1
|
Feng J, Lu C, Lin X, Kang L, Duan N, Wang Z, Liu C, Wu S. A portable microfluidic chip-based fluorescent and colorimetric aptasensor combining recombinase polymerase amplification for bovine pregnancy-associated glycoproteins detection. Biosens Bioelectron 2025; 270:116981. [PMID: 39586144 DOI: 10.1016/j.bios.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
A portable dual-mode PDMS-based microfluidic chip aptasensor was developed to detect bovine pregnancy-associated glycoproteins (bPAG) in bovine milk. Reagents within the chip chambers underwent reactions driven by gravity, where pre-encoded rich C sequences on the complementary strand of the aptamer facilitated the generation of abundant G-quadruplexes via subsequent RPA reaction, which activated the chromogenic substrates and fluorogenic precursors in the chip, producing distinct colorimetric and fluorescent signals. These signals were captured by our developed smartphone application and converted into RGB values, further enabling the quantification of bPAG with detection limits of 0.079 ng/mL and 0.024 ng/mL for colorimetric and fluorescent modes, respectively, over a linear range of 0.1-100 ng/mL. Bovine milk and other animal source milk were evaluated in the proposed assay, accurate identification results were obtained, indicating significant potential in bovine milk monitoring. The work further provided a valuable reference for point-of-care testing of non-nucleic acid targets in food samples.
Collapse
Affiliation(s)
- Jiaqi Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunxia Lu
- Life Science and Technology Institute. Yangtze Normal University, Chongqing, 408100, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Lixin Kang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Changbin Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China.
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Zhang Y, Li Q, Ma C, Wei S, Ren S. Construction of fluorescent biosensor based on aptamer recognition and enzyme-free nucleic acid signal amplification reaction and its application in cocaine detection. Talanta 2025; 283:127165. [PMID: 39522276 DOI: 10.1016/j.talanta.2024.127165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Cocaine is a white crystalline alkaloid extracted from coca leaf. It can block human nerve conduction, produce local anesthetic effect, and has strong addiction. Therefore, the qualitative and quantitative analysis of cocaine is of great significance in forensic toxicology, pharmacy and metabolomics. Cocaine aptamer probe is expected to become a powerful tool for on-site detection of cocaine due to its good stability, fast response speed, and easy preparation of kits for on-site application. In our work, we construct a fluorescent biosensor for the detection of cocaine by using the characteristics of specific binding of nucleic acid aptamers to targets and combining with enzyme-free nucleic acid signal amplification reaction. First, streptavidin-modified magnetic beads (MBs) can specifically bind to biotin-modified cocaine aptamer probe (Aptamer) to form MB-DNA. The nucleic acid aptamer complementary probe (tDNA) can hybridize with the aptamer through base complementary pairing to form a double strand, thereby obtaining the MB-DNA-tDNA complex. When cocaine is present in the system, cocaine specifically binds to aptamer, thereby replacing the probe tDNA. The probe tDNA can undergo hybridization chain reaction with the hairpin probe 1 (HP1) and hairpin probe 2 (HP2), resulting in the opening of the hairpin structure, and the fluorescence signal response of the fluorophore 6-carboxyfluorescein (FAM) modified on the HP1 is turned on, so as to achieve rapid, low-cost and efficient cocaine detection. The establishment of this method can enrich and develop the basic theory of drug analysis and detection, and provide theoretical guidance and technical support for the accurate, efficient and convenient detection of drug analysis methods on site.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China.
| | - Quanfang Li
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China
| | - Chen Ma
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China
| | - Shuoyun Wei
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China
| | - Shufang Ren
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730070, China
| |
Collapse
|
3
|
Jiang H, Deng Y, Lv X, Liu Y, Li A, Li X. New sensing methods using commercially available products: Based on PGM and PTS. Biosens Bioelectron 2025; 267:116836. [PMID: 39368295 DOI: 10.1016/j.bios.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
In recent years, detection technology has made remarkable progress in the field of food safety, in vitro diagnosis, and environment monitoring under the impetus of trace substances detection requirements. However, in sharp contrast to the rapid development of detection technology, its marketization process is relatively lagging behind. One possible approach is to integrate novel sensing strategies with mature commercial devices, such as personal glucose meters (PGMs) and pregnancy test strips (PTS) to speed up their marketization process. In this review, we systematically summarized design principle, evolution, and application progress for the integration of novel sensing strategies with commercial devices PGMs and PTS. Meanwhile, key factors and difficulties for the integration novel sensing strategies with commercial devices were emphasized. More importantly, the future of prospects and remaining challenges were discussed.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Li YY, Jiang S, Pan TT, Wang Y, Zhang CY. A simple "mix-and-detection" method based on template-free amplification for sensitive measurement of human cellular FEN1. Talanta 2025; 281:126863. [PMID: 39260254 DOI: 10.1016/j.talanta.2024.126863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that can specially identify and cleave 5' flap of branched duplex DNA, and it plays a critical role in DNA metabolic pathways and human diseases. Herein, we propose a simple "mix-and-detection" strategy for sensitive measurement of human cellular FEN1 on basis of template-free amplification. We design a dumbbell probe with 5' flap as a substrate of FEN1 and a NH2-labeled 3' termini to prevent nonspecific amplification. When FEN1 is present, the 5' flap is cleaved to release a free 3'-OH termini, initiating Ribonuclease HII (RNase HII)-assisted terminal deoxynucleotidyl transferase (TdT)-induced amplification for the production of a significant fluorescence signal. Due to the high exactitude of TdT-mediated extension reaction and RNase HII-induced single ribonucleotide excise, this assay shows excellent specificity and high sensitivity with a detection limit of 5.64 × 10-6 U/μL. Importantly, it can detect intracellular FEN1 activity with single-cell sensitivity under isothermal condition in a "mix-and-detection" manner, screen the FEN1 inhibitors, and even discriminate tumor cells from normal cells, offering a new platform for disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Yue-Ying Li
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China; Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ting-Ting Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Jiang H, Qian C, Deng Y, Lv X, Liu Y, Li A, Li X. Novel Multimode Assay Based on Asymmetrically Competitive CRISPR and Raman Barcode Spectra for Multiple Hepatocellular Carcinoma Biomarkers Detection. Anal Chem 2024; 96:20004-20014. [PMID: 39641617 DOI: 10.1021/acs.analchem.4c04593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Commercial pregnancy test strips (PTS) possess the advantages of lower price, higher stability, and better repeatability and have been popularized to integrate with novel sensing strategies to detect other disease biomarkers, which accelerates the commercialization process of those novel sensing strategies. However, the current integration of novel sensing strategies into commercial PTS still faced the problems of insufficient quantification, low sensitivity, and lack of multiple detection capabilities. Hence, we proposed the concept of "visual classification recognition, spectral signal subdivision" for multiple hepatocellular carcinoma biomarkers (miRNA122 and miRNA233) detection with dual signals based on asymmetric competitive CRISPR (acCRISPR) and surface-enhanced Raman spectroscopy coupling with PTS, named the acCRISPR-PTS-SERS assay. In this assay, acCRISPR was used as a nonamplified cascaded signal amplification method to improve the sensitivity of detection. Two AuNPs-based core-shell Raman tags, each corresponding to different miRNA biomarkers, were used to achieve both visual recognition and spectral segmentation to enhance the quantification of PTS detection and the capability for multiple detection. Under the optimal conditions, the LOD for miRNA122 and miRNA223 were 10.36 and 4.65 fM, respectively. The sensitivity was enhanced by nearly 2 orders of magnitude. In the future, simultaneous hand-held detection for fingerprint barcodes of different cancers can be achieved with the assistance of a microfluidic chip and smartphone.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng Qian
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Luo J, Zhang C, Wu M, Yao X, Duan Y, Li Y. Excitation/emission-enhanced heterostructure photonic crystal array synergizing with "DD-A" FRET entropy-driven circuit for high-resolution and ultrasensitive analysis of ctDNA. Biosens Bioelectron 2024; 263:116615. [PMID: 39106690 DOI: 10.1016/j.bios.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Circulating tumor DNA (ctDNA) is an emerging biomarker of liquid biopsy for cancer. But it remains a challenge to achieve simple, sensitive and specific detection of ctDNA because of low abundance and single-base mutation. In this work, an excitation/emission-enhanced heterostructure photonic crystal (PC) array synergizing with entropy-driven circuit (EDC) was developed for high-resolution and ultrasensitive analysis of ctDNA. The donor donor-acceptor FÖrster resonance energy transfer ("DD-A" FRET) was integrated in EDC based on the introduction of simple auxiliary strand, which exhibited higher sensitivity than that of traditional EDC. The heterostructure PC array was constructed with the bilayer periodic nanostructures of nanospheres. Because the heterostructure PC has the adjustable dual photonic band gaps (PBGs) by changing nanosphere sizes, and the "DD-A" FRET can offer the excitation and emission peak with enough distance, it helps the successful matches between the dual PBGs of heterostructure PC and the excitation/emission peaks of "DD-A" FRET; thus, the fluorescence from EDC can be enhanced effectively from both of excitation and emission processes on heterostructure PC array. Besides, high-resolution of single-base mutation was obtained through the strict recognition of EDC. Benefiting from the specific spectrum-matched and synergetic amplification of heterostructure PC and EDC with "DD-A" FRET, the proposed array obtained ultrasensitive detection of ctDNA with LOD of 12.9 fM, and achieved the analysis of mutation frequency as low as 0.01%. Therefore, the proposed strategy has the advantages of simple operation, mild conditions (enzyme-free and isothermal), high-sensitivity, high-resolution and high-throughput analysis, showing potential in bioassay and clinical application.
Collapse
Affiliation(s)
- Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xiuyuan Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
7
|
Feng Y, Yi K, Gong F, Zhang Y, Shan X, Ji X, Zhou F, He Z. Ultra-sensitive detection of SARS-CoV-2 S1 protein by coupling rolling circle amplification with poly(N-isopropylacrylamide)-based sandwich-type assay. Talanta 2024; 279:126572. [PMID: 39024855 DOI: 10.1016/j.talanta.2024.126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
In the past few years, the COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) seriously threatens global public health security due to its high contagiousness. It remains of vital importance to develop a rapid and sensitive assay for SARS-CoV-2. In this work, we proposed a sandwich-type assay based on poly(N-isopropylacrylamide) (PNIPAM), allowing efficient detection of the SARS-CoV-2 S1 protein in the homogeneous solution. Firstly, a direct sandwich-type assay was established with a linear range of 0.2-2 μg/mL and a limit of detection (LOD) of 0.11 μg/mL, which could realize rapid detection in about 1 h. Furthermore, the sandwich-type assay coupled with rolling circle amplification (RCA) obtained an increase in sensitivity of 5.9 × 104 folds with a wide linear range of 0.01 - 100 ng/mL and a LOD of 1.88 pg/mL. The average recoveries in unpretreated saliva were 90 %-113.0 %, indicating the potential of the developed method for application in practical samples. Given the high selectivity and sensitivity of the developed method, it has a significant potential for rapid and early detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Yu Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kebing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoyun Shan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Chang Y, Zhang M, Liu G, Wu X, Yan Q, Yang C, Liu L, Feng Y, Xia X. Rapid and sensitive detection of Mycobacterium tuberculosis using nested multi-enzyme isothermal rapid amplification in a single reaction. Microbiol Spectr 2024; 12:e0088724. [PMID: 39465949 PMCID: PMC11619386 DOI: 10.1128/spectrum.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Tuberculosis (TB) remains a major global health problem, and there is an urgent need for rapid, sensitive, and easy-to-use diagnostic technologies to improve TB diagnosis. In this study, we developed the nested multi-enzyme isothermal rapid amplification (nestMIRA) assay for TB. We designed several pairs of primers and probes targeting the IS6110 sequence of Mycobacterium tuberculosis (Mtb) and performed combinatorial testing to optimize the performance of the TB nestMIRA assay. The reaction can be performed at a constant temperature of approximately 40°C and completed within 30 minutes in the same tube without opening the central cap. There has been no cross-reactivity with common non-tuberculous mycobacteria (NTB) and respiratory pathogens. The TB nestMIRA assay has a minimum detection limit of 5 copies/μL for H37Rv genomic DNA and a limit of quantification of 100 CFU/ml. To test the diagnostic performance of the TB nestMIRA assay, we conducted a 163-person clinical cohort study using comprehensive reference standards as the gold standard for clinical diagnosis. Our study showed that TB nestMIRA performed slightly better than GeneXpert MTB/RIF (Xpert) (85.27% vs. 82.17%) and significantly better than culture (55.81%) and acid-fast bacillus (AFB) smear (38.76%). The TB nestMIRA assay offers speed, specificity, sensitivity, and convenience. We believe that it has the potential to be a rapid alternative for TB diagnosis, particularly in resource-limited settings. IMPORTANCE In this study, we have successfully developed a method called nested multi-enzyme isothermal rapid amplification (nestMIRA) for the detection of Mycobacterium tuberculosis (Mtb). This method involves a two-step thermostatic amplification process in the same tube and can be read using fluorescence and lateral flow dipstick (LFD) assays. It is known to be rapid, specific, and highly sensitive. Our method has shown promising results in the detection of clinical specimens, and we believe that it can be a valuable tool for the rapid detection of Mtb in a clinical setting.
Collapse
Affiliation(s)
- Yingchao Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mi Zhang
- Medical Laboratory, Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, China
| | - Gaowen Liu
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, China
| | - Xinlin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaolu Yan
- Department of Respiratory and Critical Care Medicine, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, China
| | - Cuixian Yang
- Medical Laboratory, Yunnan Provincial Hospital of Infectious Disease, Kunming, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xueshan Xia
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Xu J, Zhang T, Lv X, Shi L, Bai W, Ye L. An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods 2024; 13:3200. [PMID: 39410234 PMCID: PMC11475897 DOI: 10.3390/foods13193200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Among the pathogens that cause infectious diarrhea in China, Shigella is the most prominent. Shigellosis affects both adults and children, particularly those in developing nations, with nearly 190 million annual cases and a third resulting in fatalities. The recently emerged CRISPR/Cas system has also been increasingly applied for the detection of different biological targets. The lateral flow assay (LFA) has the advantages of short detection time, simple operation, high sensitivity, and low cost, and it provides an ideal platform for on-site detection. In this study, a recombinase polymerase amplification-CRISPR/Cas12a-LFA test for Shigella flexneri was constructed. The established method had good specificity and sensitivity, and the qualitative accuracy of 32 tested strains reached 100%. The detection limit of genomic DNA reached 8.3 copies/μL. With the advantages of high accuracy and portability, this diagnostic apparatus represents a novel method of identification and detection of Shigella flexneri, particularly in settings that lack complex laboratory infrastructure.
Collapse
Affiliation(s)
- Jieru Xu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Tianxin Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xinrui Lv
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Shandong Yuwang Ecological Food Industry Co., Ltd., Yucheng 251200, China
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
García-Martín JM, Muro A, Fernández-Soto P. Diagnosis of Human Endemic Mycoses Caused by Thermally Dimorphic Fungi: From Classical to Molecular Methods. J Fungi (Basel) 2024; 10:637. [PMID: 39330397 PMCID: PMC11432851 DOI: 10.3390/jof10090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Human endemic mycoses are potentially fatal diseases caused by a diverse group of fungi that can alter their morphology in response to an increase in temperature. These thermally dimorphic fungi affect both healthy and immunocompromised hosts, causing a substantial health and economic burden. Despite this, the diagnosis of endemic mycoses is still a formidable challenge for several reasons, including similar symptomatology, limited utility of classical diagnostic methods, inaccessibility to reliable molecular approaches in most endemic areas, and a lack of clinical suspicion out of these regions. This review summarizes essential knowledge on thermally dimorphic fungi and the life-threatening diseases they cause. The principle, advantages and limitations of the methods traditionally used for their diagnosis are also described, along with the application status and future directions for the development of alternative diagnostic strategies, which could help to reduce the disease burden in endemic areas.
Collapse
Affiliation(s)
- Joaquina María García-Martín
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (A.M.); (P.F.-S.)
| | | | | |
Collapse
|
11
|
Jiang H, Peng Z, Lv X, Liu Y, Li X, Deng Y. Hybrid chain reaction nanoscaffold-based functional nucleic acid nanomaterial cascaded with rolling circle amplification for signal enhanced miRNA let-7a detection. Mikrochim Acta 2024; 191:533. [PMID: 39134753 DOI: 10.1007/s00604-024-06617-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
A novel functional nucleic acid (FNA) nanomaterial based on hybrid chain reaction (HCR) nanoscaffolds is proposed to solve the problem of time superposition and repeated primer design in sensitive miRND detection using cascade amplification technique. Rolling circle amplification (RCA) was cascaded with the prepared FNA nanomaterials for miRNA let-7a (as a model target) sensitive detection by lateral flow assay (LFA). Under the optimal conditions, the proposed RCA-FNA-LFA assay demonstrated the specificity and accuracy for miRNA let-7a detection with a detection limit of 1.07 pM, which increased sensitivity by nearly 20 times compared with that of RCA -LFA assay. It is worth noting that the non-target-dependent self-assembly process of HCR nanoscaffolds does not take up the whole detection time, thus, less time is taken than that of the conventional cascaded method. Moreover, the proposed assay does not need to consider the system compatibility between two kinds of isothermal amplification techniques. As for detection of different miRNAs, only the homologous arm of the padlock probe of RCA needs to be changed, while the FNA nanomaterial does not need any change, which greatly simplifies the primer design of the cascaded amplification techniques. With further development, the proposed RCA-FNA-LFA assay might achieve more sensitive and faster results to better satisfy the requirements of clinical diagnosis combing with more sensitive labels or small strip reader.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhao Peng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
12
|
Wu Z, Zheng H, Bian Y, Weng J, Zeng R, Sun L. A quadratic isothermal amplification fluorescent biosensor without intermediate purification for ultrasensitive detection of circulating tumor DNA. Analyst 2024; 149:3396-3404. [PMID: 38712742 DOI: 10.1039/d4an00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Circulating tumor DNA (ctDNA) is an auspicious tumor biomarker released into the bloodstream by tumor cells, offering abundant information concerning cancer genes. It plays a crucial role in the early diagnosis of cancer. However, due to extremely low levels in body fluids, achieving a simple, sensitive, and highly specific detection of ctDNA remains challenging. Here, we constructed a purification-free fluorescence biosensor based on quadratic amplification of ctDNA by combining nicking enzyme mediated amplification (NEMA) and catalytic hairpin assembly (CHA) reactions. After double isothermal amplification, this biosensor achieved an impressive signal amplification of nearly 107-fold, enabling it to detect ctDNA with ultra-sensitivity. And the detection limit of this biosensor is as low as 2 aM. In addition, we explored the influence of human serum on the performance of the biosensor and found that it showed favorable sensitivity in the presence of serum. This biosensor eliminates the need for an intermediate purification step, resulting in enhanced sensitivity and convenience. Thus, our purification-free fluorescent biosensor exhibits ultra-high sensitivity when compared to other biosensors and has the potential to serve as an effective diagnostic tool for early detection of cancer.
Collapse
Affiliation(s)
- Zhaojie Wu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Hongshan Zheng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Yongjun Bian
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Jian Weng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| | - Ru Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liping Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China.
| |
Collapse
|
13
|
Li Y, Li C, Zhang C, Zhao L, Huang Y. Triplex DNA-based aggregation-induced emission probe: A new platform for hybridization chain reaction-based fluorescence sensing assay. Anal Chim Acta 2024; 1299:342406. [PMID: 38499412 DOI: 10.1016/j.aca.2024.342406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
The hybridization chain reaction (HCR), as one of the nucleic acid amplification technologies, is combined with fluorescence signal output with excellent sensitivity, simplicity, and stability. However, current HCR-based fluorescence sensing methods still have some defects such as the blocking effect of the HCR combination with fluorophores and the aggregation-caused quenching (ACQ) phenomenon of traditional fluorophores. Herein, a triplex DNA-based aggregation-induced emission probe (AIE-P) was designed as the fluorescent signal transduction, which is able to provide a new platform for HCR-based sensing assay. The AIE-P was synthesized by attaching the AIE fluorophores to terminus of the oligonucleotide through amido bond, and captured the products of HCR to form triplex DNA. In this case, the AIE fluorophores were located in close proximity to generate fluorescence. This assay provided turn-on fluorescence efficiency with a high signal-to-noise ratio and excellent amplification capability to solve the shortcoming of HCR-based fluorescence sensing methods. It enabled sensitive detection of Vibrio parahaemolyticus in the range of 102-106 CFU mL-1, and with a low limit of detection down to 39 CFU mL-1. In addition, this assay expressed good specificity and practicability. The triplex DNA-based AIE probe forms a universal molecular tool for developing HCR-based fluorescence sensing methods.
Collapse
Affiliation(s)
- Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China; Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Ciling Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangqiang Zhang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yaoyun Huang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
14
|
Bodulev OL, Zakharov MD, Sakharov IY. Chemiluminescent plate assay of microRNA-155 coupled with catalytic hairpin assembly with oligonucleotide release (CHAOR). Talanta 2024; 270:125525. [PMID: 38091747 DOI: 10.1016/j.talanta.2023.125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
A heterogeneous sensitive microRNA-155 assay based on a new isothermal amplification method, called catalytic hairpin assembly with oligonucleotide release (CHAOR), was developed. The principle of CHAOR was studied by non-denaturing electrophoresis. To detect the amplification product, a polyperoxidase-streptavidin conjugate (molar ratio 1:80) and an enhanced chemiluminescence reaction were used, which made it possible to increase assay sensitivity. The detection limit of microRNA-155 assay was 0.4 pM. The coefficient of variation of the chemiluminescent signal, formed upon the heterogeneous determination of miRNA-155, was less than 12 % within the working range. The efficiency of CHAOR as an amplification method was similar to that of traditional CHA, as miRNA-155 assays based on CHAOR and CHA had similar analytical parameters. In addition, the proposed assay was highly specific. Contrary to traditional CHA, CHAOR, one of whose products is a single-stranded oligonucleotide, can be used in analytical methods based on cascade amplification.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow, 119991, Russia
| | - Maxim D Zakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow, 119991, Russia
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, bldg.1, Moscow, 119991, Russia.
| |
Collapse
|
15
|
Li T, Meng F, Fang Y, Luo Y, He Y, Dong Z, Tian B. Multienzymatic disintegration of DNA-scaffolded magnetic nanoparticle assembly for malarial mitochondrial DNA detection. Biosens Bioelectron 2024; 246:115910. [PMID: 38086308 DOI: 10.1016/j.bios.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Early diagnosis of malaria can prevent the spread of disease and save lives, which, however, remains challenging in remote and less developed regions. Here we report a portable and low-cost optomagnetic biosensor for rapid amplification and detection of malarial mitochondrial DNA. Bioresponsive magnetic nanoparticle assemblies are constructed by using nucleic acid scaffolds containing endonucleolytic DNAzymes and their substrates, which can be activated by the presence of target DNA and self-disintegrated to release magnetic nanoparticles for optomagnetic quantification. Specifically, target molecules can induce padlock probe ligation and subsequent one-pot homogeneous cascade reactions consisting of nicking-enhanced rolling circle amplification, DNAzyme-assisted nucleic acid recycling, and strand-displacement-driven disintegration of the magnetic assembly. With an optimized magnetic actuation process for reaction acceleration, a detection limit of 1 fM can be achieved by the proposed biosensor with a total assay time of ca. 90 min and a dynamic detection range spanning 3 orders of magnitude. The robustness of the system was validated by testing target molecules spiked in 5% serum samples. Clinical sample validation was conducted by testing malaria-positive clinical blood specimens, obtaining quantitative results concordant with qPCR measurements.
Collapse
Affiliation(s)
- Tingting Li
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Fanming Meng
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Yuan Fang
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; College of Biology, Hunan University, Changsha, 410082, China
| | - Yifei Luo
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Yilong He
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Zhuxin Dong
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China
| | - Bo Tian
- School of Basic Medical Sciences, Central South University, Changsha, 410013, China; Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
16
|
Zeng D, Jiao J, Mo T. Combination of nucleic acid amplification and CRISPR/Cas technology in pathogen detection. Front Microbiol 2024; 15:1355234. [PMID: 38380103 PMCID: PMC10877009 DOI: 10.3389/fmicb.2024.1355234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Major health events caused by pathogenic microorganisms are increasing, seriously jeopardizing human lives. Currently PCR and ITA are widely used for rapid testing in food, medicine, industry and agriculture. However, due to the non-specificity of the amplification process, researchers have proposed the combination of nucleic acid amplification technology with the novel technology CRISPR for detection, which improves the specificity and credibility of results. This paper summarizes the research progress of nucleic acid amplification technology in conjunction with CRISPR/Cas technology for the detection of pathogens, which provides a reference and theoretical basis for the subsequent application of nucleic acid amplification technology in the field of pathogen detection.
Collapse
Affiliation(s)
| | | | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Yan H, Wu L, Wang J, Zheng Y, Zhao F, Bai Q, Hu H, Liang H, Niu X. Target-triggered dual signal amplification based on HCR-enhanced nanozyme activity for the sensitive visual detection of Escherichia coli. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:496-502. [PMID: 38078483 DOI: 10.1039/d3ay01824e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The detection of foodborne pathogens is crucial for food hygiene regulation and disease diagnosis. Colorimetry has become one of the main analytical methods in studying foodborne pathogens due to its advantages of visualization, low cost, simple operation, and no complex instrument. However, the low sensitivity limits its applications in early identification and on-site detection for trace analytes. In order to overcome such a limitation, herein we propose a joint strategy featuring dual signal amplification based on the hybridization chain reaction (HCR) and DNA-enhanced peroxidase-like activity of gold nanoparticles (AuNPs) for the sensitive visual detection of Escherichia coli. Target bacteria bound specifically to the aptamer domain in the capture hairpin probe, exposing the trigger domain for HCR and forming the extended double-stranded DNA (dsDNA) structures. The peroxidase-like catalytic capacity of AuNPs can be enhanced significantly by dsDNAs with the sticky ends of dsDNAs being adsorbed on AuNPs and the rigidity of dsDNAs causing the spatial regulation of AuNP concentration. The intensity of the enhancement was linearly related to the number of target bacteria. With the above strategy, the detection limit of our colorimetric method for Escherichia coli was down to 28 CFU mL-1 within a short analytical time (50 min). This study provides a new perspective for the sensitive and visual detection of early bacterial contamination in foods.
Collapse
Affiliation(s)
- Hangli Yan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Linghao Wu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jingyu Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Zheng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Fengxia Zhao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hongmei Hu
- Hengyang Center for Disease Control and Prevention, Hengyang 421001, China
| | - Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiangheng Niu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
18
|
Manzo M, Serra A, Pedone E, Pirone L, Scognamiglio V, De Felice M, De Falco M. DNA Polymerase I Large Fragment from Deinococcus radiodurans, a Candidate for a Cutting-Edge Room-Temperature LAMP. Int J Mol Sci 2024; 25:1392. [PMID: 38338670 PMCID: PMC10855757 DOI: 10.3390/ijms25031392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the loop-mediated isothermal amplification (LAMP) technique, designed for microbial pathogen detection, has acquired fundamental importance in the biomedical field, providing rapid and precise responses. However, it still has some drawbacks, mainly due to the need for a thermostatic block, necessary to reach 63 °C, which is the BstI DNA polymerase working temperature. Here, we report the identification and characterization of the DNA polymerase I Large Fragment from Deinococcus radiodurans (DraLF-PolI) that functions at room temperature and is resistant to various environmental stress conditions. We demonstrated that DraLF-PolI displays efficient catalytic activity over a wide range of temperatures and pH, maintains its activity even after storage under various stress conditions, including desiccation, and retains its strand-displacement activity required for isothermal amplification technology. All of these characteristics make DraLF-PolI an excellent candidate for a cutting-edge room-temperature LAMP that promises to be very useful for the rapid and simple detection of pathogens at the point of care.
Collapse
Affiliation(s)
- Marilena Manzo
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Assunta Serra
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy
| | - Mariarita De Felice
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mariarosaria De Falco
- Institute of Bioscience and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
19
|
Peng L, Fang T, Cai Q, Li H, Li H, Sun H, Zhu M, Dai L, Shao Y, Cai L. Rapid detection of Mycobacterium tuberculosis in sputum using CRISPR-Cas12b combined with cross-priming amplification in a single reaction. J Clin Microbiol 2024; 62:e0092323. [PMID: 38112450 PMCID: PMC10793277 DOI: 10.1128/jcm.00923-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE In this study, we successfully established a new One-Pot method, named TB One-Pot, for detecting Mtb in sputum by combining CRISPR-cas12b-mediated trans-cleavage with cross-priming amplification (CPA). Our study evaluated the diagnostic performance of TB One-Pot in clinical sputum samples for tuberculosis. The findings provide evidence for the potential of TB One-Pot as a diagnostic tool for tuberculosis.
Collapse
Affiliation(s)
- Lijun Peng
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Fang
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingshan Cai
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Li
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huanyu Li
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiqiong Sun
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingzhi Zhu
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingshan Dai
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqin Shao
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Long Cai
- Clinical Laboratory Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Du J, He JS, Wang R, Wu J, Yu X. Ultrasensitive reporter DNA sensors built on nucleic acid amplification techniques: Application in the detection of trace amount of protein. Biosens Bioelectron 2024; 243:115761. [PMID: 37864901 DOI: 10.1016/j.bios.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
The detection of protein is of great significance for the study of biological physiological function, early diagnosis of diseases and drug research. However, the sensitivity of traditional protein detection methods for detecting trace amount of proteins was relatively low. By integrating sensitive nucleic acid amplification techniques (NAAT) with protein detection methods, the detection limit of protein detection methods can be substantially improved. The DNA that can specifically bind to protein targets and convert protein signals into DNA signals is collectively referred to reporter DNA. Various NAATs have been used to establish NAAT-based reporter DNA sensors. And according to whether enzymes are involved in the amplification process, the NAAT-based reporter DNA sensors can be divided into two types: enzyme-assisted NAAT-based reporter DNA sensors and enzyme-free NAAT-based reporter DNA sensors. In this review, we will introduce the principles and applications of two types of NAAT-based reporter DNA sensors for detecting protein targets. Finally, the main challenges and application prospects of NAAT-based reporter DNA sensors are discussed.
Collapse
Affiliation(s)
- Jungang Du
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rui Wang
- Human Phenome Institute, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
21
|
Fan M, Yang J, Wang X, Xu Y, Li B, Yang H, Lu Q, Min X, Huang M, Huang J. Highly specific detection of Neisseria gonorrhoeae based on recombinase polymerase amplification-initiated strand displacement amplification. Anal Chim Acta 2023; 1283:341956. [PMID: 37977801 DOI: 10.1016/j.aca.2023.341956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Neisseria gonorrhoeae is the only pathogen that causes gonorrhea, and can have serious consequences if left untreated. A simple and accurate detection method for N. gonorrhoeae is essential for the diagnosis of gonorrhea and the appropriate prescription of antibiotics. The application of isothermal recombinase polymerase amplification (RPA) to detect this pathogen is advantageous because of its rapid performance, high sensitivity, and minimal dependency on equipment. However, this simplicity is offset by the risk of false-positive signals from primer-dimers and primer-probe dimers. In this study, RPA-initiated strand displacement amplification (SDA) was established for the detection of N. gonorrhoeae, and eliminated false-positive signals from primer-dimers and primer-probe dimers. The developed biosensor allows for the reduced generation of nonspecific RPA amplification through the design of enzyme cleavage sites on primers, introduction of SDA, and detection of the final product using a molecular beacon (MB). Using this system, the DNA double strand is transformed into single-stranded DNA following SDA, thereby providing a more suitable binding substrate and improving the efficiency of MB detection. Amplification can be conducted below 37 °C, and the process can be completed within 90 min. The limit of detection was determined to be 0.81 copies/μL. This system is highly specific for N. gonorrhoeae and exhibits no cross-reactivity with other common urogenital pathogens. The results of this study are consistent with those of real-time PCR performed on clinical specimens of urogenital secretions. In summary, the biosensor is a simple and specific detection method for N. gonorrhoeae.
Collapse
Affiliation(s)
- Mengnan Fan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jianru Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaosu Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Yongjie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Bing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Qin Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Meirong Huang
- Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
22
|
Zhu L, Zhu L, Zhang X, Yang L, Liu G, Xiong X. Programmable electrochemical biosensing platform based on catalytic hairpin assembly and entropy-driven catalytic cascade amplification circuit. Anal Chim Acta 2023; 1278:341715. [PMID: 37709458 DOI: 10.1016/j.aca.2023.341715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Herein, powerful DNA strand displacement reaction and sensitive electrochemical analysis method were ingeniously integrated to develop a programmable biosensing platform. Using DNA as the detection model, a cascade amplification system based on catalytic hairpin assembly and entropy-driven catalytic was constructed, and the reaction rate and signal amplification effect were significantly improved. The product of the cascade amplification circuit could undergo strand displacement reaction with the signal probe on the electrode surface to obtain sensitive electrochemical signal changes and realize highly sensitive detection of the target. In addition, without redesigning the DNA sequences in the cascade amplification circuit, the by-product strand typically wasted in traditional entropy-driven catalytic reactions can be fully utilized to construct a single-signal output biosensing system and even a dual-signal output ratiometric biosensing platform, improving the detection repeatability and reliability of the system, and expanding the application of DNA strand displacement reaction in electrochemical biosensing. Furthermore, benefiting from the design flexibility of the DNA molecules, the constructed biosensing platform realized the sensitive detection of aptamer substrate (kanamycin as an example) and certain metal ion (mercury as an example) by simply recoding the corresponding recognition sequence, demonstrating the good versatility of the biosensing platform.
Collapse
Affiliation(s)
- Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Sichuan Normal University), Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Sichuan Normal University), Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Sichuan Normal University), Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Sichuan Normal University), Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Guoyu Liu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Sichuan Normal University), Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Sichuan Normal University), Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| |
Collapse
|