1
|
Sugai T, Osakabe M, Uesugi N, Habano W, Yanagawa N, Suzuki H. Comprehensive Analyses of Somatic Copy Number Alterations and Mutations Based on the Adenoma-Carcinoma Sequence. Genes Chromosomes Cancer 2024; 63:e23267. [PMID: 39258844 DOI: 10.1002/gcc.23267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
AIMS Identifying molecular alterations in the adenoma and carcinoma components within the same tumor would greatly contribute to understanding the neoplastic progression of early colorectal cancer. METHODS AND RESULTS We examined somatic copy number alterations (SCNAs) and mutations involved in the adenoma and carcinoma components obtained from the same tumor in 46 cases of microsatellite-stable carcinoma in adenoma, using a genome-wide SNP array and gene mutation panel. In addition, we also performed hierarchical clustering to determine the SCNA frequencies in the tumors, resulting in stratification of the samples into two subgroups according to SCNA frequency. Subgroup 1 was characterized by multiple SCNAs and carcinoma components exclusively, while Subgroup 2 was characterized by a low frequency of SCNAs and both the adenoma and carcinoma components. The numbers of total genes and genes with gains were higher in the carcinoma than adenoma components. The three most frequent gains in both components were located at 1p36.33-1q44, 2p25.3-2q37.3, and 3p26.3-3q29. However, no candidate genes mapped to these regions. APC and KRAS mutations were common in both components, whereas the frequency of TP53 mutations was statistically higher in the carcinoma than adenoma component. However, TP53 mutations were not correlated with SCNA frequency. CONCLUSIONS We suggest that considerable SCNAs and TP53 mutations are required for progression from adenoma to carcinoma within the same intramucosal neoplastic lesion.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwa-gun, Japan
- Diagnostic Pathology Center, Southern Tohoku General Hospital, Fukushima, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwa-gun, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwa-gun, Japan
- Diagnostic Pathology Center, Southern Tohoku General Hospital, Fukushima, Japan
| | - Wataru Habano
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Shiwa-gun, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Liu S, Yu Y, Xu J, Wang Y, Li D. Single-cell and bulk RNA-sequencing reveals mitosis-involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD). Cell Biol Int 2024; 48:1169-1184. [PMID: 38818762 DOI: 10.1002/cbin.12191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/13/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (p < 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (p < 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (p < 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (p < 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.
Collapse
Affiliation(s)
- Shiwei Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xu
- Nursing Department, Wujiang Fifth People's Hospital, Suzhou, China
| | - Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Raab M, Kostova I, Peña‐Llopis S, Fietz D, Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M, Strebhardt K. Rescue of p53 functions by in vitro-transcribed mRNA impedes the growth of high-grade serous ovarian cancer. Cancer Commun (Lond) 2024; 44:101-126. [PMID: 38140698 PMCID: PMC10794014 DOI: 10.1002/cac2.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The cellular tumor protein p53 (TP53) is a tumor suppressor gene that is frequently mutated in human cancers. Among various cancer types, the very aggressive high-grade serous ovarian carcinoma (HGSOC) exhibits the highest prevalence of TP53 mutations, present in >96% of cases. Despite intensive efforts to reactivate p53, no clinical drug has been approved to rescue p53 function. In this study, our primary objective was to administer in vitro-transcribed (IVT) wild-type (WT) p53-mRNA to HGSOC cell lines, primary cells, and orthotopic mouse models, with the aim of exploring its impact on inhibiting tumor growth and dissemination, both in vitro and in vivo. METHODS To restore the activity of p53, WT p53 was exogenously expressed in HGSOC cell lines using a mammalian vector system. Moreover, IVT WT p53 mRNA was delivered into different HGSOC model systems (primary cells and patient-derived organoids) using liposomes and studied for proliferation, cell cycle progression, apoptosis, colony formation, and chromosomal instability. Transcriptomic alterations induced by p53 mRNA were analyzed using RNA sequencing in OVCAR-8 and primary HGSOC cells, followed by ingenuity pathway analysis. In vivo effects on tumor growth and metastasis were studied using orthotopic xenografts and metastatic intraperitoneal mouse models. RESULTS Reactivation of the TP53 tumor suppressor gene was explored in different HGSOC model systems using newly designed IVT mRNA-based methods. The introduction of WT p53 mRNA triggered dose-dependent apoptosis, cell cycle arrest, and potent long-lasting inhibition of HGSOC cell proliferation. Transcriptome analysis of OVCAR-8 cells upon mRNA-based p53 reactivation revealed significant alterations in gene expression related to p53 signaling, such as apoptosis, cell cycle regulation, and DNA damage. Restoring p53 function concurrently reduces chromosomal instability within the HGSOC cells, underscoring its crucial contribution in safeguarding genomic integrity by moderating the baseline occurrence of double-strand breaks arising from replication stress. Furthermore, in various mouse models, treatment with p53 mRNA reduced tumor growth and inhibited tumor cell dissemination in the peritoneal cavity in a dose-dependent manner. CONCLUSIONS The IVT mRNA-based reactivation of p53 holds promise as a potential therapeutic strategy for HGSOC, providing valuable insights into the molecular mechanisms underlying p53 function and its relevance in ovarian cancer treatment.
Collapse
Affiliation(s)
- Monika Raab
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Izabela Kostova
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Samuel Peña‐Llopis
- Translational Genomics in Solid TumorsWest German Cancer CenterUniversity HospitalEssenGermany
- German Cancer Consortium (DKTK)EssenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniela Fietz
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Monika Kressin
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Seyed Mohsen Aberoumandi
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
| | - Evelyn Ullrich
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
- Experimental ImmunologyDepartment for Children and Adolescents MedicineUniversity Hospital FrankfurtGoethe UniversityFrankfurt am MainGermany
| | - Sven Becker
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Mourad Sanhaji
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Klaus Strebhardt
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
4
|
Lledo B, Marco A, Morales R, Ortiz JA, García-Hernández E, Lozano FM, Cascales A, Guerrero J, Bernabeu A, Bernabeu R. Identification of novel candidate genes associated with meiotic aneuploidy in human embryos by whole-exome sequencing. J Assist Reprod Genet 2023; 40:1755-1763. [PMID: 37171739 PMCID: PMC10352178 DOI: 10.1007/s10815-023-02825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE To identify novel genetic variants responsible for meiotic embryonic aneuploidy. METHODS A prospective observational cohort study that included 29 couples who underwent trophectoderm biopsies from 127 embryos and performed whole-exome sequencing (WES) between November 2019 and March 2022. Patients were divided into two groups according to the expected embryo aneuploidy rate based on maternal age. RESULTS After variant filtering in the WES analysis of 58 patients/donors, five heterozygous variants were identified in female partners from the study group that had an impact on embryo aneuploidy. Additionally, a slowdown in embryo development and a decrease in the number of blastocysts available for biopsy were observed in the study group embryos. CONCLUSION This study has identified new candidate genes and variants not previously associated with meiotic embryo aneuploidy, but which are involved in important biological processes related to cell division and chromosome segregation. WES may be an efficient tool to identify patients with a higher-than-expected risk of embryo aneuploidy based on maternal age and allow for individualized genetic counselling prior to treatment.
Collapse
Affiliation(s)
- B Lledo
- Instituto Bernabeu Biotech, 03016, Alicante, Spain.
| | - A Marco
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - R Morales
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - J A Ortiz
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | | | - F M Lozano
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - A Cascales
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - J Guerrero
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
| | - A Bernabeu
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
- Cátedra de Medicina Comunitaria y Salud Reproductiva, Miguel Hernández University, Alicante, Spain
| | - R Bernabeu
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
- Cátedra de Medicina Comunitaria y Salud Reproductiva, Miguel Hernández University, Alicante, Spain
| |
Collapse
|
5
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Hu X, Jin X, Cao X, Liu B. The Anaphase-Promoting Complex/Cyclosome Is a Cellular Ageing Regulator. Int J Mol Sci 2022; 23:ijms232315327. [PMID: 36499653 PMCID: PMC9740938 DOI: 10.3390/ijms232315327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.
Collapse
Affiliation(s)
- Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
7
|
Iegiani G, Gai M, Di Cunto F, Pallavicini G. CENPE Inhibition Leads to Mitotic Catastrophe and DNA Damage in Medulloblastoma Cells. Cancers (Basel) 2021; 13:cancers13051028. [PMID: 33804489 PMCID: PMC7957796 DOI: 10.3390/cancers13051028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective, since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. CENPE is a gene critical for normal proliferation and survival of neural progenitors. Since there is evidence that MB cells are very similar to neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In MB cell lines, CENPE depletion induced defects in division and resulted in cell death. To consolidate CENPE as a target for MB treatment, we tested GSK923295, a specific inhibitor already in clinical trials for other cancer types. GSK923295 induced effects similar to CENPE depletion at low nM levels, supporting the idea that CENPE’s inhibition could be a viable strategy for MB treatment. Abstract Medulloblastoma (MB) is the most frequent brain tumor in children. The standard treatment consists in surgery, followed by radiotherapy and chemotherapy. These therapies are only partially effective since many patients still die and those who survive suffer from neurological and endocrine disorders. Therefore, more effective therapies are needed. Primary microcephaly (MCPH) is a rare disorder caused by mutations in 25 different genes. Centromere-associated protein E (CENPE) heterozygous mutations cause the MCPH13 syndrome. As for other MCPH genes, CENPE is required for normal proliferation and survival of neural progenitors. Since there is evidence that MB shares many molecular features with neural progenitors, we hypothesized that CENPE could be an effective target for MB treatment. In ONS-76 and DAOY cells, CENPE knockdown induced mitotic defects and apoptosis. Moreover, CENPE depletion induced endogenous DNA damage accumulation, activating TP53 or TP73 as well as cell death signaling pathways. To consolidate CENPE as a target for MB treatment, we tested GSK923295, an allosteric inhibitor already in clinical trial for other cancer types. GSK923295, induced effects similar to CENPE depletion with higher penetrance, at low nM levels, suggesting that CENPE’s inhibition could be a therapeutic strategy for MB treatment.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043 Turin, Italy;
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, 10126 Turin, Italy
- Correspondence: (F.D.C.); (G.P.)
| |
Collapse
|
8
|
Butera A, Cassandri M, Rugolo F, Agostini M, Melino G. The ZNF750-RAC1 axis as potential prognostic factor for breast cancer. Cell Death Discov 2020; 6:135. [PMID: 33298895 PMCID: PMC7701147 DOI: 10.1038/s41420-020-00371-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The human zinc finger (C2H2-type) protein ZNF750 is a transcription factor regulated by p63 that plays a critical role in epithelial tissues homoeostasis, as well as being involved in the pathogenesis of cancer. Indeed, missense mutations, truncation and genomic deletion have been found in oesophageal squamous cell carcinoma. In keeping, we showed that ZNF750 negatively regulates cell migration and invasion in breast cancer cells; in particular, ZNF750 binds and recruits KDM1A and HDAC1 on the LAMB3 and CTNNAL1 promoters. This interaction, in turn, represses the transcription of LAMB3 and CTNNAL1 genes, which are involved in cell migration and invasion. Given that ZNF750 is emerging as a crucial transcription factor that acts as tumour suppressor gene, here, we show that ZNF750 represses the expression of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (RAC1) in breast cancer cell lines, by directly binding its promoter region. In keeping with ZNF750 controlling RAC1 expression, we found an inverse correlation between ZNF750 and RAC1 in human breast cancer datasets. More importantly, we found a significant upregulation of RAC1 in human breast cancer datasets and we identified a direct correlation between RAC1 expression and the survival rate of breast cancer patient. Overall, our findings provide a novel molecular mechanism by which ZNF750 acts as tumour suppressor gene. Hence, we report a potential clinical relevance of ZNF750/RAC1 axis in breast cancer.
Collapse
Affiliation(s)
- Alessio Butera
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Matteo Cassandri
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.,Department of Oncohematology, Bambino Gesu' Children's Hospital, 00146, Rome, Italy
| | - Francesco Rugolo
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
9
|
Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, Weinstein JN, Akbani R, Wheeler DA. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep 2020; 28:1370-1384.e5. [PMID: 31365877 DOI: 10.1016/j.celrep.2019.07.001] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The TP53 tumor suppressor gene is frequently mutated in human cancers. An analysis of five data platforms in 10,225 patient samples from 32 cancers reported by The Cancer Genome Atlas (TCGA) enables comprehensive assessment of p53 pathway involvement in these cancers. More than 91% of TP53-mutant cancers exhibit second allele loss by mutation, chromosomal deletion, or copy-neutral loss of heterozygosity. TP53 mutations are associated with enhanced chromosomal instability, including increased amplification of oncogenes and deep deletion of tumor suppressor genes. Tumors with TP53 mutations differ from their non-mutated counterparts in RNA, miRNA, and protein expression patterns, with mutant TP53 tumors displaying enhanced expression of cell cycle progression genes and proteins. A mutant TP53 RNA expression signature shows significant correlation with reduced survival in 11 cancer types. Thus, TP53 mutation has profound effects on tumor cell genomic structure, expression, and clinical outlook.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thierry Soussi
- Sorbonne Université, UPMC University Paris 06, 75005 Paris, France; Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden; INSERM, U1138, Équipe 11, Centre de Recherche des Cordeliers, Paris, France
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Schultz
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgun Babur
- Computational Biology Program, Oregon Health and Science University, Portland, OR 97239, USA
| | - Teng-Kuei Hsu
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, Division of Science, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
11
|
Niklison-Chirou MV, Agostini M, Amelio I, Melino G. Regulation of Adult Neurogenesis in Mammalian Brain. Int J Mol Sci 2020; 21:ijms21144869. [PMID: 32660154 PMCID: PMC7402357 DOI: 10.3390/ijms21144869] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways. Here, we review recent findings that advance our knowledge in epigenetic, transcriptional and metabolic regulation of adult neurogenesis in the SGZ of the hippocampus, with a special attention to the p53-family of transcription factors.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK;
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
- School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.A.); (I.A.)
- Correspondence:
| |
Collapse
|
12
|
Antoniou N, Lagopati N, Balourdas DI, Nikolaou M, Papalampros A, Vasileiou PVS, Myrianthopoulos V, Kotsinas A, Shiloh Y, Liontos M, Gorgoulis VG. The Role of E3, E4 Ubiquitin Ligase (UBE4B) in Human Pathologies. Cancers (Basel) 2019; 12:cancers12010062. [PMID: 31878315 PMCID: PMC7017255 DOI: 10.3390/cancers12010062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022] Open
Abstract
The genome is exposed daily to many deleterious factors. Ubiquitination is a mechanism that regulates several crucial cellular functions, allowing cells to react upon various stimuli in order to preserve their homeostasis. Ubiquitin ligases act as specific regulators and actively participate among others in the DNA damage response (DDR) network. UBE4B is a newly identified member of E3 ubiquitin ligases that appears to be overexpressed in several human neoplasms. The aim of this review is to provide insights into the role of UBE4B ubiquitin ligase in DDR and its association with p53 expression, shedding light particularly on the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Nikolaos Antoniou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
| | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
| | - Dimitrios Ilias Balourdas
- Department of Pharmacy, National Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece; (D.I.B.); (V.M.)
| | - Michail Nikolaou
- General Maternal Hospital of Athens “Elena Venizelou”, GR-11521 Athens, Greece;
| | - Alexandros Papalampros
- First Department of Surgery, Laikon Teaching Hospital, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece;
| | - Panagiotis V. S. Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
| | - Vassilios Myrianthopoulos
- Department of Pharmacy, National Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece; (D.I.B.); (V.M.)
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
- Correspondence: (A.K.); (V.G.G.); Tel.: +30-210-746-2350 (V.G.G.)
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Michalis Liontos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
- Oncology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, GR-11528 Athens, Greece
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, GR-11527 Athens, Greece; (N.A.); (N.L.); (P.V.S.V.); (M.L.)
- Biomedical Research Foundation of the Academy of Athens, GR-11527 Athens, Greece
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M20 4GJ, UK
- Correspondence: (A.K.); (V.G.G.); Tel.: +30-210-746-2350 (V.G.G.)
| |
Collapse
|
13
|
Lopriore P, Capitanio N, Panatta E, Di Daniele N, Gambacurta A, Melino G, Amelio I. TAp73 regulates ATP7A: possible implications for ageing-related diseases. Aging (Albany NY) 2019; 10:3745-3760. [PMID: 30530920 PMCID: PMC6326685 DOI: 10.18632/aging.101669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
The p53 family member p73 controls a wide range of cellular function. Deletion of p73 in mice results in increased tumorigenesis, infertility, neurological defects and altered immune system. Despite the extensive effort directed to define the molecular underlying mechanism of p73 function a clear definition of its transcriptional signature and the extent of overlap with the other p53 family members is still missing. Here we describe a novel TAp73 target, ATP7A a member of a large family of P-type ATPases implicated in human neurogenerative conditions and cancer chemoresistance. Modulation of TAp73 expression influences basal expression level of ATP7A in different cellular models and chromatin immunoprecipitation confirmed a physical direct binding of TAp73 on ATP7A genomic regions. Bioinformatic analysis of expression profile datasets of human lung cancer patients suggests a possible implication of TAp73/ATP7A axis in human cancer. These data provide a novel TAp73-dependent target which might have implications in ageing-related diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Piervito Lopriore
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom.,Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuele Panatta
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom
| | - Nicola Di Daniele
- Department of Systems Medicine, Nephrology and Hypertension Unit, Tor Vergata University Hospital, Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom.,Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
14
|
Benstead-Hume G, Wooller SK, Downs JA, Pearl FMG. Defining Signatures of Arm-Wise Copy Number Change and Their Associated Drivers in Kidney Cancers. Int J Mol Sci 2019; 20:E5762. [PMID: 31744086 PMCID: PMC6887958 DOI: 10.3390/ijms20225762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/15/2023] Open
Abstract
Using pan-cancer data from The Cancer Genome Atlas (TCGA), we investigated how patterns in copy number alterations in cancer cells vary both by tissue type and as a function of genetic alteration. We find that patterns in both chromosomal ploidy and individual arm copy number are dependent on tumour type. We highlight for example, the significant losses in chromosome arm 3p and the gain of ploidy in 5q in kidney clear cell renal cell carcinoma tissue samples. We find that specific gene mutations are associated with genome-wide copy number changes. Using signatures derived from non-negative factorisation, we also find gene mutations that are associated with particular patterns of ploidy change. Finally, utilising a set of machine learning classifiers, we successfully predicted the presence of mutated genes in a sample using arm-wise copy number patterns as features. This demonstrates that mutations in specific genes are correlated and may lead to specific patterns of ploidy loss and gain across chromosome arms. Using these same classifiers, we highlight which arms are most predictive of commonly mutated genes in kidney renal clear cell carcinoma (KIRC).
Collapse
Affiliation(s)
- Graeme Benstead-Hume
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| | - Sarah K. Wooller
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| | - Jessica A Downs
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK;
| | - Frances M. G. Pearl
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (G.B.-H.); (S.K.W.)
| |
Collapse
|
15
|
Sznarkowska A, Kostecka A, Kawiak A, Acedo P, Lion M, Inga A, Zawacka-Pankau J. Reactivation of TAp73 tumor suppressor by protoporphyrin IX, a metabolite of aminolevulinic acid, induces apoptosis in TP53-deficient cancer cells. Cell Div 2018; 13:10. [PMID: 30603043 PMCID: PMC6306007 DOI: 10.1186/s13008-018-0043-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Background The p73 protein is a tumor suppressor that shares structural and functional similarity with p53. p73 is expressed in two major isoforms; the TA isoform that interacts with p53 pathway, thus acting as tumor suppressor and the N-terminal truncated ΔN isoform that inhibits TAp73 and p53 and thus, acts as an oncogene. Results By employing a drug repurposing approach, we found that protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid applied in photodynamic therapy of cancer, stabilizes TAp73 and activates TAp73-dependent apoptosis in cancer cells lacking p53. The mechanism of TAp73 activation is via disruption of TAp73/MDM2 and TAp73/MDMX interactions and inhibition of TAp73 degradation by ubiquitin ligase Itch. Finally, PpIX showed potent antitumor effect and inhibited the growth of xenograft human tumors in mice. Conclusion Our findings may in future contribute to the successful repurposing of PpIX into clinical practice. Electronic supplementary material The online version of this article (10.1186/s13008-018-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Sznarkowska
- 1Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Anna Kostecka
- 1Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Anna Kawiak
- 1Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Pilar Acedo
- 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Mattia Lion
- 3Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy.,4Present Address: Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alberto Inga
- 3Centre for Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Joanna Zawacka-Pankau
- 2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65 Stockholm, Sweden
| |
Collapse
|
16
|
Smith ER, Capo-Chichi CD, Xu XX. Defective Nuclear Lamina in Aneuploidy and Carcinogenesis. Front Oncol 2018; 8:529. [PMID: 30524960 PMCID: PMC6256246 DOI: 10.3389/fonc.2018.00529] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas, and is generally considered to play an important role in the initiation and progression of cancer. In high-grade serous ovarian cancer, the only common gene aberration is the p53 point mutation, though extensive genomic perturbation is common due to severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the development of aneuploidy in cancer cells have been recognized, including chromosomal non-disjunction during mitosis, centrosome amplification, and more recently, nuclear envelope rupture at interphase. Many cancer types including ovarian cancer have lost or reduced expression of Lamin A/C, a structural component of the lamina matrix that underlies the nuclear envelope in differentiated cells. Several recent studies suggest that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap phase. Thus, loss and reduction of Lamin A/C underlies the two common features of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and emphasize the newly recognized mechanism of chromosomal instability due to the rupture of a defective nuclear lamina, which may account for the rapid genomic changes in carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Callinice D Capo-Chichi
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States.,Laboratory of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
18
|
Alves-Silva JC, de Carvalho JL, Rabello DA, Serejo TRT, Rego EM, Neves FAR, Lucena-Araujo AR, Pittella-Silva F, Saldanha-Araujo F. GLP overexpression is associated with poor prognosis in Chronic Lymphocytic Leukemia and its inhibition induces leukemic cell death. Invest New Drugs 2018; 36:955-960. [PMID: 29855824 DOI: 10.1007/s10637-018-0613-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
Background Heterodimeric methyltransferases GLP (EHMT1/KMT1D) and G9a (EHMT2/KMT1C) are two closely related enzymes that promote the monomethylation and dimethylation of histone H3 lysine 9. Dysregulation of their activity has been implicated in several types of human cancer. Patients and methods Here, in order to investigate whether GLP/G9a exerts any impact on Chronic Lymphocytic Leukemia (CLL), GLP/G9a expression levels were assessed in a cohort of 50 patients and the effects of their inhibition were verified for the viability of CLL cells. Also, qRT-PCR was used to investigate the transcriptional levels of GLP/G9a in CLL patients. In addition, patient samples were classified according to ZAP-70 protein expression by flow cytometry and according to karyotype integrity by cytogenetics analysis. Finally, a selective small molecule inhibitor for GLP/G9a was used to ascertain whether these methyltransferases influenced the viability of MEC-1 CLL cell lineage. Results mRNA analysis revealed that CLL samples had higher levels of GLP, but not G9a, when compared to non-leukemic controls. Interestingly, patients with unfavorable cytogenetics showed higher expression levels of GLP compared to patients with favorable karyotypes. More importantly, GLP/G9a inhibition markedly induced cell death in CLL cells. Conclusion Taken together, these results indicate that GLP is associated with a worse prognosis in CLL, and that the inhibition of GLP/G9a influences CLL cell viability. Altogether, the present data demonstrate that these methyltransferases can be potential markers for disease progression, as well as a promising epigenetic target for CLL treatment and the prevention of disease evolution.
Collapse
Affiliation(s)
- Juliana Carvalho Alves-Silva
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brazil
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF, 70.910-900, Brazil
| | - Juliana Lott de Carvalho
- Laboratório de Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Brasília, DF, 70790-160, Brazil
| | - Doralina Amaral Rabello
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brazil
| | - Teresa Raquel Tavares Serejo
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF, 70.910-900, Brazil
| | - Eduardo Magalhaes Rego
- Laboratório de Hematologia, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14.048-900, Brazil
| | - Francisco Assis Rocha Neves
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF, 70.910-900, Brazil
| | - Antonio Roberto Lucena-Araujo
- Laboratório de Hematologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Recife, PE, 50670-901, Brazil
| | - Fábio Pittella-Silva
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Av. L2 Norte, Brasília, DF, 70.910-900, Brazil.
| |
Collapse
|
19
|
Vikhreva P, Melino G, Amelio I. p73 Alternative Splicing: Exploring a Biological Role for the C-Terminal Isoforms. J Mol Biol 2018; 430:1829-1838. [PMID: 29733853 PMCID: PMC5995411 DOI: 10.1016/j.jmb.2018.04.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
p73 (encoded by TP73 gene) is a p53 related protein that functions as a transcriptional factor. Similarly to p53, following DNA damage, p73 is stabilized and activated and controls expression of target genes that are involved in the regulation of cycle arrest and apoptosis. However, great complexity to the function of this gene is given by the wide range of its non-tumor-related roles, which include neurological development, ciliogenesis and fertility. From the structural point of view, p73 displays an intricate range of regulations because it can be expressed both as an N-terminally deleted dominant-negative isoforms and as multiple alternatively spliced C-terminal isoforms, which can include or not a sterile alpha motif domain. More is known about the functions of the N-terminal isoforms of p73 (TAp73 and ΔNp73) and their opposing pro- and anti-apoptotic roles, whereas the functional differences of the distinct C-terminal splice forms of p73 are very far away from been defined. Here we summarize the current available literature regarding p73 C-terminal isoforms and the contribution of the sterile alpha motif domain to p73 function, trying to provide an unified view in this complex and sometime controversial field. Current data indicate that the full-length, TAp73α, is the major, if not the exclusive, isoform detected in physiological systems, indicating that detailed spatio-temporal expression analysis and functional studies are highly demanded to support a physiological role for the p73 alternative splicing. With this article, we also aim to emphasize the need to further investigation on the topic, refocusing the attention on what we believe are the most relevant unanswered questions.
Collapse
Affiliation(s)
- Polina Vikhreva
- MRC Toxicology Unit, University of Cambridge, United Kingdom
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, United Kingdom; Department of Experimental Medicine and Surgery, IDI-IRCCS, University of Rome Tor Vergata, Italy
| | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, United Kingdom.
| |
Collapse
|
20
|
Vazquez-Martin A, Anatskaya OV, Giuliani A, Erenpreisa J, Huang S, Salmina K, Inashkina I, Huna A, Nikolsky NN, Vinogradov AE. Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature. Oncotarget 2018; 7:75235-75260. [PMID: 27655693 PMCID: PMC5342737 DOI: 10.18632/oncotarget.12118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/05/2016] [Indexed: 12/30/2022] Open
Abstract
The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer.
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, St-Petersburg, Russian Federation, Russia
| | | | | | - Sui Huang
- Systems Biology Institute, Seattle, USA
| | | | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Anda Huna
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | |
Collapse
|
21
|
Xie N, Vikhreva P, Annicchiarico-Petruzzelli M, Amelio I, Barlev N, Knight RA, Melino G. Integrin-β4 is a novel transcriptional target of TAp73. Cell Cycle 2018; 17:589-594. [PMID: 29233040 DOI: 10.1080/15384101.2017.1403684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a member of p53 family, p73 has attracted intense investigations due to its structural and functional similarities to p53. Among more than ten p73 variants, the transactivation (TA) domain-containing isoform TAp73 is the one that imitates the p53's behavior most. TAp73 induces apoptosis and cell cycle arrest, which endows it the capacity of tumour suppression. Also, it can exert diverse biological influences on cells through activating a complex and context dependent transcriptional programme. The transcriptional activities further broaden its roles in more intricate biological processes. In this article, we report that p73 is a positive regulator of a cell adhesion related gene named integrin β4 (ITGB4). This finding may have implications for the dissection of the biological mechanisms underlining p73 functions.
Collapse
Affiliation(s)
- Ningxia Xie
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom.,b Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Rome 00133 , Italy
| | - Polina Vikhreva
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | | | - Ivano Amelio
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | - Nicolai Barlev
- d Institute of Cytology Russian Academy of Sciences , Saint-Petersburg , 194064 , Russia
| | - Richard A Knight
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | - Gerry Melino
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom.,b Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Rome 00133 , Italy.,d Institute of Cytology Russian Academy of Sciences , Saint-Petersburg , 194064 , Russia
| |
Collapse
|
22
|
Li J, Dallmayer M, Kirchner T, Musa J, Grünewald TGP. PRC1: Linking Cytokinesis, Chromosomal Instability, and Cancer Evolution. Trends Cancer 2017; 4:59-73. [PMID: 29413422 DOI: 10.1016/j.trecan.2017.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Cytokinesis is the final event of the cell cycle dividing one cell into two daughter cells. The protein regulator of cytokinesis (PRC)1 is essential for cytokinesis and normal cell cleavage. Deregulation of PRC1 causes cytokinesis defects that promote chromosomal instability (CIN) and thus tumor heterogeneity and cancer evolution. Consistently, abnormal PRC1 expression correlates with poor patient outcome in various malignancies, which may be caused by PRC1-mediated CIN and aneuploidy. Here, we review the physiological functions of PRC1 in cell cycle regulation and its contribution to tumorigenesis and intratumoral heterogeneity. We discuss targeting PRC1 within the complementary approaches of either normalizing CIN in aneuploid cancers or creating chromosomal chaos in genomically stable cancers to induce apoptosis.
Collapse
Affiliation(s)
- Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Nemajerova A, Amelio I, Gebel J, Dötsch V, Melino G, Moll UM. Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death Differ 2017; 25:144-153. [PMID: 29077094 PMCID: PMC5729534 DOI: 10.1038/cdd.2017.178] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) covers a wide range of functions critical for development, homeostasis and health of mammals across their lifespan. Beside the well-established tumor suppressor role, recent evidence has highlighted novel non-oncogenic functions exerted by p73. In particular, p73 is required for multiciliated cell (MCC) differentiation; MCCs have critical roles in brain and airways to move fluids across epithelial surfaces and to transport germ cells in the reproductive tract. This novel function of p73 provides a unifying cellular mechanism for the disparate inflammatory and immunological phenotypes of p73-deficient mice. Indeed, mice with Trp73 deficiency suffer from hydrocephalus, sterility and chronic respiratory tract infections due to profound defects in ciliogenesis and complete loss of mucociliary clearance since MCCs are essential for cleaning airways from inhaled pollutants, pathogens and allergens. Cross-species genomic analyses and functional rescue experiments identify TAp73 as the master transcriptional integrator of ciliogenesis, upstream of previously known central nodes. In addition, TAp73 shows a significant ability to regulate cellular metabolism and energy production through direct transcriptional regulation of several metabolic enzymes, such as glutaminase-2 and glucose-6 phosphate dehydrogenase. This recently uncovered role of TAp73 in the regulation of cellular metabolism strongly affects oxidative balance, thus potentially influencing all the biological aspects associated with p73 function, including development, homeostasis and cancer. Although through different mechanisms, p63 isoforms also contribute to regulation of cellular metabolism, thus indicating a common route used by all family members to control cell fate. At the structural level, the complexity of p73's function is further enhanced by its ability to form heterotetramers with some p63 isoforms, thus indicating the existence of an intrafamily crosstalk that determines the global outcome of p53 family function. In this review, we have tried to summarize all the recent evidence that have emerged on the novel non-oncogenic roles of p73, in an attempt to provide a unified view of the complex function of this gene within its family.
Collapse
Affiliation(s)
- Alice Nemajerova
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Hodgkin Building, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK.,Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
24
|
Marini A, Lena AM, Panatta E, Ivan C, Han L, Liang H, Annicchiarico-Petruzzelli M, Di Daniele N, Calin GA, Candi E, Melino G. Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget 2017; 8:35669-35680. [PMID: 27447964 PMCID: PMC5482607 DOI: 10.18632/oncotarget.10572] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Transcribed-ultraconserved regions (T-UCRs) are long non-coding RNAs (lncRNA) encoded by a subset of long ultraconserved stretches in the human genome. Recent studies revealed that the expression of several T-UCRs is altered in cancer and growing evidences underline the importance of T-UCRs in oncogenesis, offering also potential new strategies for diagnosis and prognosis. We found that overexpression of one specific T-UCRs named uc.63 is associated with bad outcome in luminal A subtype of breast cancer patients. uc.63 is localized in the third intron of exportin-1 gene (XPO1) and is transcribed in the same orientation of its host gene. Interestingly, silencing of uc.63 induces apoptosis in vitro. However, silencing of host gene XPO1 does not cause the same effect suggesting that the transcription of uc.63 is independent of XPO1. Our results reveal an important role of uc.63 in promoting breast cancer cells survival and offer the prospect to identify a signature associated with poor prognosis.
Collapse
Affiliation(s)
- Alberto Marini
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Nicola Di Daniele
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - George A. Calin
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- IDI-IRCCS, Biochemistry Laboratory, Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
25
|
Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dötsch V, Levine AJ, Melino G. Structural Evolution and Dynamics of the p53 Proteins. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a028308. [PMID: 27091942 DOI: 10.1101/cshperspect.a028308] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family of the p53 tumor suppressive transcription factors includes p73 and p63 in addition to p53 itself. Given the high degree of amino-acid-sequence homology and structural organization shared by the p53 family members, they display some common features (i.e., induction of cell death, cell-cycle arrest, senescence, and metabolic regulation in response to cellular stress) as well as several distinct properties. Here, we describe the structural evolution of the family members with recent advances on the molecular dynamic studies of p53 itself. A crucial role of the carboxy-terminal domain in regulating the properties of the DNA-binding domain (DBD) supports an induced-fit mechanism, in which the binding of p53 on individual promoters is preferentially regulated by the KOFF over KON.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CINECA, SCAI-SuperComputing Applications and Innovation Department, Rome 00185, Italy
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Arnold J Levine
- Institute for Advanced Study, Princeton, New Jersey 08540.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
26
|
Mahathre MM, Rida PC, Aneja R. The more the messier: centrosome amplification as a novel biomarker for personalized treatment of colorectal cancers. J Biomed Res 2016; 30:441-451. [PMID: 27924065 PMCID: PMC5138576 DOI: 10.7555/jbr.30.20150109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/12/2015] [Indexed: 01/10/2023] Open
Abstract
Colon cancer is currently the third most common cancer and second most fatal cancer in the United States, resulting in approximately 600,000 deaths annually. Though colorectal cancer death rates are decreasing by about 3% every year, disease outcomes could be substantially improved with more research into the drivers of colon carcinogenesis, the determinants of aggressiveness in colorectal cancer and the identification of biomarkers that could enable choice of more optimal treatments. Colon carcinogenesis is notably a slow process that can take decades. Known factors that contribute to the development of colon cancer are mutational, epigenetic and environmental, and risk factors include age, history of polyps and family history of colon cancer. Colorectal cancers exhibit heterogeneity in their features and are often characterized by the presence of chromosomal instability, microscopic satellite instability, or CpG island methylator phenotype. In this review, we propose that centrosome amplification may be a widespread occurrence in colorectal cancers and could potently influence tumor biology. Moreover, the quantitation of this cancer-specific anomaly could offer valuable prognostic information and pave the way for further customization of treatment based on the organellar profile of patients. Patient stratification models that take into account centrosomal status could thus potentially reduce adverse side effects and result in improved outcomes for colorectal cancer patients.
Collapse
Affiliation(s)
- Monica M Mahathre
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Padmashree Cg Rida
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.,Novazoi Theranostics Inc., Plano, TX 75025, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.,Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.,Center for Obesity Research, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
27
|
He Z, Agostini M, Liu H, Melino G, Simon HU. p73 regulates basal and starvation-induced liver metabolism in vivo. Oncotarget 2016; 6:33178-90. [PMID: 26375672 PMCID: PMC4741757 DOI: 10.18632/oncotarget.5090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022] Open
Abstract
As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer.
Collapse
Affiliation(s)
- Zhaoyue He
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester, United Kingdom.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - He Liu
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, United Kingdom.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 2016; 73:2829-50. [PMID: 26791483 PMCID: PMC11108532 DOI: 10.1007/s00018-016-2130-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.
Collapse
Affiliation(s)
- Sonja Matt
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G Hofmann
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Guo H, Yang S, Xu L, Li D, Tang J, Wang S, Wei B, Liu Z. Association between the p73 gene G4C14-to-A4T14 single nucleotide polymorphism and risk of cervical cancer by high resolution melting and PCR with confronting two-pair primers in a Chinese population. Oncol Lett 2016; 12:721-726. [PMID: 27347206 DOI: 10.3892/ol.2016.4655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/18/2016] [Indexed: 11/06/2022] Open
Abstract
As a member of the p53 gene family, the p73 gene can affect an individual's susceptibility to cancer through a p53-like manner. DNA sequence variation in the p73 gene has been reported to be associated with cancer risk. The present study aimed to identify whether the p73 gene G4C14-to-A4T14 single nucleotide polymorphism (SNP) is associated with risk of cervical cancer in a Chinese population. The p73 G4C14-to-A4T14 polymorphism was genotyped in 175 cervical cancer and 189 healthy control peripheral blood DNA samples using high resolution melting, polymerase chain reaction with confronting two-pair primers and direct DNA sequencing. The results demonstrated that carriers of the AT/AT genotype were associated with a significantly increased risk of cervical cancer (P=0.042; χ2=4.122; odds ratio = 2.241; 95% confidence interval = 1.013-4.956) compared with the GC/GC genotype carriers. In addition, there was a significant association between p73 genotypes and tumor size in patients with cervical cancer (P=0.014; χ2=8.607). However, no association was identified between p73 genotypes and tumor stage, histological type or lymph node metastasis in patients with cervical cancer. These results suggest that the p73 G4C14-to-A4T14 SNP may function as a marker of genetic susceptibility to cervical cancer in the Chinese population.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Obstetrics and Gynecology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Shaodi Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410000, P.R. China
| | - Lijian Xu
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412000, P.R. China
| | - Ding Li
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412000, P.R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412000, P.R. China
| | - Shuangshaung Wang
- Hunan Key Laboratory of Green Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, Hunan 412000, P.R. China
| | - Benjie Wei
- Yin Feng Biological Group Co., Ltd., Jinan, Shandong 250000, P.R. China
| | - Zhengchun Liu
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
30
|
Bongiorno-Borbone L, Giacobbe A, Compagnone M, Eramo A, De Maria R, Peschiaroli A, Melino G. Anti-tumoral effect of desmethylclomipramine in lung cancer stem cells. Oncotarget 2016. [PMID: 26219257 PMCID: PMC4627282 DOI: 10.18632/oncotarget.4700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most feared of all cancers because of its heterogeneity and resistance to available treatments. Cancer stem cells (CSCs) are the cell population responsible for lung cancer chemoresistance and are a very good model for testing new targeted therapies. Clomipramine is an FDA-approved antidepressant drug, able to inhibit in vitro the E3 ubiquitin ligase Itch and potentiate the pro-apoptotic effects of DNA damaging induced agents in several cancer cell lines. Here, we investigated the potential therapeutic effect of desmethylclomipramine (DCMI), the active metabolite of Clomipramine, on the CSCs homeostasis. We show that DCMI inhibits lung CSCs growth, decreases their stemness potential and increases the cytotoxic effect of conventional chemotherapeutic drugs. Being DCMI an inhibitor of the E3 ubiquitin ligase Itch, we also verified the effect of Itch deregulation on CSCs survival. We found that the siRNA-mediated depletion of Itch induces similar anti-proliferative effects on lung CSCs, suggesting that DCMI might exert its effect, at least in part, by inhibiting Itch. Notably, Itch expression is a negative prognostic factor in two primary lung tumors datasets, supporting the potential clinical relevance of Itch inhibition to circumvent drug resistance in the treatment of lung cancer.
Collapse
Affiliation(s)
- Lucilla Bongiorno-Borbone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Arianna Giacobbe
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Mirco Compagnone
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Leicester, United Kingdom
| |
Collapse
|
31
|
Yen CS, Chen JC, Chang YF, Hsu YF, Chiu PT, Shiue C, Chuang YF, Ou G, Hsu MJ. Lovastatin causes FaDu hypopharyngeal carcinoma cell death via AMPK-p63-survivin signaling cascade. Sci Rep 2016; 6:25082. [PMID: 27122225 PMCID: PMC4848532 DOI: 10.1038/srep25082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
Statins are used widely to lower serum cholesterol and the incidence of cardiovascular diseases. Growing evidence shows that statins also exhibit beneficial effects against cancers. In this study, we investigated the molecular mechanisms involved in lovastatin-induced cell death in Fadu hypopharyngeal carcinoma cells. Lovastatin caused cell cycle arrest and apoptosis in FaDu cells. Lovastatin increased p21cip/Waf1 level while the survivin level was decreased in the presence of lovastatin. Survivin siRNA reduced cell viability and induced cell apoptosis in FaDu cells. Lovastatin induced phosphorylation of AMP-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (MAPK) and transcription factor p63. Lovastatin also caused p63 acetylation and increased p63 binding to survivin promoter region in FaDu cells. AMPK-p38MAPK signaling blockade abrogated lovastatin-induced p63 phosphorylation. Lovastatin’s enhancing effect on p63 acetylation was reduced in HDAC3- or HDAC4- transfected cells. Moreover, transfection of cells with AMPK dominant negative mutant (AMPK-DN), HDAC3, HDAC4 or p63 siRNA significantly reduced lovastatin’s effects on p21cip/Waf1 and survivin. Furthermore, lovastatin inhibited subcutaneous FaDu xenografts growth in vivo. Taken together, lovastatin may activate AMPK-p38MAPK-p63-survivin cascade to cause FaDu cell death. This study establishes, at least in part, the signaling cascade by which lovastatin induces hypopharyngeal carcinoma cell death.
Collapse
Affiliation(s)
- Chia-Sheng Yen
- Department of General Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jung-Chien Chen
- Division of General Surgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Pei-Ting Chiu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching Shiue
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Yu-Fan Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - George Ou
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
32
|
Noce A, Canale MP, Capria A, Rovella V, Tesauro M, Splendiani G, Annicchiarico-Petruzzelli M, Manzuoli M, Simonetti G, Di Daniele N. Coronary artery calcifications predict long term cardiovascular events in non diabetic Caucasian hemodialysis patients. Aging (Albany NY) 2016; 7:269-79. [PMID: 26131456 PMCID: PMC4429091 DOI: 10.18632/aging.100740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular calcifications are frequent in chronic renal disease and are associated to significant cardiovascular morbidity and mortality. The long term predictive value of coronary artery calcifications detected by multi-layer spiral computed tomography for major cardiovascular events was evaluated in non-diabetic Caucasian patients on maintenance hemodialysis free of clinical cardiovascular disease. Two-hundred and five patients on maintenance hemodialysis were enrolled into this observational, prospective cohort study. Patients underwent a single cardiac multi-layer spiral computed tomography. Calcium load was quantified and patients grouped according to the Agatston score: group 1 (Agatston score: 0), group 2 (Agatston score 1-400), group 3 (Agatston score 401-1000) and group 4 (Agatston score >1000). Follow-up was longer than seven years. Primary endpoint was death from a major cardiovascular event. Actuarial survival was calculated separately in the four groups with Kaplan-Meier method. Patients who died from causes other than cardiovascular disease and transplanted patients were censored. The “log rank” test was employed to compare survival curves. One-hundred two patients (49.7%) died for a major cardiovascular event during the follow-up period. Seven-year actuarial survival was more than 90% for groups 1 and 2, but failed to about 50% for group 3 and to <10% for group 4. Hence, Agatston score >400 predicts a significantly higher cardiovascular mortality compared with Agatston score <400 (p<0.0001); furthermore, serum Parathyroid hormone levels > 300 pg/l were associated to a lower survival (p < 0.05). Extended coronary artery calcifications detected by cardiac multi-layer spiral computed tomography, strongly predicted long term cardiovascular mortality in non-diabetic Caucasian patients on maintenance hemodialysis. Moreover, it was not related to conventional indices of atherosclerosis, but to other non-traditional risk factors, as serum Parathyroid hormone levels. A full cost-benefit analysis is however necessary to justify a widespread use of cardiac multi-layer spiral computed tomography in clinical practice.
Collapse
|
33
|
Zhang B, Rotelli M, Dixon M, Calvi BR. The function of Drosophila p53 isoforms in apoptosis. Cell Death Differ 2015; 22:2058-67. [PMID: 25882045 PMCID: PMC4816103 DOI: 10.1038/cdd.2015.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
The p53 protein is a major mediator of the cellular response to genotoxic stress and is a crucial suppressor of tumor formation. In a variety of organisms, p53 and its paralogs, p63 and p73, each encode multiple protein isoforms through alternative splicing, promoters, and translation start sites. The function of these isoforms in development and disease are still being defined. Here, we evaluate the apoptotic potential of multiple isoforms of the single p53 gene in the genetic model Drosophila melanogaster. Most previous studies have focused on the p53A isoform, but it has been recently shown that a larger p53B isoform can induce apoptosis when overexpressed. It has remained unclear, however, whether one or both isoforms are required for the apoptotic response to genotoxic stress. We show that p53B is a much more potent inducer of apoptosis than p53A when overexpressed. Overexpression of two newly identified short isoforms perturbed development and inhibited the apoptotic response to ionizing radiation. Analysis of physiological protein expression indicated that p53A is the most abundant isoform, and that both p53A and p53B can form a complex and co-localize to sub-nuclear compartments. In contrast to the overexpression results, new isoform-specific loss-of-function mutants indicated that it is the shorter p53A isoform, not full-length p53B, that is the primary mediator of pro-apoptotic gene transcription and apoptosis after ionizing radiation. Together, our data show that it is the shorter p53A isoform that mediates the apoptotic response to DNA damage, and further suggest that p53B and shorter isoforms have specialized functions.
Collapse
Affiliation(s)
- B Zhang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Rotelli
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - M Dixon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - B R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
34
|
Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenröder O, Pützer BM. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 2015; 5:5893-907. [PMID: 25071017 PMCID: PMC4171600 DOI: 10.18632/oncotarget.1839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Malignant melanoma is a highly aggressive cancer that retains functional p53 and p73, and drug unresponsiveness largely depends on defects in death pathways after epigenetic gene silencing in conjunction with an imbalanced p73/DNp73 ratio. We constructed oncolytic viruses armed with an inhibitor of deacetylation and/or p73 to specifically target metastatic cancer. Arming of the viruses is aimed at lifting epigenetic blockage and re-opening apoptotic programs in a staggered manner enabling both, efficient virus replication and balanced destruction of target cells through apoptosis. Our results showed that cooperative expression of shHDAC1 and p73 efficiently enhances apoptosis induction and autophagy of infected cells which reinforces progeny production. In vitro analyses revealed 100% cytotoxicity after infecting cells with OV.shHDAC1.p73 at a lower virus dose compared to control viruses. Intriguingly, OV.shHDAC1.p73 acts as a potent inhibitor of highly metastatic xenograft tumors in vivo. Tumor expansion was significantly reduced after intratumoral injection of 3 × 108 PFU of either OV.shHDAC1 or OV.p73 and, most important, complete regression could be achieved in 100% of tumors treated with OV.shHDAC1.p73. Our results point out that the combination of high replication capacity and simultaneous restoration of cell death routes significantly enhance antitumor activity.
Collapse
Affiliation(s)
- Holger Schipper
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany; These authors contributed equally to the work
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany; These authors contributed equally to the work
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Dirk M Nettelbeck
- Helmholtz University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
35
|
Amelio I, Antonov AA, Catani MV, Massoud R, Bernassola F, Knight RA, Melino G, Rufini A. TAp73 promotes anabolism. Oncotarget 2015; 5:12820-934. [PMID: 25514460 PMCID: PMC4350352 DOI: 10.18632/oncotarget.2667] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/18/2022] Open
Abstract
Metabolic adaptation has emerged as a hallmark of cancer and a promising therapeutic target, as rapidly proliferating cancer cells adapt their metabolism increasing nutrient uptake and reorganizing metabolic fluxes to support biosynthesis. The transcription factor p73 belongs to the p53-family and regulates tumorigenesis via its two N-terminal isoforms, with (TAp73) or without (ΔNp73) a transactivation domain. TAp73 acts as tumor suppressor, at least partially through induction of cell cycle arrest and apoptosis and through regulation of genomic stability. Here, we sought to investigate whether TAp73 also affects metabolic profiling of cancer cells. Using high throughput metabolomics, we unveil a thorough and unexpected role for TAp73 in promoting Warburg effect and cellular metabolism. TAp73-expressing cells show increased rate of glycolysis, higher amino acid uptake and increased levels and biosynthesis of acetyl-CoA. Moreover, we report an extensive TAp73-mediated upregulation of several anabolic pathways including polyamine and synthesis of membrane phospholipids. TAp73 expression also increases cellular methyl-donor S-adenosylmethionine (SAM), possibly influencing methylation and epigenetics, and promotes arginine metabolism, suggestive of a role in extracellular matrix (ECM) modeling. In summary, our data indicate that TAp73 regulates multiple metabolic pathways that impinge on numerous cellular functions, but that, overall, converge to sustain cell growth and proliferation.
Collapse
Affiliation(s)
- Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Alexey A Antonov
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Maria Valeria Catani
- Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy
| | - Renato Massoud
- Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy
| | - Richard A Knight
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK. Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy. Molecular Pharmacology Laboratory, Technological University, St-Petersburg, Russia
| | - Alessandro Rufini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK. Department of Cancer Studies, Cancer Research UK, Leicester Centre, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
36
|
The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. Oncogene 2015; 35:3272-81. [PMID: 26477317 PMCID: PMC4929483 DOI: 10.1038/onc.2015.388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
The Trp53 gene is the most frequently mutated gene in all human cancers. Its protein product p53 is a very powerful transcription factor that can activate different biochemical pathways and affect the regulation of metabolism, senescence, DNA damage response, cell cycle and cell death. The understanding of its function at the molecular level could be of pivotal relevance for therapy. Investigation of long-range intra- and interdomain communications in the p53 tetramer–DNA complex was performed by means of an atomistic model that included the tetramerization helices in the C-terminal domain, the DNA-binding domains and a consensus DNA-binding site of 18 base pairs. Nonsymmetric dynamics are illustrated in the four DNA-binding domains, with loop L1 switching from inward to outward conformations with respect to the DNA major groove. Direct intra- and intermonomeric long-range communications between the tetramerization and DNA-binding domains are noted. These long-distance conformational changes link the C terminus with the DNA-binding domain and provide a biophysical rationale for the reported functional regulation of the p53 C-terminal region. A fine characterization of the DNA deformation caused by p53 binding is obtained, with ‘static' deformations always present and measured by the slide parameter in the central thymine–adenine base pairs; we also detect ‘dynamic' deformations switched on and off by particular p53 tetrameric conformations and measured by the roll and twist parameters in the same base pairs. These different conformations can indeed modulate the electrostatic potential isosurfaces of the whole p53–DNA complex. These results provide a molecular/biophysical understanding of the evident role of the C terminus in post-translational modification that regulates the transcriptional function of p53. Furthermore, the unstructured C terminus is able to facilitate contacts between the core DNA-binding domains of the tetramer.
Collapse
|
37
|
Giamboi-Miraglia A, Cianfarani F, Cattani C, Lena AM, Serra V, Campione E, Terrinoni A, Zambruno G, Odorisio T, Di Daniele N, Melino G, Candi E. The E3 ligase Itch knockout mice show hyperproliferation and wound healing alteration. FEBS J 2015; 282:4435-49. [PMID: 26361888 DOI: 10.1111/febs.13514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 12/16/2022]
Abstract
The HECT-type E3 ubiquitin ligase Itch is absent in the non-agouti-lethal 18H or Itchy mice, which develop a severe immunological disease. Several of the known Itch substrates are relevant for epidermal development and homeostasis, such as p63, Notch, c-Jun and JunB. By analysing Itchy mice before the onset of immunological alterations, we investigated the contribution of Itch in skin development and wound healing. Itchy newborn mice manifested hyperplastic epidermis, which is not present in adulthood. Itch(-/-) cultured keratinocytes showed overexpression of proliferating markers and increased capability to proliferate, migrate and to repair a scratch injury in vitro. These data correlated with improved in vivo wound healing in Itchy mice, at late time points of the repair process when Itch is physiologically upregulated. Despite healing acceleration, epidermal remodelling was delayed in the scars of Itch(-/-) mice, as indicated by enhanced epidermal thickening, keratinocyte proliferation and keratin 6 expression, and retarded keratin 14 polarization to the basal layer. Itch(-/-) keratinocyte prolonged activation was not associated with increased immune cell persistence in the scars. Our in vitro and in vivo results indicate that Itch plays a role in epidermal homeostasis and remodelling and this feature does not seem to depend on immunological alterations.
Collapse
Affiliation(s)
| | - Francesca Cianfarani
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Caterina Cattani
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy
| | - Valeria Serra
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy
| | - Elena Campione
- Department of Dermatology, University of 'Tor Vergata', Rome, Italy
| | - Alessandro Terrinoni
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Giovanna Zambruno
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Teresa Odorisio
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of 'Tor Vergata', Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy.,MRC Toxicology Unit, Leicester, UK
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of 'Tor Vergata', Rome, Italy.,Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| |
Collapse
|
38
|
Melino S, Bellomaria A, Nepravishta R, Paci M, Melino G. p63 threonine phosphorylation signals the interaction with the WW domain of the E3 ligase Itch. Cell Cycle 2015; 13:3207-17. [PMID: 25485500 DOI: 10.4161/15384101.2014.951285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both in epithelial development as well as in epithelial cancers, the p53 family member p63 plays a crucial role acting as a master transcriptional regulator. P63 steady state protein levels are regulated by the E3 ubiquitin ligase Itch, via a physical interaction between the PPxY consensus sequence (PY motif) of p63 and one of the 4 WW domains of Itch; this substrate recognition process leads to protein-ubiquitylation and p63 proteasomal degradation. The interaction of the WW domains, a highly compact protein-protein binding module, with the short proline-rich sequences is therefore a crucial regulatory event that may offer innovative potential therapeutic opportunity. Previous molecular studies on the Itch-p63 recognition have been performed in vitro using the Itch-WW2 domain and the peptide interacting fragment of p63 (pep63), which includes the PY motif. Itch-WW2-pep63 interaction is also stabilized in vitro by the conformational constriction of the S-S cyclization in the p63 peptide. The PY motif of p63, as also for other proteins, is characterized by the nearby presence of a (T/S)P motif, which is a potential recognition site of the WW domain of the IV group present in the prolyl-isomerase Pin1. In this study, we demonstrate, by in silico and spectroscopical studies using both the linear pep63 and its cyclic form, that the threonine phosphorylation of the (T/S)PPPxY motif may represent a crucial regulatory event of the Itch-mediated p63 ubiquitylation, increasing the Itch-WW domains-p63 recognition event and stabilizing in vivo the Itch-WW-p63 complex. Moreover, our studies confirm that the subsequently trans/cis proline isomerization of (T/S)P motif by the Pin1 prolyl-isomerase, could modulate the E3-ligase interaction, and that the (T/S)pPtransPPxY motif represent the best conformer for the ItchWW-(T/S)PPPxY motif recognition.
Collapse
Key Words
- CXCR4, chemokine receptor
- E3 ubiquitin ligases
- HECT, Homologous E6-AP Carboxyl Terminus
- IPTG, isopropyl-β-D-thiogalactoside
- Itch
- Pin1
- Ppep63, phosphorylated pep63
- RHS, Rapp-Hodgkin syndrome
- RP-HPLC, reverse phase high performance chromatography
- TFE, 2, 2, 2-trifluoroethanol
- TNF, tumor necrosis factor
- TRAF6, TNF receptor-associated factor 6
- cPpep63, cyclic phosphorylated pep63
- p53 family
- p63
- pep63, p63(534–551) peptide
- proline isomerization
- ubiquitynation
Collapse
Affiliation(s)
- Sonia Melino
- a Dipartimento di Scienze e Tecnologie Chimiche ; University of Rome "Tor Vergata" ; Rome , Italy
| | | | | | | | | |
Collapse
|
39
|
Petrova V, Mancini M, Agostini M, Knight RA, Annicchiarico-Petruzzelli M, Barlev NA, Melino G, Amelio I. TAp73 transcriptionally represses BNIP3 expression. Cell Cycle 2015; 14:2484-93. [PMID: 25950386 PMCID: PMC4612661 DOI: 10.1080/15384101.2015.1044178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 03/26/2015] [Accepted: 04/18/2015] [Indexed: 01/07/2023] Open
Abstract
TAp73 is a tumor suppressor transcriptional factor, belonging to p53 family. Alteration of TAp73 in tumors might lead to reduced DNA damage response, cell cycle arrest and apoptosis. Carcinogen-induced TAp73(-/-) tumors display also increased angiogenesis, associated to hyperactivition of hypoxia inducible factor signaling. Here, we show that TAp73 suppresses BNIP3 expression, directly binding its gene promoter. BNIP3 is a hypoxia responsive protein, involved in a variety of cellular processes, such as autophagy, mitophagy, apoptosis and necrotic-like cell death. Therefore, through different cellular process altered expression of BNIP3 may differently contribute to cancer development and progression. We found a significant upregulation of BNIP3 in human lung cancer datasets, and we identified a direct association between BNIP3 expression and survival rate of lung cancer patients. Our data therefore provide a novel transcriptional target of TAp73, associated to its antagonistic role on HIF signaling in cancer, which might play a role in tumor suppression.
Collapse
Affiliation(s)
- Varvara Petrova
- Medical Research Council; Toxicology Unit; Leicester University; Leicester, UK
- Molecular Pharmacology Laboratory; Saint-Petersburg Institute of Technology; Saint-Petersburg, Russia
| | - Mara Mancini
- Medical Research Council; Toxicology Unit; Leicester University; Leicester, UK
| | - Massimiliano Agostini
- Department of Experimental Medicine and Surgery; University of Rome “Tor Vergata”; Rome, Italy
| | - Richard A Knight
- Medical Research Council; Toxicology Unit; Leicester University; Leicester, UK
| | | | - Nikolai A Barlev
- Molecular Pharmacology Laboratory; Saint-Petersburg Institute of Technology; Saint-Petersburg, Russia
- Gene Expression Laboratory; Institute of Cytology; Saint-Petersburg, Russia
| | - Gerry Melino
- Medical Research Council; Toxicology Unit; Leicester University; Leicester, UK
- Molecular Pharmacology Laboratory; Saint-Petersburg Institute of Technology; Saint-Petersburg, Russia
- Department of Experimental Medicine and Surgery; University of Rome “Tor Vergata”; Rome, Italy
- Biochemistry Laboratory IDI-IRCC; Rome, Italy
| | - Ivano Amelio
- Medical Research Council; Toxicology Unit; Leicester University; Leicester, UK
| |
Collapse
|
40
|
Landré V, Rotblat B, Melino S, Bernassola F, Melino G. Screening for E3-ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget 2015; 5:7988-8013. [PMID: 25237759 PMCID: PMC4226663 DOI: 10.18632/oncotarget.2431] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) plays a role in the regulation of most cellular pathways, and its deregulation has been implicated in a wide range of human pathologies that include cancer, neurodegenerative and immunological disorders and viral infections. Targeting the UPS by small molecular regulators thus provides an opportunity for the development of therapeutics for the treatment of several diseases. The proteasome inhibitor Bortezomib was approved for treatment of hematologic malignancies by the FDA in 2003, becoming the first drug targeting the ubiquitin proteasome system in the clinic. Development of drugs targeting specific components of the ubiquitin proteasome system, however, has lagged behind, mainly due to the complexity of the ubiquitination reaction and its outcomes. However, significant advances have been made in recent years in understanding the molecular nature of the ubiquitination system and the vast variety of cellular signals that it produces. Additionally, improvement of screening methods, both in vitro and in silico, have led to the discovery of a number of compounds targeting components of the ubiquitin proteasome system, and some of these have now entered clinical trials. Here, we discuss the current state of drug discovery targeting E3 ligases and the opportunities and challenges that it provides.
Collapse
Affiliation(s)
- Vivien Landré
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester, UK
| | - Sonia Melino
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester, UK. Biochemistry Laboratory, IDI-IRCCS, c/o Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
41
|
Rao CV, Sanghera S, Zhang Y, Biddick L, Reddy A, Lightfoot S, Dai W, Yamada HY. Antagonizing pathways leading to differential dynamics in colon carcinogenesis in Shugoshin1 (Sgo1)-haploinsufficient chromosome instability model. Mol Carcinog 2015; 55:600-10. [PMID: 25773652 DOI: 10.1002/mc.22306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/21/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022]
Abstract
Colon cancer is the second most lethal cancer. It is predicted to claim 50,310 lives in 2014. Chromosome Instability (CIN) is observed in 80-90% of colon cancers, and is thought to contribute to colon cancer progression and recurrence. However, there are no animal models of CIN that have been validated for studies of colon cancer development or drug testing. In this study, we sought to validate a mitotic error-induced CIN model mouse, the Shugoshin1 (Sgo1) haploinsufficient mouse, as a colon cancer study model. Wild-type and Sgo1(-/+) mice were treated with the colonic carcinogen, azoxymethane (AOM). We tracked colon tumor development 12, 24, and 36 wk after treatment to assess progression of colon tumorigenesis. Initially, more precancerous lesions, Aberrant Crypt Foci (ACF), developed in Sgo1(-/+) mice. However, the ACF did not develop straightforwardly into larger tumors. At the 36-wk endpoint, the number of gross tumors in Sgo1(-/+) mice was no different from that in wild-type controls. However, Copy Number Variation (CNV) analysis indicated that fully developed colon tumor in Sgo1(-/+) mice carried 13.75 times more CNV. Immunohistological analyses indicated that Sgo1(-/+) mice differentially expressed IL-6, Bcl2, and p16(INK4A) . We propose that formation of ACF in Sgo1(-/+) mice is facilitated by the IL6-STAT3-SOCS3 oncogenic pathway and by the Bcl2-anti-apoptotic pathway, yet further development of the ACF to tumors is inhibited by the p16(INK4A) tumor suppressor pathway. Manipulating these pathways would be beneficial for inhibiting development of colon cancer with CIN.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, Hematology/Oncology Section, Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma
| | - Saira Sanghera
- College of Arts and Sciences, Baylor University, Waco, Texas
| | - Yuting Zhang
- Department of Medicine, Hematology/Oncology Section, Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma
| | - Laura Biddick
- Department of Medicine, Hematology/Oncology Section, Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma
| | - Arun Reddy
- Department of Medicine, Hematology/Oncology Section, Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma
| | - Stan Lightfoot
- Department of Medicine, Hematology/Oncology Section, Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Hiroshi Y Yamada
- Department of Medicine, Hematology/Oncology Section, Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma
| |
Collapse
|
42
|
Inhibitor of Aurora Kinase B Induces Differentially Cell Death and Polyploidy via DNA Damage Response Pathways in Neurological Malignancy: Shedding New Light on the Challenge of Resistance to AZD1152-HQPA. Mol Neurobiol 2015; 53:1808-1823. [DOI: 10.1007/s12035-015-9139-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
43
|
Ayroldi E, Marchetti C, Riccardi C. The novel partnership of L-GILZ and p53: a new affair in cancer? Mol Cell Oncol 2014; 2:e975087. [PMID: 27308427 PMCID: PMC4905020 DOI: 10.4161/23723556.2014.975087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 01/18/2023]
Abstract
A recent report from our laboratory reveals how long glucocorticoid-induced leucine zipper (L-Gilz) protein binds to p53 and mouse double minute 2 homolog (Mdm2), thus dissociating the p53/Mdm2 complex and activating p53 with subsequent activation of downstream genes p21 and p53 upregulated modulator of apoptosis (Puma). p53 activation appears to be the mechanism by which both basal and glucocorticoid (GC)-induced L-Gilz inhibits proliferation and induces antioncogenic activity in human cancer.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department Medicine; Section of Pharmacology; University of Perugia; Medical School ; Perugia, Italy
| | - Cristina Marchetti
- Department Medicine; Section of Pharmacology; University of Perugia; Medical School ; Perugia, Italy
| | - Carlo Riccardi
- Department Medicine; Section of Pharmacology; University of Perugia; Medical School ; Perugia, Italy
| |
Collapse
|
44
|
Varetti G, Pellman D, Gordon DJ. Aurea mediocritas: the importance of a balanced genome. Cold Spring Harb Perspect Biol 2014; 6:a015842. [PMID: 25237130 DOI: 10.1101/cshperspect.a015842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aneuploidy, defined as an abnormal number of chromosomes, is a hallmark of cancer. Paradoxically, aneuploidy generally has a negative impact on cell growth and fitness in nontransformed cells. In this work, we review recent progress in identifying how aneuploidy leads to genomic and chromosomal instability, how cells can adapt to the deleterious effects of aneuploidy, and how aneuploidy contributes to tumorigenesis in different genetic contexts. Finally, we also discuss how aneuploidy might be a target for anticancer therapies.
Collapse
Affiliation(s)
- Gianluca Varetti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789
| | - David J Gordon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
45
|
LEE SANGHAK, NAM JAEKOOK, PARK JONGKOOK, LEE JOOHO, MIN DOSIK, KUH HYOJEONG. Differential protein expression and novel biomarkers related to 5-FU resistance in a 3D colorectal adenocarcinoma model. Oncol Rep 2014; 32:1427-34. [DOI: 10.3892/or.2014.3337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/04/2014] [Indexed: 11/05/2022] Open
|
46
|
Association of p73 G4C14-to-A4T14 polymorphism with lung cancer risk. Tumour Biol 2014; 35:9311-6. [DOI: 10.1007/s13277-014-2061-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/06/2014] [Indexed: 01/19/2023] Open
|
47
|
miR-16 and miR-26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis 2013; 4:e953. [PMID: 24336073 PMCID: PMC3877554 DOI: 10.1038/cddis.2013.483] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023]
Abstract
The tumour suppressor p53 is a crucial regulator of cell cycle arrest and apoptosis by acting as a transcription factor to regulate a variety of genes. At least in part, this control is exerted by p53 via regulating expression of numerous microRNAs. We identified two abundantly expressed microRNAs, miR-16 and miR-26a, whose expression is regulated by p53 during the checkpoint arrest induced by the genotoxic drug, doxorubicin. Importantly, among the targets of these miRs are two critical checkpoint kinases, Chk1 and Wee1. The p53-dependent augmentation of miR-16 and miR-26a expression levels led to the cell cycle arrest of tumour cells in G1/S and increased apoptosis. Strikingly, the bioinformatics analysis of survival times for patients with breast and prostate cancers has revealed that co-expression of mir-16 and miR-26a correlated with a better survival outcome. Collectively, our data provide a novel mechanism whereby p53 represses Chk1 and Wee1 expression, at least partially, via upregulation of miR-16 and miR-26a and thus sensitizes tumour cells to genotoxic therapies.
Collapse
|
48
|
Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ, Melino G. p73 regulates serine biosynthesis in cancer. Oncogene 2013; 33:5039-46. [DOI: 10.1038/onc.2013.456] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
|
49
|
van Oers JMM, Edwards Y, Chahwan R, Zhang W, Smith C, Pechuan X, Schaetzlein S, Jin B, Wang Y, Bergman A, Scharff MD, Edelmann W. The MutSβ complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double-strand break repair and mismatch repair. Oncogene 2013; 33:3939-46. [PMID: 24013230 DOI: 10.1038/onc.2013.365] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/19/2013] [Accepted: 07/30/2013] [Indexed: 01/10/2023]
Abstract
Loss of the DNA mismatch repair (MMR) protein MSH3 leads to the development of a variety of tumors in mice without significantly affecting survival rates, suggesting a modulating role for the MutSβ (MSH2-MSH3) complex in late-onset tumorigenesis. To better study the role of MSH3 in tumor progression, we crossed Msh3(-/-) mice onto a tumor predisposing p53-deficient background. Survival of Msh3/p53 mice was not reduced compared with p53 single mutant mice; however, the tumor spectrum changed significantly from lymphoma to sarcoma, indicating MSH3 as a potent modulator of p53-driven tumorigenesis. Interestingly, Msh3(-/-) mouse embryonic fibroblasts displayed increased chromatid breaks and persistence of γH2AX foci following ionizing radiation, indicating a defect in DNA double-strand break repair (DSBR). Msh3/p53 tumors showed increased loss of heterozygosity, elevated genome-wide copy-number variation and a moderate microsatellite instability phenotype compared with Msh2/p53 tumors, revealing that MSH2-MSH3 suppresses tumorigenesis by maintaining chromosomal stability. Our results show that the MSH2-MSH3 complex is important for the suppression of late-onset tumors due to its roles in DNA DSBR as well as in DNA MMR. Further, they demonstrate that MSH2-MSH3 suppresses chromosomal instability and modulates the tumor spectrum in p53-deficient tumorigenesis and possibly has a role in other chromosomally unstable tumors as well.
Collapse
Affiliation(s)
- J M M van Oers
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Y Edwards
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Chahwan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Zhang
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - C Smith
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - X Pechuan
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S Schaetzlein
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - B Jin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Y Wang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
50
|
Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Molecular dynamics of the full-length p53 monomer. Cell Cycle 2013; 12:3098-108. [PMID: 23974096 DOI: 10.4161/cc.26162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.
Collapse
|