127325] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Nanotechnology has emerged as a transformative realm of exploration across diverse scientific domains. A particular focus lies on metal oxide nanoparticles, which boast distinctive physicochemical attributes on the nanoscale. Of note, green synthesis has emerged as a promising avenue, leveraging plant extracts as both reduction and capping agents. This approach offers environmentally friendly and cost-effective avenues for generating monodispersed nanoparticles with precise morphologies. METHODS In this investigation, we embarked on the synthesis of Bismuth oxide nanoparticles, both in their pure form and doped with silver (Ag) and copper (Cu). This synthesis harnessed the potential of Biebersteinia multifida extract as a versatile reducing agent. To comprehensively characterize the synthesized nanoparticles, a suite of analytical techniques was employed, including energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and Raman spectroscopy. RESULTS The synthesized nanoparticles underwent a rigorous assessment. Their antibacterial attributes were probed, revealing a pronounced enhancement in antibiofilm activity against Pseudomonas aeruginosa and Staphylococcus aureus bacteria upon metal nanoparticle doping. Furthermore, their potential for combating cancer was scrutinized, with the nanoparticles exhibiting selective cytotoxicity towards cancer cells, U87, compared to normal 3T3 cells. Notably, among the doped nanoparticles, Cu-doped variants demonstrated the highest potency, further underscoring their promising potential. CONCLUSION In conclusion, the present study underscores the efficacy of green synthesized Bismuth oxide nanoparticles, particularly those doped with Ag and Cu, in augmenting antibacterial efficacy, bolstering biofilm inhibition, and manifesting selective cytotoxicity against cancer cells. These findings portend a promising trajectory for these nanoparticles in the spheres of biomedicine and therapeutics. As we look ahead, a deeper elucidation of their mechanistic underpinnings and in vivo investigations are essential to fully unlock their potential for forthcoming biomedical applications.
Collapse
Affiliation(s)
- Mina Sarani
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Maryam Roostaee
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Medical Microbiology (Bacteriology and virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Seyed Amin Ayatollahi Mousavi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Medical Mycology and Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Amanizadeh
- Department of Medical Mycology and Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Huq MA, Khan AA, Alshehri JM, Rahman MS, Balusamy SR, Akter S. Bacterial mediated green synthesis of silver nanoparticles and their antibacterial and antifungal activities against drug-resistant pathogens. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230796. [PMID: 37885988 PMCID: PMC10598446 DOI: 10.1098/rsos.230796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
In the healthcare sector, the production of bioactive silver nanoparticles (AgNPs) with antimicrobial properties is of great importance. In this study, a novel bacterial strain, Paenibacillus sp. MAHUQ-63, was identified as a potential candidate for facile and rapid biosynthesis of AgNPs. The synthesized AgNPs were used to control the growth of human pathogens, Salmonella Enteritidis and Candida albicans. The bacterial culture supernatant was used to synthesize the nanoparticles (NPs). Field emission transmission electron microscope examination showed spherical-shaped NPs with 15-55 nm in size. Fourier transform-infrared analysis identified various functional groups. The synthesized AgNPs demonstrated remarkable activity against S. Enteritidis and C. albicans. The zones of inhibition for 100 µl (0.5 mg ml-1) of AgNPs against S. Enteritidis and C. albicans were 18.0 ± 1.0 and 19.5 ± 1.3 mm, respectively. The minimum inhibitory concentrations were 25.0 and 12.5 µg ml-1 against S. Enteritidis and C. albicans, respectively. Additionally, the minimum bactericidal concentrations were 25.0 µg ml-1 against both pathogenic microbes. The field emission scanning electron microscopy analysis showed that the treatment of AgNPs caused morphological and structural damage to both S. Enteritidis and C. albicans. Therefore, these AgNPs can be used as a new and effective antimicrobial agent.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamilah M. Alshehri
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 143-747, Republic of Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Republic of Korea
| |
Collapse
|
21
|
Yousefzadeh-Valendeh S, Fattahi M, Asghari B, Alizadeh Z. Dandelion flower-fabricated Ag nanoparticles versus synthetic ones with characterization and determination of photocatalytic, antioxidant, antibacterial, and α-glucosidase inhibitory activities. Sci Rep 2023; 13:15444. [PMID: 37723218 PMCID: PMC10507034 DOI: 10.1038/s41598-023-42756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023] Open
Abstract
In the present work, Silver nanoparticles (AgNPs) were fabricated through the dandelion flower hydroalcoholic extract, and their properties were characterized by FTIR, XRD, UV visible, SEM, and EDX. The results demonstrated that the average diameter of the green fabricated AgNPs is 45-55 nm (G-AgNPs). The antioxidant, antimicrobial, antidiabetic, and photocatalytic properties of G-AgNPs were compared with two commercially available different diameter sizes (20 and 80-100 nm) of AgNPs (C-AgNPs1- and C-AgNPs2, respectively). The sample's capacity for antioxidants was evaluated by DPPH free radical scavenging method. The consequences showed that G-AgNPs have higher radical scavenging activity (47.8%) than C-AgNPs2 (39.49%) and C-AgNPs1 (33.91%). To investigate the photocatalytic property, methylene blue dye was used. The results displayed that G-AgNPs is an effective photo-catalyst compared to C-AgNPs2 and C-AgNPs1, which respectively have an inhibition potential of 75.22, 51.94, and 56.65%. Also, the antimicrobial capacity of nanoparticles was assayed against, the gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria. The results indicated that G-AgNPs could effectively inhibit the growth of both bacteria, compared to C-AgNPs1 and C-AgNPs2. Finally, G-AgNPs exhibited a considerable α-glucosidase enzyme inhibitory effect (88.37%) in comparison with C-AgNPs1 (61.7%) and C-AgNPs2 (50.5%).
Collapse
Affiliation(s)
| | - Mohammad Fattahi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Behvar Asghari
- Department of Horticultural Sciences Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Alizadeh
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
22
|
Nikolova S, Milusheva M, Gledacheva V, Feizi-Dehnayebi M, Kaynarova L, Georgieva D, Delchev V, Stefanova I, Tumbarski Y, Mihaylova R, Cherneva E, Stoencheva S, Todorova M. Drug-Delivery Silver Nanoparticles: A New Perspective for Phenindione as an Anticoagulant. Biomedicines 2023; 11:2201. [PMID: 37626698 PMCID: PMC10452578 DOI: 10.3390/biomedicines11082201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Anticoagulants prevent the blood from developing the coagulation process, which is the primary cause of death in thromboembolic illnesses. Phenindione (PID) is a well-known anticoagulant that is rarely employed because it totally prevents coagulation, which can be a life-threatening complication. The goal of the current study is to synthesize drug-loaded Ag NPs to slow down the coagulation process. Methods: A rapid synthesis and stabilization of silver nanoparticles as drug-delivery systems for phenindione (PID) were applied for the first time. Results: Several methods are used to determine the size of the resulting Ag NPs. Additionally, the drug-release capabilities of Ag NPs were established. Density functional theory (DFT) calculations were performed for the first time to indicate the nature of the interaction between PID and nanostructures. DFT findings supported that galactose-loaded nanostructure could be a proper delivery system for phenindione. The drug-loaded Ag NPs were characterized in vitro for their antimicrobial, cytotoxic, and anticoagulant activities, and ex vivo for spasmolytic activity. The obtained data confirmed the drug-release experiments. Drug-loaded Ag NPs showed that prothrombin time (PT, sec) and activated partial thromboplastin time (APTT, sec) are approximately 1.5 times longer than the normal values, while PID itself stopped coagulation at all. This can make the PID-loaded Ag NPs better therapeutic anticoagulants. PID was compared to PID-loaded Ag NPs in antimicrobial, spasmolytic activity, and cytotoxicity. All the experiments confirmed the drug-release results.
Collapse
Affiliation(s)
- Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Lidia Kaynarova
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Deyana Georgieva
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (L.K.); (D.G.)
| | - Vassil Delchev
- Department of Physical Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Rositsa Mihaylova
- Laboratory of Experimental Chemotherapy, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria;
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
- Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., BI 9, 1113 Sofia, Bulgaria
| | - Snezhana Stoencheva
- University Hospital “Sveti Georgi” EAD, 4002 Plovdiv, Bulgaria
- Department of Clinical Laboratory, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
23
|
Xu J, Yıldıztekin M, Han D, Keskin C, Baran A, Baran MF, Eftekhari A, Ava CA, Kandemir Sİ, Cebe DB, Dağ B, Beilerli A, Khalilov R. Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract. Heliyon 2023; 9:e19061. [PMID: 37636361 PMCID: PMC10457445 DOI: 10.1016/j.heliyon.2023.e19061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Metallic nanoparticle biosynthesis is thought to offer opportunities for a wide range of biological uses. The green process of turning biological waste into utilizable products gaining attention due to its economical and eco-friendly approach in recent years. This study reported the ability of Solanum tuberosum (ST) peel extract to the green synthesis of non-toxic, stable, small-sized silver nanoparticles without any toxic reducing agent utilizing the phytochemical components present in its structure. UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, flourier scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and energy dispersive analysis X-ray confirmed the biosynthesis and characterization of silver nanoparticles. Also, dynamic light scattering and thermogravimetric analyses showed stable synthesized nanoparticles. The antibacterial activity of the biosynthesized silver nanoparticles was evaluated against four different bacterial strains, Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) Bacillus subtilis (B. subtilis), and a yeast, Candida albicans (C. albicans) using the minimum inhibitory concentration technique. The cytotoxic activities were determined against Human dermal fibroblast (HDF), glioblastoma (U118), colorectal adenocarcinoma (CaCo-2), and human ovarian (Skov-3) cell lines cancer cells using MTT test. The nanoparticle capping agents that could be involved in the reduction of silver ions to Ag NPs and their stabilization was identified using FTIR. Nanoparticles were spherical in shape and had a size ranging from 3.91 to 27.07 nm, showed crystalline nature, good stability (-31.3 mV), and the presence of capping agents. ST-Ag NPs significantly decreased the growth of bacterial strains after treatment. The in vitro analysis showed that the ST-Ag NPs demonstrated dose-dependent cytotoxicity against cell lines. Based on the data, it is feasible to infer that biogenic Ag NPs were capped with functional groups and demonstrated considerable potential as antibacterial and anticancer agents for biomedical and industrial applications.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str,Nangang District,Harbin,P.R.China, 150001
| | - Mahmut Yıldıztekin
- Department of Herbal and Animal Production, Koycegiz Vocational School, Muğla Sıtkı Kocman University, Mugla, Turkey
| | - Dayong Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Str,Nangang District,Harbin,P.R.China, 150001
| | - Cumali Keskin
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkey
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Turkey
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Turkey
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir, Turkey
- Nanotechnology and Biochemical Toxicology (NBT) center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
| | - Canan Aytuğ Ava
- Dicle University Science and Technology Application and Research Center, Dicle University, Diyarbakır, Turkey
| | - Sevgi İrtegün Kandemir
- Department of Medical Biology, Dicle University Central Research Laboratory, Faculty of Medicine, Dicle University, Diyarbakir, Turkey
| | | | - Beşir Dağ
- Department of Chemistry, Batman University, Batman, Turkey
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Nanotechnology and Biochemical Toxicology (NBT) center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
| |
Collapse
|
24
|
Barabadi H, Mobaraki K, Jounaki K, Sadeghian-Abadi S, Vahidi H, Jahani R, Noqani H, Hosseini O, Ashouri F, Amidi S. Exploring the biological application of Penicillium fimorum-derived silver nanoparticles: In vitro physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance. Heliyon 2023; 9:e16853. [PMID: 37313153 PMCID: PMC10258451 DOI: 10.1016/j.heliyon.2023.e16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
This study showed the anti-candida, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic properties of biogenic silver nanoparticles (AgNPs) fabricated by using the supernatant of Penicillium fimorum (GenBank accession number OQ568180) isolated from soil. The biogenic AgNPs were characterized by using different analytical techniques. A sharp surface plasmon resonance (SPR) peak of the colloidal AgNPs at 429.5 nm in the UV-vis spectrum confirmed the fabrication of nanosized silver particles. The broth microdilution assay confirmed the anti-candida properties of AgNPs with a minimum inhibitory concentration (MIC) of 4 μg mL-1. In the next step, the protein and DNA leakage assays as well as reactive oxygen species (ROS) assay were performed to evaluate the possible anti-candida mechanisms of AgNPs representing an increase in the total protein and DNA of supernatant along with a climb-up in ROS levels in AgNPs-treated samples. Flow cytometry also confirmed a dose-dependent cell death in the AgNPs-treated samples. Further studies also confirmed the biofilm inhibitory performance of AgNPs against Candia albicans. The AgNPs at the concentrations of MIC and 4*MIC inhibited 79.68 ± 14.38% and 83.57 ± 3.41% of biofilm formation in C. albicans, respectively. Moreover, this study showed that the intrinsic pathway may play a significant role in the anticoagulant properties of AgNPs. In addition, the AgNPs at the concentration of 500 μg mL-1, represented 49.27%, and 73.96 ± 2.59% thrombolytic and DPPH radical scavenging potential, respectively. Promising biological performance of AgNPs suggests these nanomaterials as a good candidate for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Moosavy MH, de la Guardia M, Mokhtarzadeh A, Khatibi SA, Hosseinzadeh N, Hajipour N. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Sci Rep 2023; 13:7230. [PMID: 37142621 PMCID: PMC10160094 DOI: 10.1038/s41598-023-33632-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
Green synthesis of bioactive nanoparticles (NPs) is getting more attractive in various fields of science including the food industry. This study investigates the green synthesizing and characterization of gold NPs (AuNPs) and silver NPs (AgNPs) produced using Mentha spicata L. (M. spicata) essential oil as well as their antibacterial, antioxidant, and in vitro cytotoxic effects. The essential oil was mixed with both Chloroauric acid (HAuCl4) and aqueous silver nitrate (AgNO3) solutions separately and incubated at room temperature for 24 h. The chemical composition of the essential oil was identified by gas chromatography coupled with a mass spectrometer detector (GC-MS). Au and Ag nanoparticles were characterized using UV-Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR). The cytotoxicity of both types of nanoparticles was evaluated using MTT assay on cancerous HEPG-2cell line by exposing them to various concentrations of both NPs for 24 h. The antimicrobial effect was evaluated by the well-diffusion technique. The antioxidant effect was determined by DPPH and ABTS tests. According to the results of GC-MS analysis, 18 components were identified, including carvone (78.76%) and limonene (11.50%). UV-visible spectroscopy showed a strong absorption peak of 563 nm and 485 nm, indicating the formation of Au NPs and Ag NPs, respectively. TEM and DLS demonstrated that AuNPs and AgNPs were predominantly spherical shaped with average sizes of 19.61 nm and 24 nm, respectively. FTIR analysis showed that biologically active compounds such as monoterpenes could assist in the formation and stabilization of both types of NPs. Additionally, XRD provided more accurate results, revealing a nano-metal structure. Silver nanoparticles exhibited better antimicrobial activity against the bacteria than AuNPs. Zones of inhibition ranging 9.0-16.0 mm were recorded for the AgNPs, while zones of 8.0-10.33 mm were observed AuNPs. In the ABTS assay, the AuNPs and AgNPs showed a dose-dependent activity and synthesized nanoparticles exhibited higher antioxidant activity than MSEO in both assays. Mentha spicata essential oil can be successfully used for the green production of Au NPs and Ag NPs. Both green synthesized NPs show antibacterial, antioxidant, and in vitro cytotoxic activity.
Collapse
Affiliation(s)
- Mir-Hassan Moosavy
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, 50 Dr Moliner Street, Research Building, Burjassot, 46100, Valencia, Spain
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Amin Khatibi
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Neda Hosseinzadeh
- Division of Pharmacology and Toxicology, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasser Hajipour
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Nanobiotechnological approaches in anticoagulant therapy: The role of bioengineered silver and gold nanomaterials. Talanta 2023; 256:124279. [PMID: 36709710 DOI: 10.1016/j.talanta.2023.124279] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Nanotechnology is a novel area that has exhibited various remarkable applications, mostly in medicine and industry, due to the unique properties coming with the nanoscale size. One of the notable medical uses of nanomaterials (NMs) that attracted enormous attention recently is their significant anticoagulant activity, preventing or reducing coagulation of blood, decreasing the risk of strokes, heart attacks, and other serious conditions. Despite successful in vitro experiments, in vivo analyses are yet to be confirmed and further research is required to fully prove the safety and efficacy of nanoparticles (NPs) and to introduce them as valid alternatives to conventional ineffective anticoagulants with various shortcomings and side-effects. NMs can be synthesized through two main routes, i.e., the bottom-up route as a more preferable method, and the top-down route. In numerous studies, biological fabrication of NPs, especially metal NPs, is highly suggested given its eco-friendly approach, in which different resources can be employed such as plants, fungi, bacteria, and algae. This review discusses the green synthesis and characterization of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as two of the most useful metal NPs, and also their alloys in different studies focussing on their anticoagulant potential. Challenges and alternative approaches to the use of these NPs as anticoagulants have also been highlighted.
Collapse
|
27
|
Zin MEE, Moolkaew P, Junyusen T, Sutapun W. Preparation of hybrid particles of Ag nanoparticles and eggshell calcium carbonate and their antimicrobial efficiency against beef-extracted bacteria. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221197. [PMID: 37234493 PMCID: PMC10206469 DOI: 10.1098/rsos.221197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
In this study, hybrid particles of AgNPs-loaded eggshell calcium carbonate (AgNPs/eCaCO3) were prepared by co-precipitating the eggshell in the presence of freshly prepared AgNPs with a particle size of 10-30 nm. The hybrid particles were comparatively precipitated at 25°C and 35°C using poly (sodium 4-styrenesulfonate) as a polyelectrolyte. The AgNPs/eCaCO3 particles prepared at 25°C had a spherical morphology with a mean diameter of 3.56 µm, and Brunauer-Emmett-Teller (BET) surface area of 85.08 m2 g-1. On the other hand, the particles prepared at 35°C had a broader size distribution with a mean diameter of 3.19 µm, and a BET surface area of 79.25 m2 g-1. AgNPs-loaded commercial calcium carbonate particles (AgNPs/CaCO3) comparatively prepared at 35°C were perfectly spherical with a mean diameter of 5.61 µm. At preparing temperature of 25°C, the hybrid particles contain AgNPs of 0.78 wt% for AgNPs/eCaCO3 and 3.20 wt% for AgNPs/CaCO3. The AgNPs/eCaCO3 and AgNPs/CaCO3 particles exhibited the same efficiency against bacteria extracted from beef with an average inhibition zone diameter of 7-10 mm according to the modified Kirby-Bauer disc diffusion assay depending on their concentration and beef source. Freshly prepared silver colloids showed comparatively poorer antimicrobial efficiency.
Collapse
Affiliation(s)
- Moe Ei Ei Zin
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Centre for Biocomposite Materials for Medical and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pornpimol Moolkaew
- School of Agricultural Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tiraporn Junyusen
- School of Agricultural Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wimonlak Sutapun
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Centre for Biocomposite Materials for Medical and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
28
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
29
|
Khan S, Khan RS, Zahoor M, Sikandar khan, Islam NU, Khan T, Muhammad Z, Ullah R, Bari A. Alnus nitida and urea-doped Alnus nitida-based silver nanoparticles synthesis, characterization, their effects on the biomass and elicitation of secondary metabolites in wheat seeds under in vitro conditions. Heliyon 2023; 9:e14579. [PMID: 36967924 PMCID: PMC10036665 DOI: 10.1016/j.heliyon.2023.e14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Nano-fertilizers are superior to conventional fertilizers, but their effectiveness has not yet been adequately explored in the field of agriculture. In this study, silver nanoparticles using leaves extract of an Alnus nitida plant were synthesized and further doped with urea to enhance the plant biomass and metabolic contents. The synthesized Alnus nitida silver nanoparticles (A.N-AgNPs) and urea-doped silver nanoparticles (U-AgNPs) were characterized using Scanning Electron Microscopy, Transmission Electron Microscopy, Powder X-ray Diffraction, and Energy Dispersive X-ray. The wheat seeds were grown in media under controlled conditions in the plant growth chamber. The effectiveness of nanoparticles was studied using different A.N-AgNPs and U-AgNPs concentrations (0.75 μg/ml, 1.5 μg/ml, 3 μg/ml, 6 μg/ml, and 15 μg/ml). They were compared with a control group that received no dose of nanoparticles. The plant biomass, yield parameters, and wheat quality were analyzed. The effect of silver nanoparticles and U-AgNPs were examined in developing wheat seeds and their potency in combating biotic stresses such as nematodes, herbivores, fungi, insects, weeds and bacteria; abiotic stresses such as salinity, ultraviolet radiation, heavy metals, temperature, drought, floods etc. In the seedlings, six possible phytochemicals at a spray dose of 6 μg/ml of U-AgNPs were identified such as dihydroxybenzoic acids, vanillic acid, apigenin glucosidase, p-coumaric acid, sinapic acid, and ferulic acid whereas in other treatments the number of phenolic compounds was lesser in number as well as in concentrations. Moreover, various parameters of the wheat plants, including their dry weight and fresh weight, were assessed and compared with control group. The findings of the study indicated that A.N-AgNPs and U-AgNPs act as metabolite elicitors that induced secondary metabolite production (total phenolic, flavonoid, and chlorophyll contents). In addition, U-AgNPs provided a nitrogen source and were considered a smart nitrogen fertilizer that enhanced the plant biomass, yields, and metabolite production.
Collapse
Affiliation(s)
- Sajad Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Zahoor
- Department of Chemistry, Faculty of Chemical Engineering, Istanbul University Avcilar Campus, Istanbul, Turkey
- Department of Biochemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Sikandar khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Noor Ul Islam
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Tariq Khan
- School of Nanoscience and Nano-engineering University of North Carolina, USA
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Zar Muhammad
- Quality Enhancement Cell, University of Malakand, Chakdara 18800, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Majeed S, Saravanan M, Danish M, Zakariya NA, Ibrahim MNM, Rizvi EH, NisaAndrabi SU, Barabadi H, Mohanta YK, Mostafavi E. Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Development of Decellularized Fish Skin Scaffold Decorated with Biosynthesized Silver Nanoparticles for Accelerated Burn Wound Healing. Int J Biomater 2023; 2023:8541621. [PMID: 36760230 PMCID: PMC9904935 DOI: 10.1155/2023/8541621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, decellularized fish skin (DFS) scaffold decorated with silver nanoparticles was prepared for accelerating burn wound healing. The silver nanoparticles (AgNPs) synthesized by the green and facile method using Aloe vera leaf at different incubating times were characterized by using X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) Spectroscopy, and Ultraviolet-Visible Spectroscopy (UV-Vis spectroscopy). The different characterizations confirmed that the sizes of AgNPs prepared by incubating for 6 hours and 12 hours were 29.1 nm and 35.2 nm, respectively. After that, the different concentrations of the smallest AgNPs were used to dope the DFS scaffold to determine the cell viability. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were used to correlate the concentration of AgNPs with its bactericidal effect which was seen from 50 μg/ml. Then, the toxicity with human cells was investigated using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay with no significant cell viability from the concentration of 50 μg/ml to 200 μg/ml compared to the cocultured and commercial treatments.
Collapse
|
32
|
Green Synthesis and Antimicrobial Study on Functionalized Chestnut-Shell-Extract Ag Nanoparticles. Antibiotics (Basel) 2023; 12:antibiotics12020201. [PMID: 36830111 PMCID: PMC9952261 DOI: 10.3390/antibiotics12020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The chestnut shell is usually discarded as agricultural waste and the random deposition of it can cause environmental problems. In this study, monodisperse crystalline Ag nanoparticles (AgNPs) were synthesized by a hydrothermal approach, in which the chestnut shell extract served as both reducing agent and stabilizer. The synthesized Ag nanoparticles were characterized by ultraviolet-visible (UV) spectrophotometry, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements. The TEM, XRD and XPS results revealed that the synthesized product was spherical Ag nanoparticles with a face-centered cubic crystal structure. The antimicrobial activity test indicated that the Ag nanoparticles modified by the chestnut shell extract had an obvious inhibitory effect on Escherichia coli, Staphylococcus aureus and Candida albicans. The measured MIC and MBC of functionalized chestnut-shell-extract AgNPs against E. coli, S. aureus and C. albicans is relatively low, which indicated that the present functionalized chestnut-shell-extract AgNPs are an efficient antimicrobial agent.
Collapse
|
33
|
Mohammed AE, Alghamdi SS, Shami A, Suliman RS, Aabed K, Alotaibi MO, Rahman I. In silico Prediction of Malvaviscus arboreus Metabolites and Green Synthesis of Silver Nanoparticles - Opportunities for Safer Anti-Bacterial and Anti-Cancer Precision Medicine. Int J Nanomedicine 2023; 18:2141-2162. [PMID: 37131545 PMCID: PMC10149080 DOI: 10.2147/ijn.s400195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 05/04/2023] Open
Abstract
Introduction Biogenic silver nanoparticles (AgNPs) may be a feasible therapeutic option in the research and development towards selectively targeting specific cancers and microbial infections, lending a role in precision medicine. In-silico methods are a viable strategy to aid in drug discovery by identifying lead plant bioactive molecules for further wet lab and animal experiments. Methods Green synthesis of M-AgNPs was performed using the aqueous extract from the Malvaviscus arboreus leaves, characterized using UV spectroscopy, FTIR, TEM, DLS, and EDS. In addition, Ampicillin conjugated M-AgNPs were also synthesized. The cytotoxic potential of the M-AgNPs was evaluated using the MTT assay on MDA-MB 231, MCF10A, and HCT116 cancer cell lines. The antimicrobial effects were determined using the agar well diffusion assay on methicillin-resistant S. aureus (MRSA) and S. mutans, E. coli, and Klebsiella pneumoniae. Additionally, LC-MS was used to identify the phytometabolites, and in silico techniques were applied to determine the pharmacodynamic and pharmacokinetic profiles of the identified metabolites. Results Spherical M-AgNPs were successfully biosynthesized with a mean diameter of 21.8 nm and were active on all tested bacteria. Conjugation with ampicillin increased the susceptibility of the bacteria. These antibacterial effects were most predominant in Staphylococcus aureus (p < 0.0001). M-AgNPs had potent cytotoxic activity against the colon cancer cell line (IC50=29.5 μg/mL). In addition, four secondary metabolites were identified, Astragalin, 4-hydroxyphenyl acetic acid, Caffeic acid, and Vernolic acid. In silico studies identified Astragalin as the most active antibacterial and anti-cancer metabolite, binding strongly to the carbonic anhydrase IX enzyme with a comparatively higher number of residual interactions. Discussion Synthesis of green AgNPs presents a new opportunity in the field of precision medicine, the concept centered on the biochemical properties and biological effects of the functional groups present in the plant metabolites used for reduction and capping. M-AgNPs may be useful in treating colon carcinoma and MRSA infections. Astragalin appears to be the optimal and safe lead for further anti-cancer and anti-microbial drug development.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Rasha Saad Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi, 3798, United Arab Emirates
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
- Correspondence: Ishrat Rahman, Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia, Email
| |
Collapse
|
34
|
Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More MP, Pardeshi SR, Dhaneshwar G, Junnuthula V, Dyawanapelly S. Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Front Bioeng Biotechnol 2023; 11:1159193. [PMID: 37200842 PMCID: PMC10185809 DOI: 10.3389/fbioe.2023.1159193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Nanotechnology is an emerging applied science delivering crucial human interventions. Biogenic nanoparticles produced from natural sources have received attraction in recent times due to their positive attributes in both health and the environment. It is possible to produce nanoparticles using various microorganisms, plants, and marine sources. The bioreduction mechanism is generally employed for intra/extracellular synthesis of biogenic nanoparticles. Various biogenic sources have tremendous bioreduction potential, and capping agents impart stability. The obtained nanoparticles are typically characterized by conventional physical and chemical analysis techniques. Various process parameters, such as sources, ions, and temperature incubation periods, affect the production process. Unit operations such as filtration, purification, and drying play a role in the scale-up setup. Biogenic nanoparticles have extensive biomedical and healthcare applications. In this review, we summarized various sources, synthetic processes, and biomedical applications of metal nanoparticles produced by biogenic synthesis. We highlighted some of the patented inventions and their applications. The applications range from drug delivery to biosensing in various therapeutics and diagnostics. Although biogenic nanoparticles appear to be superior to their counterparts, the molecular mechanism degradation pathways, kinetics, and biodistribution are often missing in the published literature, and scientists should focus more on these aspects to move them from the bench side to clinics.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Rushikesh Sherkar
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Chaitali Shirsathe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Rushikesh Sonwane
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Nikita Varpe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Mahesh P. More
- Department of Pharmaceutics, Dr Rajendra Gode College of Pharmacy, Malkapur, Buldana, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St John Institute of Pharmacy and Research, Palghar, India
| | | | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| |
Collapse
|
35
|
Chahardoli A, Mavaei M, Shokoohinia Y, Fattahi A. Galbanic acid, a sesquiterpene coumarin as a novel candidate for the biosynthesis of silver nanoparticles: In vitro hemocompatibility, antiproliferative, antibacterial, antioxidant, and anti-inflammatory properties. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Preparation of ε-polylysine and hyaluronic acid self-assembled microspheres loaded bacterial cellulose aerogels with excellent antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Hasan KF, Xiaoyi L, Shaoqin Z, Horváth PG, Bak M, Bejó L, Sipos G, Alpár T. Functional silver nanoparticles synthesis from sustainable point of view: 2000 to 2023 ‒ A review on game changing materials. Heliyon 2022; 8:e12322. [PMID: 36590481 PMCID: PMC9800342 DOI: 10.1016/j.heliyon.2022.e12322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The green and facile synthesis of metallic silver nanoparticles (AgNPs) is getting tremendous attention for exploring superior applications because of their small dimensions and shape. AgNPs are already proven materials for superior coloration, biocidal, thermal, UV-protection, and mechanical performance. Originally, some conventional chemical-based reducing agents were used to synthesize AgNPs, but these posed potential risks, especially for enhanced toxicity. This became a driving force to innovate plant-based sustainable and green metallic nanoparticles (NPs). Moreover, the synthesized NPs using plant-based derivatives could be tuned and regulated to achieve the required shape and size of the AgNPs. AgNPs synthesized from naturally derived materials are safe, economical, eco-friendly, facile, and convenient, which is also motivating researchers to find greener routes and viable options, utilizing various parts of plants like flowers, stems, heartwood, leaves and carbohydrates like chitosan to meet the demands. This article intends to provide a comprehensive review of all aspects of AgNP materials, including green synthesis methodology and mechanism, incorporation of advanced technologies, morphological and elemental study, functional properties (coloration, UV-protection, biocidal, thermal, and mechanical properties), marketing value, future prospects and application, especially for the last 20 years or more. The article also includes a SWOT (Strengths, weaknesses, opportunities, and threats) analysis regarding the use of AgNPs. This report would facilitate the industries and consumers associated with AgNP synthesis and application through fulfilling the demand for sustainable, feasible, and low-cost product manufacturing protocols and their future prospects.
Collapse
Affiliation(s)
- K.M. Faridul Hasan
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Liu Xiaoyi
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
| | - Zhou Shaoqin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education; Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, 550025, Guizhou, PR China
- Center of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands
| | - Péter György Horváth
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - Miklós Bak
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - László Bejó
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Faculty of Forestry, University of Sopron, 9400, Sopron, Hungary
| | - Tibor Alpár
- Fiber and Nanotechnology Program, University of Sopron, 9400, Sopron, Hungary
- Faculty of Wood Engineering and Creative Industry, University of Sopron, 9400, Sopron, Hungary
| |
Collapse
|
38
|
Tawre MS, Shiledar A, Satpute SK, Ahire K, Ghosh S, Pardesi K. Synergistic and antibiofilm potential of Curcuma aromatica derived silver nanoparticles in combination with antibiotics against multidrug-resistant pathogens. Front Chem 2022; 10:1029056. [PMID: 36438875 PMCID: PMC9682076 DOI: 10.3389/fchem.2022.1029056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2024] Open
Abstract
Hospital acquired infections caused due to ESKAPE pathogens pose a challenge for treatment due to their growing antimicrobial resistance. Curcuma aromatica (CA) is traditionally known for its antibacterial, wound healing and anti-inflammatory properties. The present study highlights the biogenic synthesis of silver nanoparticles (CAAgNPs) capped and stabilized by the compounds from CA rhizome extract, also further demonstrating their antibacterial, antibiofilm and synergistic effects against multidrug-resistant (MDR) pathogens. CAAgNPs were synthesized using aqueous rhizome extract of CA (5 mg/ml) and AgNO3 (0.8 mM) incubated at 60°C up to 144 h. UV-vis spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) revealed CAAgNPs with characteristic peak at 430 nm, 13 ± 5 nm size of spherical shape, showing presence of silver and crystalline nature, respectively. Dynamic light scattering (DLS) and zeta potential confirmed their monodispersed nature with average diameter of 77.88 ± 48.60 nm and stability. Fourier transform infrared spectroscopic (FTIR) analysis demonstrated the presence of phenolic -OH and carbonyl groups possibly involved in the reduction and stabilization of CAAgNPs. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum biofilm inhibitory concentrations (MBICs) of CAAgNPs against Pseudomonas aeruginosa, NCIM 5029 and PAW1, and, Staphylococcus aureus, NCIM 5021 and S8 were in range from 8 to 128 μg/ml. Almost 50% disruption of pre-formed biofilms at concentrations 8-1,024 μg/ml was observed. Fluorescence microscopy and FESEM analysis confirmed cell death and disruption of pre-formed biofilms of P. aeruginosa PAW1 and S. aureus S8. Checkerboard assay demonstrated the synergistic effect of CAAgNPs (0.125-4 μg/ml) in combination with various antibiotics (0.063-1,024 μg/ml) against planktonic and biofilm forms of P. aeruginosa PAW1. The study confirms the antibacterial and antibiofilm activity of CAAgNPs alone and in combination with antibiotics against MDR pathogens, thus, reducing the dose as well as toxicity of both. CAAgNPs have the potential to be used in wound dressings and ointments, and to improve the performances of medical devices and surgical implants. In vivo toxicity of CAAgNPs however needs to be tested further using mice models.
Collapse
Affiliation(s)
- Madhumita S. Tawre
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Aishwarya Shiledar
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Surekha K. Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Kedar Ahire
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | - Karishma Pardesi
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
39
|
Ravi B, Mani G, Pushparaj H, Jang HT, Manickam V. Sida cordata assisted bio-inspired silver nanoparticles and its antimicrobial, free-radical scavenging, tyrosinase inhibition, and photocatalytic activity (4 in 1 system). PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2129116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Brindhamani Ravi
- Department of Pharmaceutical Chemistry, J.K.K. Nataraja College of Pharmacy, Erode, India
| | - Ganesh Mani
- Department of Pharmaceutical Chemistry, Srinivasan College of Pharmacy, Trichy, India
- Department of Chemical Engineering, Hanseo University, Haemi-myun, South Korea
| | | | - Hyun Tae Jang
- Department of Chemical Engineering, Hanseo University, Haemi-myun, South Korea
| | | |
Collapse
|
40
|
Ghosh S, Sarkar B, Kaushik A, Mostafavi E. Nanobiotechnological prospects of probiotic microflora: Synthesis, mechanism, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156212. [PMID: 35623529 DOI: 10.1016/j.scitotenv.2022.156212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology-driven solutions have almost touched every aspect of life, such as therapeutics, cosmetics, agriculture, and the environment. Physical and chemical methods for the synthesis of nanoparticles involve hazardous reaction conditions and toxic reducing as well as stabilizing agents. Hence, environmentally benign green routes are preferred to synthesize nanoparticles with tunable size and shape. Bacteria, fungi, algae, and medicinal plants are employed to synthesize gold, silver, copper, zinc, and other nanoparticles. However, very little literature is available on exploring probiotic bacteria for the synthesis of nanoparticles. In view of the background, this review gives the most comprehensive report on the nanobiotechnological potential of probiotic bacteria like Bacillus licheniformis, Bifidobacterium animalis, Brevibacterium linens, Lactobacillus acidophilus, Lactobacillus casei, and others for the synthesis of gold (AuNPs), selenium (SeNPs), silver (AgNPs), platinum (PtNPs), tellurium nanoparticles (TeNPs), zinc oxide (ZnONPs), copper oxide (CuONPs), iron oxide (Fe3O4NPs), and titanium oxide nanoparticles (TiO2NPs). Both intracellular and extracellular synthesis are involved as potential routes for biofabrication of polydispersed nanoparticles that are spherical, rod, or hexagonal in shape. Capsular exopolysaccharide associated carbohydrates such as galactose, glucose, mannose, and rhamnose, cell membrane-associated diglycosyldiacylglycerol (DGDG), 1,2-di-O-acyl-3-O-[O-α-D-galactopyranosyl-(1 → 2)-α-d-glucopyranosyl]glycerol, triglycosyl diacylglycerol (TGDG), NADH-dependent enzymes, amino acids such as cysteine, tyrosine, and tryptophan, S-layer proteins (SLP), lacto-N-triose, and lactic acid play a significant role in synthesis and stabilization of the nanoparticles. The biogenic nanoparticles can be recovered by rational treatment with sodium dodecyl sulfate (SDS) and/or sodium hydroxide (NaOH). Eventually, diverse applications like antibacterial, antifungal, anticancer, antioxidant, and other associated activities of the bacteriogenic nanoparticles are also elaborated. Being more biocompatible and effective, probiotic-generated nanoparticles can be explored as novel nutraceuticals for their ability to ensure sustained release and bioavailability of the loaded bioactive ingredients for diagnosis, targeted drug delivery, and therapy.
Collapse
Affiliation(s)
- Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat, India
| | | | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
|
42
|
Alhawiti AS. Citric acid-mediated green synthesis of selenium nanoparticles: antioxidant, antimicrobial, and anticoagulant potential applications. BIOMASS CONVERSION AND BIOREFINERY 2022:1-10. [PMID: 35646508 PMCID: PMC9126098 DOI: 10.1007/s13399-022-02798-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 05/04/2023]
Abstract
Using microwave technique in the presence of citric acid, selenium nanoparticles (SeNPs) were fabricated. The morphological characteristics revealed that the spherical SeNPs with diameters ranging from 10.5 to 20 nm aggregated spherical shapes with sizes ranging from 0.67 to 0.83 mm. Moreover, the antioxidant efficacy was assessed by the DPPH radical scavenging test, which depicted that green-prepared nanoparticle at a 106.3 mg/mL dosage had the maximum scavenging capacity (301.1 ± 11.42 mg/g). Otherwise, with nanoparticle concentrations of 500 mg/ml, in vitro cell viability of SeNPs through human breast cancer MCF-7 cell lines was reduced to 61.2 ± 2.2% after 1 day of exposure. The antibacterial activity was tested against G-negative Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), G-positive bacteria Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus), which demonstrated that SeNPs had little activity against S. aureus. Still, it had the highest activity against E. coli, with a zone of inhibition (ZOI) of 25.2 ± 1.5 mm compared to 16.0 ± 0.6 mm for the standard antibiotic. Most notably, biogenic SeNPs have anticoagulant activities using activated partial thromboplastin time (aPTT) assessment. Based on previous findings, SeNPs can be used in medical aid and their cell viability, antioxidant, anticoagulant, and effects on bacteria.
Collapse
Affiliation(s)
- Aliyah S. Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71421 Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Moorthy K, Chang KC, Yu PJ, Wu WJ, Liao MY, Huang HC, Chien HC, Chiang CK. Synergistic actions of phytonutrient capped nanosilver as a novel broad-spectrum antimicrobial agent: unveiling the antibacterial effectiveness and bactericidal mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj02469a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bactericidal action of cogon grass extract mediated AgNPs and LDI-MS analysis revealed the putative phytochemicals capped on the AgNP surface.
Collapse
Affiliation(s)
- Kavya Moorthy
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974301, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, 97004, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, 97004, Taiwan
| | - Po-Jen Yu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, 97004, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, 97004, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung, 900393, Taiwan
| | - Hsiao-Chi Huang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hsiang-Chi Chien
- Department of Applied Chemistry, National Pingtung University, Pingtung, 900393, Taiwan
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, 974301, Taiwan
| |
Collapse
|