1
|
Takahashi S, Maehara M, Nishihara C, Iwata H, Shibutani S. A genome-wide CRISPR-Cas9 knockout screen using dynamin knockout cells identifies Nf2 and Traf3 as genes involved in dynamin-independent endocytosis. Exp Cell Res 2025; 446:114470. [PMID: 39978713 DOI: 10.1016/j.yexcr.2025.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Endocytosis is a fundamental process by which cells take up extracellular materials, including nutrients, growth factors, and pathogens. Although several endocytic pathways, such as clathrin-mediated and caveolin-mediated endocytosis, are well-characterized, other endocytic pathways remain poorly understood. Therefore, in this study, we performed a genome-wide CRISPR-Cas9 screen to elucidate new endocytic pathways using dynamin conditional knockout cells. We identified genes that significantly reduced the cell numbers when knocked out simultaneously with dynamin. Among these, neurofibromin 2 (Nf2) and tumor necrosis factor receptor-associated factor 3 (Traf3), whose relationship with endocytosis was not well understood, were investigated for their roles in endocytosis activity. Nf2 and Traf3 knockout cells exhibited reduced non-specific fluid endocytosis in a dynamin-independent manner. However, Nf2 or Traf3 knockout did not affect the transferrin receptor-mediated endocytosis that depends on clathrin and dynamin. Moreover, Nf2 knockout cells showed reduced cholera toxin uptake in a dynamin-independent manner. Overall, this study highlights the roles of Nf2 and Traf3 in endocytosis.
Collapse
Affiliation(s)
- Sho Takahashi
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Mizuho Maehara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Chihiro Nishihara
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Hiroyuki Iwata
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Lucà S, Pignata G, Cioce A, Salzillo C, De Cecio R, Ferrara G, Della Corte CM, Morgillo F, Fiorelli A, Montella M, Franco R. Diagnostic Challenges in the Pathological Approach to Pleural Mesothelioma. Cancers (Basel) 2025; 17:481. [PMID: 39941848 PMCID: PMC11816244 DOI: 10.3390/cancers17030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Malignant pleural mesothelioma (MPM) still represents a complex diagnostic challenge for pathologists in routine practice. This diagnosis requires a multidisciplinary approach, and pathological evaluation is mandatory. The histopathological diagnosis is stepwise and should be based on morphological and immunohistochemical assessment, sometimes associated with molecular tests, and supported by clinical and radiological findings. A correct morphological approach aims to exclude pleural metastasis or benign mesothelial proliferations, which are the main differential diagnoses. While certain histological features are diagnostic of MPM, others are highly suggestive but not definitive. Immunohistochemistry plays a pivotal role, with a panel of both traditional and newer markers being used to assess mesothelial differentiation and to differentiate malignant from benign proliferations. In more challenging cases, molecular tests, such as fluorescent in situ hybridization (FISH) to detect CDKN2A deletion, can be helpful in distinguishing malignant from benign pleural lesions. This review summarizes the key morphological, immunohistochemical, and molecular features that should be considered when pleural biopsy samples are examined, with the aim of improving diagnostic accuracy in this complex area.
Collapse
Affiliation(s)
- Stefano Lucà
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Pignata
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Alessandro Cioce
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Cecilia Salzillo
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Rossella De Cecio
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Gerardo Ferrara
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (R.D.C.); (G.F.)
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.M.D.C.); (F.M.)
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.M.D.C.); (F.M.)
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Department of Translational Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (S.L.); (A.C.); (M.M.)
| |
Collapse
|
3
|
Desingu Rajan AR, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2a/b. Dis Model Mech 2024; 17:dmm050862. [PMID: 39415595 PMCID: PMC11646113 DOI: 10.1242/dmm.050862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF-2) is a dominantly inherited genetic disorder that results from variants in the tumor suppressor gene, neurofibromin 2 (NF2). Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by inducible genetic knockout of nf2a/b, the zebrafish homologs of human NF2. Analysis of nf2a and nf2b expression revealed ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displayed lower expression levels. Induction of nf2a/b knockout at early stages increased the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggered the development of a spectrum of tumors, including vestibular Schwannomas, spinal Schwannomas, meningiomas and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
- Ayyappa Raja Desingu Rajan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925 Vodnany, Czech Republic
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head and Neck Surgery, Los Angeles, CA 90033, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA 90089, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Xu D, Yin S, Shu Y. NF2: An underestimated player in cancer metabolic reprogramming and tumor immunity. NPJ Precis Oncol 2024; 8:133. [PMID: 38879686 PMCID: PMC11180135 DOI: 10.1038/s41698-024-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2) is a tumor suppressor gene implicated in various tumors, including mesothelioma, schwannomas, and meningioma. As a member of the ezrin, radixin, and moesin (ERM) family of proteins, merlin, which is encoded by NF2, regulates diverse cellular events and signalling pathways, such as the Hippo, mTOR, RAS, and cGAS-STING pathways. However, the biological role of NF2 in tumorigenesis has not been fully elucidated. Furthermore, cross-cancer mutations may exert distinct biological effects on tumorigenesis and treatment response. In addition to the functional inactivation of NF2, the codeficiency of other genes, such as cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B), BRCA1-associated protein-1 (BAP1), and large tumor suppressor 2 (LATS2), results in unique tumor characteristics that should be considered in clinical treatment decisions. Notably, several recent studies have explored the metabolic and immunological features associated with NF2, offering potential insights into tumor biology and the development of innovative therapeutic strategies. In this review, we consolidate the current knowledge on NF2 and examine the potential connection between cancer metabolism and tumor immunity in merlin-deficient malignancies. This review may provide a deeper understanding of the biological roles of NF2 and guide possible therapeutic avenues.
Collapse
Affiliation(s)
- Duo Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyuan Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Rajan ARD, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590787. [PMID: 38712289 PMCID: PMC11071375 DOI: 10.1101/2024.04.23.590787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neurofibromatosis Type 2 (NF-2) is a dominantly inherited genetic disorder that results from mutations in the tumor suppressor gene, neurofibromin 2 (NF2) gene. Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by an inducible genetic knockout of nf2a/b, the zebrafish homolog of human NF2. Analysis of nf2a and nf2b expression reveals ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displays lower expression levels. Induction of nf2a/b knockout at early stages increases the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggers the development of a spectrum of tumors, including vestibular schwannomas, spinal schwannomas, meningiomas, and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital NHS Foundation Trust, Cambridge, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
6
|
Nagel A, Huegel J, Petrilli A, Rosario R, Victoria B, Hardin HM, Fernandez-Valle C. Simultaneous inhibition of PI3K and PAK in preclinical models of neurofibromatosis type 2-related schwannomatosis. Oncogene 2024; 43:921-930. [PMID: 38336988 PMCID: PMC10959746 DOI: 10.1038/s41388-024-02958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Anna Nagel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Julianne Huegel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Alejandra Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Rosa Rosario
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Haley M Hardin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
7
|
Febres-Aldana CA, Fanaroff R, Offin M, Zauderer MG, Sauter JL, Yang SR, Ladanyi M. Diffuse Pleural Mesothelioma: Advances in Molecular Pathogenesis, Diagnosis, and Treatment. ANNUAL REVIEW OF PATHOLOGY 2024; 19:11-42. [PMID: 37722697 DOI: 10.1146/annurev-pathol-042420-092719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diffuse pleural mesothelioma (DPM) is a highly aggressive malignant neoplasm arising from the mesothelial cells lining the pleural surfaces. While DPM is a well-recognized disease linked to asbestos exposure, recent advances have expanded our understanding of molecular pathogenesis and transformed our clinical practice. This comprehensive review explores the current concepts and emerging trends in DPM, including risk factors, pathobiology, histologic subtyping, and therapeutic management, with an emphasis on a multidisciplinary approach to this complex disease.
Collapse
Affiliation(s)
- Christopher A Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ,
| |
Collapse
|
8
|
Fernandez-Valle C, Nagel A, Huegel J, Petrilli A, Rosario R, Victoria B, Hardin H. Simultaneous Inhibition of PI3K and PAK in Preclinical Models of Neurofibromatosis Type 2-related Schwannomatosis. RESEARCH SQUARE 2023:rs.3.rs-3405297. [PMID: 37886501 PMCID: PMC10602174 DOI: 10.21203/rs.3.rs-3405297/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.
Collapse
|
9
|
Housmans BAC, Neefjes M, Surtel DAM, Vitík M, Cremers A, van Rhijn LW, van der Kraan PM, van den Akker GGH, Welting TJM. Synovial fluid from end-stage osteoarthritis induces proliferation and fibrosis of articular chondrocytes via MAPK and RhoGTPase signaling. Osteoarthritis Cartilage 2022; 30:862-874. [PMID: 35176481 DOI: 10.1016/j.joca.2021.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Alterations in the composition of synovial fluid have been associated with adverse effects on cartilage integrity and function. Here, we examined the phenotypic and proliferative behavior of human articular chondrocytes when cultured in vitro for 13 days with synovial fluid derived from end-stage osteoarthritis patients. MATERIALS AND METHODS Chondrocyte proliferation and phenotypical changes induced by osteoarthritic synovial fluid were analyzed using DNA staining, RT-qPCR, immunostainings, and immunoblotting. The molecular mechanisms by which osteoarthritic synovial fluid induced fibrosis and proliferation were studied using a phospho-protein antibody array and luciferase-based transcription factor activity assays. Specific pathway inhibitors were used to probe the involvement of pathways in fibrosis and proliferation. RESULTS Prolonged stimulation with osteoarthritic synovial fluid sustained chondrocyte proliferation and induced profound phenotypic changes, favoring a fibrotic over a chondrogenic or hypertrophic phenotype. A clear loss of chondrogenic markers at both the transcriptional and protein level was observed, while expression of several fibrosis-associated markers were upregulated over time. Phospho-kinase analysis revealed activation of MAPK and RhoGTPase signaling pathways by osteoarthritic synovial fluid, which was confirmed by elevated transcriptional activity of Elk-1 and SRF. Inhibitor studies revealed that ERK played a central role in the loss of chondrocyte phenotype, while EGFR and downstream mediators p38, JNK and Rac/Cdc42 were essential for fibrosis-associated collagen expression. Finally, we identified EGF signaling as a key activator of chondrocyte proliferation. CONCLUSIONS Osteoarthritic synovial fluid promoted chondrocyte fibrosis and proliferation through EGF receptor activation and downstream MAPK and RhoGTPase signaling.
Collapse
Affiliation(s)
- B A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - M Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - D A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - M Vitík
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - A Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - L W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - G G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - T J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Pinker B, Barciszewska AM. mTOR Signaling and Potential Therapeutic Targeting in Meningioma. Int J Mol Sci 2022; 23:ijms23041978. [PMID: 35216092 PMCID: PMC8876623 DOI: 10.3390/ijms23041978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/30/2022] Open
Abstract
Meningiomas are the most frequent primary tumors arising in the central nervous system. They typically follow a benign course, with an excellent prognosis for grade I lesions through surgical intervention. Although radiotherapy is a good option for recurrent, progressive, or inoperable tumors, alternative treatments are very limited. mTOR is a protein complex with increasing therapeutical potential as a target in cancer. The current understanding of the mTOR pathway heavily involves it in the development of meningioma. Its activation is strongly dependent on PI3K/Akt signaling and the merlin protein. Both factors are commonly defective in meningioma cells, which indicates their likely function in tumor growth. Furthermore, regarding molecular tumorigenesis, the kinase activity of the mTORC1 complex inhibits many components of the autophagosome, such as the ULK1 or Beclin complexes. mTOR contributes to redox homeostasis, a vital component of neoplasia. Recent clinical trials have investigated novel chemotherapeutic agents for mTOR inhibition, showing promising results in resistant or recurrent meningiomas.
Collapse
Affiliation(s)
- Benjamin Pinker
- Medical Faculty, Karol Marcinkowski University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
- Correspondence:
| | - Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
- Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|
11
|
Kohno T, Konno T, Kikuchi S, Kondoh M, Kojima T. Translocation of LSR from tricellular corners causes macropinocytosis at cell-cell interface as a trigger for breaking out of contact inhibition. FASEB J 2021; 35:e21742. [PMID: 34403506 DOI: 10.1096/fj.202100299r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Withdrawal from contact inhibition is necessary for epithelial cancer precursor cells to initiate cell growth and motility. Nevertheless, little is understood about the mechanism for the sudden initiation of cell growth under static conditions. We focused on cellular junctions as one region where breaking out of contact inhibition occurs. In well-differentiated endometrial cancer cells, Sawano, the ligand administration for tricellular tight junction protein LSR, which transiently decreased the robust junction property, caused an abrupt increase in cell motility and consequent excessive multilayered cell growth despite being under contact inhibition conditions. We observed that macropinocytosis essentially and temporarily occurred as an antecedent event for the above process at intercellular junctions without disruption of the junction apparatus but not at the apical plasma membrane. Collectively, we concluded that the formation of macropinocytosis, which is derived from tight junction-mediated signaling, was triggered for the initiation of cell growth in static precancerous epithelium.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
12
|
Biological Treatments of Neurofibromatosis Type 2 and Other Skull Base Disorders. Otolaryngol Clin North Am 2021; 54:789-801. [PMID: 34120747 DOI: 10.1016/j.otc.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies of genomic alterations that occur in skull base tumors have provided information regarding biological aberrations that are necessary for the growth and maintenance of these tumors. This has led to the development and initiation of clinical trials incorporating biological treatments for many skull base tumors. The exciting developments of molecularly targeted therapy for the treatment of skull base tumors may provide noninvasive therapeutic options for patients that can be used either alone or in combination with surgery and/or radiation therapy. Future analysis and continued scientific discovery of treatments for skull base tumors can lead to improved outcomes in patients.
Collapse
|
13
|
Meerang M, Kreienbühl J, Orlowski V, Müller SLC, Kirschner MB, Opitz I. Importance of Cullin4 Ubiquitin Ligase in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:cancers12113460. [PMID: 33233664 PMCID: PMC7699720 DOI: 10.3390/cancers12113460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells.
Collapse
|
14
|
Havranek B, Islam SM. Prediction and evaluation of deleterious and disease causing non-synonymous SNPs (nsSNPs) in human NF2 gene responsible for neurofibromatosis type 2 (NF2). J Biomol Struct Dyn 2020; 39:7044-7055. [PMID: 32787631 DOI: 10.1080/07391102.2020.1805018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of genetic variations in the human genome that lead to variety of different diseases are caused by non-synonymous single nucleotide polymorphisms (nsSNPs). Neurofibromatosis type 2 (NF2) is a deadly disease caused by nsSNPs in the NF2 gene that encodes for a protein called merlin. This study used various in silico methods, SIFT, Polyphen-2, PhD-SNP and MutPred, to investigate the pathogenic effect of 14 nsSNPs in the merlin FERM domain. The G197C and L234R mutations were found to be two deleterious and disease mutations associated with the mild and severe forms of NF2, respectively. Molecular dynamics (MD) simulations were conducted to understand the stability, structure and dynamics of these mutations. Both mutant structures experienced larger flexibility compared to the wildtype. The L234R mutant suffered from more prominent structural instability, which may help to explain why it is associated with the more severe form of NF2. The intramolecular hydrogen bonding in L234R mutation decreased from the wildtype, while intermolecular hydrogen bonding of L234R mutation with solvent greatly increased. The native contacts were also found to be important. Protein-protein docking revealed that L234R mutation decreased the binding complementarity and binding affinity of LATS2 to merlin, which may have an impact on merlin's ability to regulate the Hippo signaling pathway. The calculated binding affinity of the LATS2 to L234R mutant and wildtype merlin protein is found to be 21.73 and -11 kcal/mol, respectively. The binding affinity of the wildtype merlin agreed very well with the experimental value, -8 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol 2020; 139:643-665. [PMID: 31161239 PMCID: PMC7038792 DOI: 10.1007/s00401-019-02029-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022]
Abstract
Neurofibromatosis type II (NF2) is a tumor predisposition syndrome characterized by the development of distinctive nervous system lesions. NF2 results from loss-of-function alterations in the NF2 gene on chromosome 22, with resultant dysfunction of its protein product merlin. NF2 is most commonly associated with the development of bilateral vestibular schwannomas; however, patients also have a predisposition to development of other tumors including meningiomas, ependymomas, and peripheral, spinal, and cranial nerve schwannomas. Patients may also develop other characteristic manifestations such as ocular lesions, neuropathies, meningioangiomatosis, and glial hamartia. NF2 has a highly variable clinical course, with some patients exhibiting a severe phenotype and development of multiple tumors at an early age, while others may be nearly asymptomatic throughout their lifetime. Despite the high morbidity associated with NF2 in severe cases, management of NF2-associated lesions primarily consists of surgical resection and treatment of symptoms, and there are currently no FDA-approved systemic therapies that address the underlying biology of the syndrome. Refinements to the diagnostic criteria of NF2 have been proposed over time due to increasing understanding of clinical and molecular data. Large-population studies have demonstrated that some features such as the development of gliomas and neurofibromas, currently included as diagnostic criteria, may require further clarification and modification. Meanwhile, burgeoning insights into the molecular biology of NF2 have shed light on the etiology and highly variable severity of the disease and suggested numerous putative molecular targets for therapeutic intervention. Here, we review the clinicopathologic features of NF2, current understanding of the molecular biology of NF2, particularly with regard to central nervous system lesions, ongoing therapeutic studies, and avenues for further research.
Collapse
Affiliation(s)
- Shannon Coy
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rumana Rashid
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA
| | - Anat Stemmer-Rachamimov
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sandro Santagata
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Hale Building for Transformative Medicine, BTM8002P, 60 Fenwood Road, Boston, MA, 02115, USA.
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Laboratory for Systems Pharmacology, Harvard Program in Therapeutic Science, Boston, MA, USA.
- Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
16
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
17
|
Cofre J, Saalfeld K, Abdelhay E. Cancer as an Embryological Phenomenon and Its Developmental Pathways: A Hypothesis regarding the Contribution of the Noncanonical Wnt Pathway. ScientificWorldJournal 2019; 2019:4714781. [PMID: 30940992 PMCID: PMC6421044 DOI: 10.1155/2019/4714781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
For gastrulation to occur in human embryos, a mechanism that simultaneously regulates many different processes, such as cell differentiation, proliferation, migration, and invasion, is required to consistently and effectively create a human being during embryonic morphogenesis. The striking similarities in the processes of cancer and gastrulation have prompted speculation regarding the developmental pathways involved in their regulation. One of the fundamental requirements for the developmental pathways in gastrulation and cancer is the ability to respond to environmental stimuli, and it has been proposed that the Kaiso and noncanonical Wnt pathways participate in the mechanisms regulating these developmental pathways. In particular, these pathways might also explain the notable differences in invasive capacity between cancers of endodermal and mesodermal origins and cancers of ectodermal origin. Nevertheless, the available information indicates that cancer is an abnormal state of adult human cells in which developmental pathways are reactivated in inappropriate temporal and spatial contexts.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Universidade Federal de Santa Catarina, Sala 313b, 88040-900 Florianópolis, SC, Brazil
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Universidade Federal de Santa Catarina, Brazil
| | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Sass H, Cayé-Thomasen P. Contemporary Molecular Biology of Sporadic Vestibular Schwannomas: A Systematic Review and Clinical Implications. J Int Adv Otol 2018; 14:322-329. [PMID: 30100540 PMCID: PMC6354447 DOI: 10.5152/iao.2018.4929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
In light of missing systematic reviews in the literature, the objective of this paper is to present the contemporary knowledge on the molecular biology of vestibular schwannomas (VS), based on a systematic literature search. In addition, current and prospected medical therapy based on molecular biology is addressed. A systematic literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The systematic search was performed in the Pubmed and Embase databases. The following were the words searched: acoustic neuroma/vestibular schwannoma, molecular biology, gene, and microRNA. Specific inclusion and exclusion criteria were determined prior to search. The systematic search rendered 486 articles, ultimately yielding 69 included articles, whereas 35 were from relevant references. The occurrence of at least one mutation in the merlin gene was reported to range between 54% and 76%, whereas the loss of heterozygosity (LOH) corresponding to chromosome 22 occurs in 25% to 83% of sporadic VS. Global gene expression studies indicate that a number of genes other than merlin are at play. No high-level methylation of the merlin gene has been found. Several miRNAs are deregulated in tumor tissue, among others let-7d, miR-221, and miR-21. The acquired knowledge on molecular biology has led to several clinical implementations. Lack of the tumor suppressor merlin plays a principal role in the development of VS. Existing knowledge on the molecular biology has led to the first attempts of targeted medical treatment to prevent tumor growth. Future research is likely to introduce potential imaging markers with prognostic value and new targets for medical therapy.
Collapse
Affiliation(s)
- Hjalte Sass
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark; University of Copenhagen, School of Health and Medical Sciences, Copenhagen, Denmark
| | - Per Cayé-Thomasen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Copenhagen, Denmark; University of Copenhagen, School of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
19
|
Riecken LB, Zoch A, Wiehl U, Reichert S, Scholl I, Cui Y, Ziemer M, Anderegg U, Hagel C, Morrison H. CPI-17 drives oncogenic Ras signaling in human melanomas via Ezrin-Radixin-Moesin family proteins. Oncotarget 2018; 7:78242-78254. [PMID: 27793041 PMCID: PMC5346635 DOI: 10.18632/oncotarget.12919] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023] Open
Abstract
Hyperactive Ras signaling has strong oncogenic effects causing several different forms of cancer. Hyperactivity is frequently induced by mutations within Ras itself, which account for up to 30% of all human cancers. In addition, hyperactive Ras signaling can also be triggered independent of Ras by either mutation or by misexpression of various upstream regulators and immediate downstream effectors. We have previously reported that C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) can drive Ras activity and promote tumorigenic transformation by inhibition of the tumor suppressor Merlin. We now describe an additional element of this oncogenic mechanism in the form of the ezrin-radixin-moesin (ERM) protein family, which exhibits opposing roles in Ras activity control. Thus, CPI-17 drives Ras activity and tumorigenesis in a two-fold way; inactivation of the tumor suppressor merlin and activation of the growth promoting ERM family. The in vivo significance of this oncogenic switch is highlighted by demonstrating CPI-17's involvement in human melanoma pathogenesis.
Collapse
Affiliation(s)
| | - Ansgar Zoch
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Ulrike Wiehl
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Sabine Reichert
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ingmar Scholl
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Yan Cui
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Mirjana Ziemer
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universität Leipzig, Leipzig, Germany
| | - Ulf Anderegg
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universität Leipzig, Leipzig, Germany
| | - Christian Hagel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
20
|
Chakraborty S, Hong W. Linking Extracellular Matrix Agrin to the Hippo Pathway in Liver Cancer and Beyond. Cancers (Basel) 2018; 10:cancers10020045. [PMID: 29415512 PMCID: PMC5836077 DOI: 10.3390/cancers10020045] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
In addition to the structural and scaffolding role, the extracellular matrix (ECM) is emerging as a hub for biomechanical signal transduction that is frequently relayed to intracellular sensors to regulate diverse cellular processes. At a macroscopic scale, matrix rigidity confers long-ranging effects contributing towards tissue fibrosis and cancer. The transcriptional co-activators YAP/TAZ, better known as the converging effectors of the Hippo pathway, are widely recognized for their new role as nuclear mechanosensors during organ homeostasis and cancer. Still, how YAP/TAZ senses these “stiffness cues” from the ECM remains enigmatic. Here, we highlight the recent perspectives on the role of agrin in mechanosignaling from the ECM via antagonizing the Hippo pathway to activate YAP/TAZ in the contexts of cancer, neuromuscular junctions, and cardiac regeneration.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| |
Collapse
|
21
|
Nf2 Mutation in Schwann Cells Delays Functional Neural Recovery Following Injury. Neuroscience 2018; 374:205-213. [PMID: 29408605 DOI: 10.1016/j.neuroscience.2018.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/21/2022]
Abstract
Merlin is the protein product of the NF2 tumor suppressor gene. Germline NF2 mutation leads to neurofibromatosis type 2 (NF2), characterized by multiple intracranial and spinal schwannomas. Patients with NF2 also frequently develop peripheral neuropathies. While the role of merlin in SC neoplasia is well established, its role in SC homeostasis is less defined. Here we explore the role of merlin in SC responses to nerve injury and their ability to support axon regeneration. We performed sciatic nerve crush in wild-type (WT) and in P0SchΔ39-121 transgenic mice that express a dominant negative Nf2 isoform in SCs. Recovery of nerve function was assessed by measuring mean contact paw area on a pressure pad 7, 21, 60, and 90 days following nerve injury and by nerve conduction assays at 90 days following injury. After 90 days, the nerves were harvested and axon regeneration was quantified stereologically. Myelin ultrastructure was analyzed by electron microscopy. Functional studies showed delayed nerve regeneration in Nf2 mutant mice compared to the WT mice. Delayed neural recovery correlated with a reduced density of regenerated axons and increased endoneurial space in mutants compared to WT mice. Nevertheless, functional and nerve conduction measures ultimately recovered to similar levels in WT and Nf2 mutant mice, while there was a small (∼17%) reduction in the percent of regenerated axons in the Nf2 mutant mice. The data suggest that merlin function in SCs regulates neural ultrastructure and facilitates neural regeneration, in addition to its role in SC neoplasia.
Collapse
|
22
|
Chakraborty S, Njah K, Pobbati AV, Lim YB, Raju A, Lakshmanan M, Tergaonkar V, Lim CT, Hong W. Agrin as a Mechanotransduction Signal Regulating YAP through the Hippo Pathway. Cell Rep 2017; 18:2464-2479. [DOI: 10.1016/j.celrep.2017.02.041] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/28/2016] [Accepted: 02/13/2017] [Indexed: 12/01/2022] Open
|
23
|
Matsuda T, Zhai P, Sciarretta S, Zhang Y, Jeong JI, Ikeda S, Park J, Hsu CP, Tian B, Pan D, Sadoshima J, Del Re DP. NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in the Heart. Circ Res 2016; 119:596-606. [PMID: 27402866 DOI: 10.1161/circresaha.116.308586] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023]
Abstract
RATIONALE NF2 (neurofibromin 2) is an established tumor suppressor that promotes apoptosis and inhibits growth in a variety of cell types, yet its function in cardiomyocytes remains largely unknown. OBJECTIVE We sought to determine the role of NF2 in cardiomyocyte apoptosis and ischemia/reperfusion (I/R) injury in the heart. METHODS AND RESULTS We investigated the function of NF2 in isolated cardiomyocytes and mouse myocardium at baseline and in response to oxidative stress. NF2 was activated in cardiomyocytes subjected to H2O2 and in murine hearts subjected to I/R. Increased NF2 expression promoted the activation of Mst1 (mammalian sterile 20-like kinase 1) and the inhibition of Yap (Yes-associated protein), whereas knockdown of NF2 attenuated these responses after oxidative stress. NF2 increased the apoptosis of cardiomyocytes that appeared dependent on Mst1 activity. Mice deficient for NF2 in cardiomyocytes, NF2 cardiomyocyte-specific knockout (CKO), were protected against global I/R ex vivo and showed improved cardiac functional recovery. Moreover, NF2 cardiomyocyte-specific knockout mice were protected against I/R injury in vivo and showed the upregulation of Yap target gene expression. Mechanistically, we observed nuclear association between NF2 and its activator MYPT-1 (myosin phosphatase target subunit 1) in cardiomyocytes, and a subpopulation of stress-induced nuclear Mst1 was diminished in NF2 CKO hearts. Finally, mice deficient for both NF2 and Yap failed to show protection against I/R indicating that Yap is an important target of NF2 in the adult heart. CONCLUSIONS NF2 is activated by oxidative stress in cardiomyocytes and mouse myocardium and facilitates apoptosis. NF2 promotes I/R injury through the activation of Mst1 and inhibition of Yap, thereby regulating Hippo signaling in the adult heart.
Collapse
Affiliation(s)
- Takahisa Matsuda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Sebastiano Sciarretta
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Yu Zhang
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Jae Im Jeong
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Shohei Ikeda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Jiyeon Park
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Chiao-Po Hsu
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Bin Tian
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Duojia Pan
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.).
| |
Collapse
|
24
|
Merlin inhibits Wnt/β-catenin signaling by blocking LRP6 phosphorylation. Cell Death Differ 2016; 23:1638-47. [PMID: 27285107 DOI: 10.1038/cdd.2016.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
Merlin, encoded by the NF2 gene, is a tumor suppressor that acts by inhibiting mitogenic signaling and is mutated in Neurofibromatosis type II (NF2) disease, although its molecular mechanism is not fully understood. Here, we observed that Merlin inhibited Wnt/β-catenin signaling by blocking phosphorylation of LRP6, which is necessary for Wnt signal transduction, whereas mutated Merlin in NF2 patients did not. Treatment with Wnt3a enhanced phosphorylation of Ser518 in Merlin via activation of PAK1 in a PIP2-dependent manner. Phosphorylated Merlin dissociated from LRP6, allowing for phosphorylation of LRP6. Tissues from NF2 patients exhibited higher levels of β-catenin, and proliferation of RT4-D6P2T rat schwannoma cells was significantly reduced by treatment with chemical inhibitors of Wnt/β-catenin signaling. Taken together, our findings suggest that sustained activation of Wnt/β-catenin signaling due to abrogation of Merlin-mediated inhibition of LRP6 phosphorylation may be a cause of NF2 disease.
Collapse
|
25
|
NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget 2016; 6:10073-85. [PMID: 25823924 PMCID: PMC4496341 DOI: 10.18632/oncotarget.3543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Although asbestos causes malignant pleural mesothelioma (MPM), rising from lung mesothelium, the molecular mechanism has not been suggested until now. Extremely low mutation rate in classical tumor suppressor genes (such as p53 and pRb) and oncogenes (including Ras or myc) indicates that there would be MPM-specific carcinogenesis pathway. To address this, we treated silica to mimic mesothelioma carcinogenesis in mesothelioma and non-small cell lung cancer cell lines (NSCLC). Treatment of silica induced p-Erk and Snail through RKIP reduction. In addition, p53 and E-cadherin were decreased by silica-treatment. Elimination of Snail restored p53 expression. We found that NF2 (frequently deleted in MPM) inhibited Snail-mediated p53 suppression and was stabilized by RKIP. Importantly, GN25, an inhibitor of p53-Snail interaction, induced p53 and apoptosis. These results indicate that MPM can be induced by reduction of RKIP/NF2, which suppresses p53 through Snail. Thus, the p53-Snail binding inhibitor such as GN25 is a drug candidate for MPM.
Collapse
|
26
|
Ahmad I, Fernando A, Gurgel R, Jason Clark J, Xu L, Hansen MR. Merlin status regulates p75(NTR) expression and apoptotic signaling in Schwann cells following nerve injury. Neurobiol Dis 2015; 82:114-122. [PMID: 26057084 DOI: 10.1016/j.nbd.2015.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/06/2023] Open
Abstract
After nerve injury, Schwann cells (SCs) dedifferentiate, proliferate, and support axon regrowth. If axons fail to regenerate, denervated SCs eventually undergo apoptosis due, in part, to increased expression of the low-affinity neurotrophin receptor, p75(NTR). Merlin is the protein product of the NF2 tumor suppressor gene implicated in SC tumorigenesis. Here we explore the contribution of merlin to SC responses to nerve injury. We find that merlin becomes phosphorylated (growth permissive) in SCs following acute axotomy and following gradual neural degeneration in a deafness model, temporally correlated with increased p75(NTR) expression. p75(NTR) levels are elevated in P0SchΔ39-121 transgenic mice that harbor an Nf2 mutation in SCs relative to wild-type mice before axotomy and remain elevated for a longer period of time following injury. Replacement of wild-type, but not phospho-mimetic (S518D), merlin isoforms suppresses p75(NTR) expression in primary human schwannoma cultures which otherwise lack functional merlin. Despite elevated levels of p75(NTR), SC apoptosis following axotomy is blunted in P0SchΔ39-121 mice relative to wild-type mice suggesting that loss of functional merlin contributes to SC resistance to apoptosis. Further, cultured SCs from mice with a tamoxifen-inducible knock-out of Nf2 confirm that SCs lacking functional merlin are less sensitive to p75(NTR)-mediated cell death. Taken together these results point to a model whereby loss of axonal contact following nerve injury results in merlin phosphorylation leading to increased p75(NTR) expression. Further, they demonstrate that merlin facilitates p75(NTR)-mediated apoptosis in SCs helping to explain how neoplastic SCs that lack functional merlin survive long-term in the absence of axonal contact.
Collapse
Affiliation(s)
- Iram Ahmad
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Augusta Fernando
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Richard Gurgel
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - J Jason Clark
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Linjing Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Guerrero PA, Yin W, Camacho L, Marchetti D. Oncogenic role of Merlin/NF2 in glioblastoma. Oncogene 2015; 34:2621-30. [PMID: 25043298 PMCID: PMC4302072 DOI: 10.1038/onc.2014.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults, with a poor prognosis because of its resistance to radiotherapy and chemotherapy. Merlin/NF2 (moesin-ezrin-radixin-like protein/neurofibromatosis type 2) is a tumor suppressor found to be mutated in most nervous system tumors; however, it is not mutated in glioblastomas. Merlin associates with several transmembrane receptors and intracellular proteins serving as an anchoring molecule. Additionally, it acts as a key component of cell motility. By selecting sub-populations of U251 glioblastoma cells, we observed that high expression of phosphorylated Merlin at serine 518 (S518-Merlin), NOTCH1 and epidermal growth factor receptor (EGFR) correlated with increased cell proliferation and tumorigenesis. These cells were defective in cell-contact inhibition with changes in Merlin phosphorylation directly affecting NOTCH1 and EGFR expression, as well as downstream targets HES1 (hairy and enhancer of split-1) and CCND1 (cyclin D1). Of note, we identified a function for S518-Merlin, which is distinct from what has been reported when the expression of Merlin is diminished in relation to EGFR and NOTCH1 expression, providing first-time evidence that demonstrates that the phosphorylation of S518-Merlin in glioblastoma promotes oncogenic properties that are not only the result of inactivation of the tumor suppressor role of Merlin but also an independent process implicating a Merlin-driven regulation of NOTCH1 and EGFR.
Collapse
Affiliation(s)
- Paola A. Guerrero
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Wei Yin
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Laura Camacho
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Dario Marchetti
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
28
|
Yamashita K, Ide M, Furukawa KT, Suzuki A, Hirano H, Ohno S. Tumor suppressor protein Lgl mediates G1 cell cycle arrest at high cell density by forming an Lgl-VprBP-DDB1 complex. Mol Biol Cell 2015; 26:2426-38. [PMID: 25947136 PMCID: PMC4571298 DOI: 10.1091/mbc.e14-10-1462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/28/2015] [Indexed: 11/25/2022] Open
Abstract
Lgl is a conserved tumor suppressor suggested to be involved in cell polarity regulation and suppression of cell proliferation. Lgl inhibits formation of the VprBP-DDB1-Cul4A-Roc1 ubiquitin E3 ligase complex, which is implicated in cell cycle progression, by promoting formation of the Lgl-VprBP-DDB1 complex to prevent overproliferation. Lethal giant larvae (Lgl) is an evolutionarily conserved tumor suppressor whose loss of function causes disrupted epithelial architecture with enhanced cell proliferation and defects in cell polarity. A role for Lgl in the establishment and maintenance of cell polarity via suppression of the PAR-aPKC polarity complex is established; however, the mechanism by which Lgl regulates cell proliferation is not fully understood. Here we show that depletion of Lgl1 and Lgl2 in MDCK epithelial cells results in overproliferation and overproduction of Lgl2 causes G1 arrest. We also show that Lgl associates with the VprBP-DDB1 complex independently of the PAR-aPKC complex and prevents the VprBP-DDB1 subunits from binding to Cul4A, a central component of the CRL4 [VprBP] ubiquitin E3 ligase complex implicated in G1- to S-phase progression. Consistently, depletion of VprBP or Cul4 rescues the overproliferation of Lgl-depleted cells. In addition, the affinity between Lgl2 and the VprBP-DDB1 complex increases at high cell density. Further, aPKC-mediated phosphorylation of Lgl2 negatively regulates the interaction between Lgl2 and VprBP-DDB1 complex. These results suggest a mechanism protecting overproliferation of epithelial cells in which Lgl plays a critical role by inhibiting formation of the CRL4 [VprBP] complex, resulting in G1 arrest.
Collapse
Affiliation(s)
- Kazunari Yamashita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Mariko Ide
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Kana T Furukawa
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| | - Atsushi Suzuki
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan Molecular Cellular Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hisashi Hirano
- Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 230-0045, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
29
|
Schroeder RD, Angelo LS, Kurzrock R. NF2/merlin in hereditary neurofibromatosis 2 versus cancer: biologic mechanisms and clinical associations. Oncotarget 2014; 5:67-77. [PMID: 24393766 PMCID: PMC3960189 DOI: 10.18632/oncotarget.1557] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inactivating germline mutations in the tumor suppressor gene NF2 cause the hereditary syndrome neurofibromatosis 2, which is characterized by the development of neoplasms of the nervous system, most notably bilateral vestibular schwannoma. Somatic NF2 mutations have also been reported in a variety of cancers, but interestingly these mutations do not cause the same tumors that are common in hereditary neurofibromatosis 2, even though the same gene is involved and there is overlap in the site of mutations. This review highlights cancers in which somatic NF2 mutations have been found, the cell signaling pathways involving NF2/merlin, current clinical trials treating neurofibromatosis 2 patients, and preclinical findings that promise to lead to new targeted therapies for both cancers harboring NF2 mutations and neurofibromatosis 2 patients.
Collapse
Affiliation(s)
- Rebecca Dunbar Schroeder
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
30
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
31
|
The significance of immunohistochemical expression of merlin, Ki-67, and p53 in meningiomas. Appl Immunohistochem Mol Morphol 2014; 22:46-9. [PMID: 23455188 DOI: 10.1097/pai.0b013e318289f490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Meningiomas are one of the most common CNS tumors whose appearance is closely linked to NF2 gene product merlin. Tumor markers Ki-67 and p53 play established role in tumor progression which should be analyzed in close association with merlin expression. The aim of this study was to investigate the immunohistochemical expression of merlin in meningiomas, correlation with Ki-67 and p53, and to determine the association of these results with histologic grade and subtype. The histologic sections of 170 patients with totally resected meningiomas, between January 2000 and December 2010, were classified according to WHO, immunohistochemically stained for Ki-67, p53, and merlin, and analyzed using light microscope. Ki-67 median was 5.6 times higher in group of patients with negative merlin than in those with positive merlin (P=0.05). Statistically significant correlation of merlin with p53 was found (P<0.001). Merlin expression between 2 combined groups (meningothelial/secretory and fibroblastic/transitional) was statistically significant (P=0.002). By comparing merlin expression and p53 levels, statistically significant difference was found (P=0.017). In the group with positive merlin and negative p53 as well as positive merlin and low p53, meningothelial/secretory subtypes of meningiomas were more common. In combination of negative merlin and negative p53 as well as negative merlin and high p53, there were more meningiomas of fibroblastic/transitional subtype. There was no statistically significant correlation between merlin and tumor grade (P=0.420). There is undeniable influence of merlin on the development and the proliferative ability of meningioma subtypes. Significant role of p53 pathway was confirmed.
Collapse
|
32
|
Mori T, Gotoh S, Shirakawa M, Hakoshima T. Structural basis of DDB1-and-Cullin 4-associated Factor 1 (DCAF1) recognition by merlin/NF2 and its implication in tumorigenesis by CD44-mediated inhibition of merlin suppression of DCAF1 function. Genes Cells 2014; 19:603-19. [PMID: 24912773 DOI: 10.1111/gtc.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 04/29/2014] [Indexed: 01/08/2023]
Abstract
Merlin, a tumor suppressor encoded by the neurofibromatosis type 2 gene, has been shown to suppress tumorigenesis by inhibiting the Cullin 4-RING E3 ubiquitin ligase CRL4(DCAF) (1) in the nucleus. This inhibition is mediated by direct binding of merlin to DDB1-and-Cullin 4-associated Factor 1 (DCAF1), yet the binding mode of merlin to DCAF1 is not well defined. Here, we report structural and biophysical studies of the merlin binding to DCAF1 and its interference with CD44 binding. The crystal structure of the merlin FERM domain bound to the DCAF1 C-terminal acidic tail reveals that the hydrophobic IILXLN motif located at the C-terminal end of DCAF1 binds subdomain C of the FERM domain by forming a β-strand. The binding site and mode resemble that of merlin binding to the CD44 cytoplasmic tail. Competition binding assay showed that CD44 and DCAF1 compete for binding to the merlin FERM domain in solution. The CD44 cytoplasmic tail is known to be cleaved for nuclear translocation by regulated intra-membrane proteolysis (RIP). Our structure implies that, in the nucleus, the CD44 cytoplasmic tail cleaved by RIP could release DCAF1 from merlin by competing for binding to the merlin FERM domain, which results in the inhibition of merlin-mediated suppression of tumorigenesis.
Collapse
Affiliation(s)
- Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | | | | | | |
Collapse
|
33
|
Yoshida H, Bando T, Mito T, Ohuchi H, Noji S. An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system. Sci Rep 2014; 4:4335. [PMID: 24613915 PMCID: PMC3949298 DOI: 10.1038/srep04335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
Abstract
What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2) growth would cease when a differential of the dimer across each cell decreases to a certain threshold. We applied our model to simulate the results obtained by leg regeneration experiments in a cricket model. The results were qualitatively consistent with the experimental data obtained for cricket legs by RNA interference methodology. Using our extended steepness model, we provided a molecular-based explanation for leg size determination even in intercalary regeneration and for organ size determination.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| | - Hideyo Ohuchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| |
Collapse
|
34
|
A hypothesis about the potential role of statin administration as adjuvant treatment in the management of Merlin-deficient tumors. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2014. [DOI: 10.1016/j.inat.2014.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Hilton DA, Hanemann CO. Schwannomas and their pathogenesis. Brain Pathol 2014; 24:205-20. [PMID: 24450866 DOI: 10.1111/bpa.12125] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
Schwannomas may occur spontaneously, or in the context of a familial tumor syndrome such as neurofibromatosis type 2 (NF2), schwannomatosis and Carney's complex. Schwannomas have a variety of morphological appearances, but they behave as World Health Organization (WHO) grade I tumors, and only very rarely undergo malignant transformation. Central to the pathogenesis of these tumors is loss of function of merlin, either by direct genetic change involving the NF2 gene on chromosome 22 or secondarily to merlin inactivation. The genetic pathways and morphological features of schwannomas associated with different genetic syndromes will be discussed. Merlin has multiple functions, including within the nucleus and at the cell membrane, and this review summarizes our current understanding of the mechanisms by which merlin loss is involved in schwannoma pathogenesis, highlighting potential areas for therapeutic intervention.
Collapse
Affiliation(s)
- David A Hilton
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth, UK
| | | |
Collapse
|
36
|
Giancotti FG. Deregulation of cell signaling in cancer. FEBS Lett 2014; 588:2558-70. [PMID: 24561200 DOI: 10.1016/j.febslet.2014.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations disrupt the regulatory circuits that govern cell function, enabling tumor cells to undergo de-regulated mitogenesis, to resist to pro-apoptotic insults, and to invade through tissue boundaries. Cancer cell biology has played a crucial role in elucidating the signaling mechanisms by which oncogenic mutations sustain these malignant behaviors and thereby in identifying rational targets for cancer drugs. The efficacy of such targeted therapies illustrate the power of a reductionist approach to the study of cancer.
Collapse
Affiliation(s)
- Filippo G Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
37
|
Cačev T, Aralica G, Lončar B, Kapitanović S. Loss of NF2/Merlin expression in advanced sporadic colorectal cancer. Cell Oncol (Dordr) 2013; 37:69-77. [PMID: 24323642 DOI: 10.1007/s13402-013-0164-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2013] [Indexed: 12/24/2022] Open
Abstract
PURPOSE NF2/Merlin was first identified through its association with neurofibromatosis type 2 (NF2). However, accumulating evidence suggests a more general involvement in tumorigenesis and, in particular, a broader role in tumor suppression. The aim of this study was to examine NF2/Merlin involvement in sporadic colorectal cancer. METHODS This study is the first to examine the role of NF2/Merlin in sporadic colorectal cancer through LOH analysis at the NF2 locus and mRNA expression analysis via quantitative RT-PCR of total NF2, NF2 isoform I and II. In addition, Merlin protein expression was assessed by immunohistochemistry and Western blotting. RESULTS NF2 LOH was detected in 20.0 % of heterozygous cases and was found to be more frequent in tumors larger than 5 cm in diameter (p = 0.041) and in tumors with a less differentiated phenotype (p = 0.027). No differences were observed in total NF2 and NF2 isoform I/isoform II mRNA expression between the tumors and their corresponding normal mucous tissues. NF2 isoform II was the most predominant isoform in all samples analyzed. mRNA expression levels of total NF2 and isoforms I and II were significantly lower in poorly differentiated tumors (p = 0.033, p = 0.036 and p = 0.044, respectively). Weak Merlin immunostaining was more frequent in poorly differentiated tumors (p = 0.034) and tumors classified as Dukes' C (p = 0.023). A distinct pattern of Merin phosphorylation was observed in tumors compared to normal mucous tissues. CONCLUSION Our data indicate that NF2/Merlin may serve as a potential target in the management of colorectal cancer.
Collapse
Affiliation(s)
- Tamara Cačev
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia,
| | | | | | | |
Collapse
|
38
|
Polarity protein complex Scribble/Lgl/Dlg and epithelial cell barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:149-70. [PMID: 23397623 DOI: 10.1007/978-1-4614-4711-5_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Scribble polarity complex or module is one of the three polarity modules that regulate cell polarity in multiple epithelia including blood-tissue barriers. This protein complex is composed of Scribble, Lethal giant larvae (Lgl) and Discs large (Dlg), which are well conserved across species from fruitflies and worms to mammals. Originally identified in Drosophila and C. elegans where the Scribble complex was found to work with the Par-based and Crumbs-based polarity modules to regulate apicobasal polarity and asymmetry in cells and tissues during embryogenesis, their mammalian homologs have all been identified in recent years. Components of the Scribble complex are known to regulate multiple cellular functions besides cell polarity, which include cell proliferation, assembly and maintenance of adherens junction (AJ) and tight junction (TJ), and they are also tumor suppressors. Herein, we provide an update on the Scribble polarity complex and how this protein complex modulates cell adhesion with some emphasis on its role in Sertoli cell blood-testis barrier (BTB) function. It should be noted that this is a rapidly developing field, in particular the role of this protein module in blood-tissue barriers, and this short chapter attempts to provide the information necessary for investigators studying reproductive biology and blood-tissue barriers to design future studies. We also include results of recent studies from flies and worms since this information will be helpful in planning experiments for future functional studies in the testis to understand how Scribble-based proteins regulate BTB dynamics and spermatogenesis.
Collapse
|
39
|
Rac1 is required for Prkar1a-mediated Nf2 suppression in Schwann cell tumors. Oncogene 2012; 32:3491-9. [PMID: 23045281 PMCID: PMC3542412 DOI: 10.1038/onc.2012.374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/11/2012] [Accepted: 07/09/2012] [Indexed: 12/25/2022]
Abstract
Schwannomas are peripheral nerve sheath tumors that often occur in the setting of an inherited tumor predisposition syndrome, including Neurofibromatosis Types 1 (NF1) and 2 (NF2), Familial Schwannomatosis (FS) and Carney Complex (CNC). Loss of the NF2 tumor suppressor (encoding NF2, or Merlin) is associated with upregulation of the Rac1 small GTPase, which is thought to play a key role in mediating tumor formation. In prior studies, we generated a mouse model of schwannomas by performing tissue-specific knockout of the CNC gene Prkar1a, which encodes the type 1A regulatory subunit of Protein Kinase A. These tumors exhibited down-regulation of Nf2 protein and an increase in activated Rac1. To assess the requirement for Rac1 in schwannoma formation, we generated a double knockout of Prkar1a and Rac1 in Schwann cells and monitored tumor formation. Loss of Rac1 reduced tumor formation by reducing proliferation and enhancing apoptosis. Surprisingly, the reduction of tumor formation was accompanied by re-expression of the Nf2 protein. Furthermore, activated Rac1 was able to downregulate Nf2 in vitro in a Pak-dependent manner. These in vivo data indicate that activation of Rac1 is responsible for suppression of Nf2 protein production; deficiency of Nf2 in Schwann cells leads to loss of cellular growth control and tumor formation.. Further, PKA activation through mutation in Prkar1a is sufficient to initiate Rac1 signaling, with subsequent reduction of Nf2 and schwannomagenesis. Although in vitro evidence has shown that loss of Nf2 activates Rac1, our data indicates that signaling between Nf2 and Rac1 occurs in a bidirectional fashion, and these interactions are modulated by PKA.
Collapse
|
40
|
Baia GS, Caballero OL, Orr BA, Lal A, Ho JSY, Cowdrey C, Tihan T, Mawrin C, Riggins GJ. Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Mol Cancer Res 2012; 10:904-13. [PMID: 22618028 DOI: 10.1158/1541-7786.mcr-12-0116] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Hippo signaling pathway is functionally conserved in Drosophila melanogaster and mammals, and its proposed function is to control tissue homeostasis by regulating cell proliferation and apoptosis. The core components are composed of a kinase cascade that culminates with the phosphorylation and inhibition of Yes-associated protein 1 (YAP1). Phospho-YAP1 is retained in the cytoplasm. In the absence of Hippo signaling, YAP1 translocates to the nucleus, associates with co-activators TEAD1-4, and functions as a transcriptional factor promoting the expression of key target genes. Components of the Hippo pathway are mutated in human cancers, and deregulation of this pathway plays a role in tumorigenesis. Loss of the NF2 tumor suppressor gene is the most common genetic alteration in meningiomas, and the NF2 gene product, Merlin, acts upstream of the Hippo pathway. Here, we show that primary meningioma tumors have high nuclear expression of YAP1. In meningioma cells, Merlin expression is associated with phosphorylation of YAP1. Using an siRNA transient knockdown of YAP1 in NF2-mutant meningioma cells, we show that suppression of YAP1 impaired cell proliferation and migration. Conversely, YAP1 overexpression led to a strong augment of cell proliferation and anchorage-independent growth and restriction of cisplatin-induced apoptosis. In addition, expression of YAP1 in nontransformed arachnoidal cells led to the development of tumors in nude mice. Together, these findings suggest that in meningiomas, deregulation of the Hippo pathway is largely observed in primary tumors and that YAP1 functions as an oncogene promoting meningioma tumorigenesis.
Collapse
Affiliation(s)
- Gilson S Baia
- Ludwig Collaborative Laboratory, Neurosurgery Department, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The determination of final organ size is a highly coordinated and complex process that relies on the precise regulation of cell number and/or cell size. Perturbation of organ size control contributes to many human diseases, including hypertrophy, degenerative diseases, and cancer. Hippo and TOR are among the key signaling pathways involved in the regulation of organ size through their respective functions in the regulation of cell number and cell size. Here, we review the general mechanisms that regulate organ growth, describe how Hippo and TOR control key aspects of growth, and discuss recent findings that highlight a possible coordination between Hippo and TOR in organ size regulation.
Collapse
|
42
|
Abstract
After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related to advanced stages of tumour progression and invasiveness. But the key roles of these proteins in crosstalk with the Hippo and liver kinase B1 (LKB1)-AMPK pathways and in epithelial function and proliferation indicate that they may also be associated with the early stages of tumorigenesis. For example, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.
Collapse
Affiliation(s)
- Fernando Martin-Belmonte
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | | |
Collapse
|
43
|
Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I, Pan D. Premetazoan origin of the hippo signaling pathway. Cell Rep 2011; 1:13-20. [PMID: 22832104 PMCID: PMC3406323 DOI: 10.1016/j.celrep.2011.11.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/07/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022] Open
Abstract
Nonaggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in nonbilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the coactivator Yorkie, and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila melanogaster, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism predating the origin of Metazoa.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Blakeley JO, Evans DG, Adler J, Brackmann D, Chen R, Ferner RE, Hanemann CO, Harris G, Huson SM, Jacob A, Kalamarides M, Karajannis MA, Korf BR, Mautner VF, McClatchey AI, Miao H, Plotkin SR, Slattery W, Stemmer-Rachamimov AO, Welling DB, Wen PY, Widemann B, Hunter-Schaedle K, Giovannini M. Consensus recommendations for current treatments and accelerating clinical trials for patients with neurofibromatosis type 2. Am J Med Genet A 2011; 158A:24-41. [PMID: 22140088 DOI: 10.1002/ajmg.a.34359] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
Abstract
Neurofibromatosis type 2 (NF2) is a tumor suppressor syndrome characterized by bilateral vestibular schwannomas (VS) which often result in deafness despite aggressive management. Meningiomas, ependymomas, and other cranial nerve and peripheral schwannomas are also commonly found in NF2 and collectively lead to major neurologic morbidity and mortality. Traditionally, the overall survival rate in patients with NF2 is estimated to be 38% at 20 years from diagnosis. Hence, there is a desperate need for new, effective therapies. Recent progress in understanding the molecular basis of NF2 related tumors has aided in the identification of potential therapeutic targets and emerging clinical therapies. In June 2010, representatives of the international NF2 research and clinical community convened under the leadership of Drs. D. Gareth Evans (University of Manchester) and Marco Giovannini (House Research Institute) to review the state of NF2 treatment and clinical trials. This manuscript summarizes the expert opinions about current treatments for NF2 associated tumors and recommendations for advancing therapies emerging from that meeting. The development of effective therapies for NF2 associated tumors has the potential for significant clinical advancement not only for patients with NF2 but for thousands of neuro-oncology patients afflicted with these tumors.
Collapse
|
45
|
Lacroix B, Maddox AS. Cytokinesis, ploidy and aneuploidy. J Pathol 2011; 226:338-51. [DOI: 10.1002/path.3013] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
|
46
|
Affiliation(s)
- W Weder
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Angelo LS, Wu JY, Meng F, Sun M, Kopetz S, McCutcheon IE, Slopis JM, Kurzrock R. Combining curcumin (diferuloylmethane) and heat shock protein inhibition for neurofibromatosis 2 treatment: analysis of response and resistance pathways. Mol Cancer Ther 2011; 10:2094-103. [PMID: 21903608 DOI: 10.1158/1535-7163.mct-11-0243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurofibromatosis type 2 (NF2) is a genetic condition characterized by inactivation of the NF2 tumor suppressor gene and the development of schwannomas. The NF2 gene product, merlin, is activated (dephosphorylated) by contact inhibition and promotes growth suppression. We investigated the effect of curcumin (diferuloylmethane), a molecule with anti-inflammatory and antitumorigenic properties, on human schwannoma cell growth and the regulation of merlin by curcumin in both NF2 cells and neuroblastoma (non-NF2) cells. Curcumin inhibited the growth of HEI-193 schwannoma cells in vitro and downregulated the phosphorylation of Akt and extracellular signal-regulated kinase 1/2. Curcumin also activated MYPT1-pp1δ (a merlin phosphatase), which was associated with dephosphorylation of merlin on serine 518, an event that results in the folding of merlin to its active conformation. In addition, curcumin induced apoptosis and generated reactive oxygen species in HEI-193 cells. Consequently, hsp70 was upregulated at the mRNA and protein levels, possibly serving as a mechanism of escape from curcumin-induced apoptosis and growth inhibition. Endogenous merlin and hsp70 proteins interacted in HEI-193 schwannoma and SK-N-AS neuroblastoma cells. The combination of curcumin and an hsp inhibitor synergistically suppressed schwannoma cell growth. Our results provide a rationale for combining curcumin and KNK437 in the treatment of NF2.
Collapse
Affiliation(s)
- Laura S Angelo
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ammoun S, Schmid MC, Zhou L, Ristic N, Ercolano E, Hilton DA, Perks CM, Hanemann CO. Insulin-like growth factor-binding protein-1 (IGFBP-1) regulates human schwannoma proliferation, adhesion and survival. Oncogene 2011; 31:1710-22. [PMID: 21892205 DOI: 10.1038/onc.2011.357] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Merlin is a tumour suppressor involved in the development of a variety of tumours including mesotheliomas. Neurofibromatosis type 2 (NF2), a dominantly inherited tumour disease, is also caused by loss of merlin. NF2 patients suffer from multiple genetically well-defined tumours, schwannomas are most frequent among those. Using our in vitro model for human schwannoma, we found that schwannoma cells display enhanced proliferation because of the overexpression/activation of platelet-derived growth factor receptor and ErbB2/3, increased cell-matrix adhesion because of the overexpression of integrins, and decreased apoptosis. Mechanisms underlying schwannomas basal proliferation and cell-matrix adhesion are not understood. Here, we investigated insulin-like growth factor-binding protein-1 (IGFBP-1), which is expressed and released from central nervous system tumours and strongly overexpressed in schwannoma at the mRNA level. IGFBP-1 acts via β1-integrin and focal-adhesion-kinase (FAK), which are strongly overexpressed and basally activated in schwannoma. Using short hairpin RNA knockdown, small inhibitors and recombinant IGFBP-1, we demonstrate that schwannoma cells, in contrast to Schwann cells, release IGFBP-1 that activates the Src/FAK pathway, via integrin β1, potentiating schwannoma's proliferation and cell-matrix adhesion. We show that FAK localizes to the nucleus and Src triggers IGFBP-1 production. Further, we observed downregulation of the tumour-suppressor phosphatase and tensin homolog in schwannoma cells leading to increased activity of anti-apoptotic AKT. Thus, IGFBP-1/integrin β1/Src/FAK pathway has a crucial role in merlin-related tumourigenesis and therefore represents an important therapeutic target in the treatment of merlin-deficient tumours.
Collapse
Affiliation(s)
- S Ammoun
- Clinical Neurobiology, Peninsula College for Medicine and Dentistry, Plymouth, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Fong B, Barkhoudarian G, Pezeshkian P, Parsa AT, Gopen Q, Yang I. The molecular biology and novel treatments of vestibular schwannomas. J Neurosurg 2011; 115:906-14. [PMID: 21800959 DOI: 10.3171/2011.6.jns11131] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vestibular schwannomas are histopathologically benign tumors arising from the Schwann cell sheath surrounding the vestibular branch of cranial nerve VIII and are related to the NF2 gene and its product merlin. Merlin acts as a tumor suppressor and as a mediator of contact inhibition. Thus, deficiencies in both NF2 genes lead to vestibular schwannoma development. Recently, there have been major advances in our knowledge of the molecular biology of vestibular schwannomas as well as the development of novel therapies for its treatment. In this article the authors comprehensively review the recent advances in the molecular biology and characterization of vestibular schwannomas as well as the development of modern treatments for vestibular schwannoma. For instance, merlin is involved with a number of receptors including the CD44 receptor, EGFR, and signaling pathways, such as the Ras/raf pathway and the canonical Wnt pathway. Recently, merlin was also shown to interact in the nucleus with E3 ubiquitin ligase CRL4(DCAF1). A greater understanding of the molecular mechanisms behind vestibular schwannoma tumorigenesis has begun to yield novel therapies. Some authors have shown that Avastin induces regression of progressive schwannomas by over 40% and improves hearing. An inhibitor of VEGF synthesis, PTC299, is currently in Phase II trials as a potential agent to treat vestibular schwannoma. Furthermore, in vitro studies have shown that trastuzumab (an ERBB2 inhibitor) reduces vestibular schwannoma cell proliferation. With further research it may be possible to significantly reduce morbidity and mortality rates by decreasing tumor burden, tumor volume, hearing loss, and cranial nerve deficits seen in vestibular schwannomas.
Collapse
Affiliation(s)
- Brendan Fong
- Department of Neurological Surgery, University of California, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | |
Collapse
|
50
|
E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A 2011; 108:11930-5. [PMID: 21730131 DOI: 10.1073/pnas.1103345108] [Citation(s) in RCA: 539] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin-dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell-cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin-bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell-cell adhesion, E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control cell proliferation.
Collapse
|