1
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Stegmann F, Diersing C, Lepenies B. Legionella pneumophila modulates macrophage functions through epigenetic reprogramming via the C-type lectin receptor Mincle. iScience 2024; 27:110700. [PMID: 39252966 PMCID: PMC11382120 DOI: 10.1016/j.isci.2024.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Legionella pneumophila is a pathogen which can lead to a severe form of pneumonia in humans known as Legionnaires disease after replication in alveolar macrophages. Viable L. pneumophila actively secrete effector molecules to modulate the host's immune response. Here, we report that L. pneumophila-derived factors reprogram macrophages into a tolerogenic state, a process to which the C-type lectin receptor Mincle (CLEC4E) markedly contributes. The underlying epigenetic state is characterized by increases of the closing mark H3K9me3 and decreases of the opening mark H3K4me3, subsequently leading to the reduced secretion of the cytokines TNF, IL-6, IL-12, the production of reactive oxygen species, and cell-surface expression of MHC-II and CD80 upon re-stimulation. In summary, these findings provide important implications for our understanding of Legionellosis and the contribution of Mincle to reprogramming of macrophages by L. pneumophila.
Collapse
Affiliation(s)
- Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Christina Diersing
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| |
Collapse
|
3
|
Pastwińska J, Karwaciak I, Karaś K, Sałkowska A, Chałaśkiewicz K, Strapagiel D, Sobalska-Kwapis M, Dastych J, Ratajewski M. α-Hemolysin from Staphylococcus aureus Changes the Epigenetic Landscape of Th17 Cells. Immunohorizons 2024; 8:606-621. [PMID: 39240270 PMCID: PMC11447695 DOI: 10.4049/immunohorizons.2400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The human body harbors a substantial population of bacteria, which may outnumber host cells. Thus, there are multiple interactions between both cell types. Given the common presence of Staphylococcus aureus in the human body and the role of Th17 cells in controlling this pathogen on mucous membranes, we sought to investigate the effect of α-hemolysin, which is produced by this bacterium, on differentiating Th17 cells. RNA sequencing analysis revealed that α-hemolysin influences the expression of signature genes for Th17 cells as well as genes involved in epigenetic regulation. We observed alterations in various histone marks and genome methylation levels via whole-genome bisulfite sequencing. Our findings underscore how bacterial proteins can significantly influence the transcriptome, epigenome, and phenotype of human Th17 cells, highlighting the intricate and complex nature of the interaction between immune cells and the microbiota.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
4
|
Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. Legionella pneumophila-mediated host posttranslational modifications. J Mol Cell Biol 2023; 15:mjad032. [PMID: 37156500 PMCID: PMC10720952 DOI: 10.1093/jmcb/mjad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium ubiquitously present in freshwater environments and causes a serious type of pneumonia called Legionnaires' disease. During infections, L. pneumophila releases over 300 effector proteins into host cells through an Icm/Dot type IV secretion system to manipulate the host defense system for survival within the host. Notably, certain effector proteins mediate posttranslational modifications (PTMs), serving as useful approaches exploited by L. pneumophila to modify host proteins. Some effectors catalyze the addition of host protein PTMs, while others mediate the removal of PTMs from host proteins. In this review, we summarize L. pneumophila effector-mediated PTMs of host proteins, including phosphorylation, ubiquitination, glycosylation, AMPylation, phosphocholination, methylation, and ADP-ribosylation, as well as dephosphorylation, deubiquitination, deAMPylation, deADP-ribosylation, dephosphocholination, and delipidation. We describe their molecular mechanisms and biological functions in the regulation of bacterial growth and Legionella-containing vacuole biosynthesis and in the disruption of host immune and defense machinery.
Collapse
Affiliation(s)
- Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
5
|
Rolando M, Wah Chung IY, Xu C, Gomez-Valero L, England P, Cygler M, Buchrieser C. The SET and ankyrin domains of the secreted Legionella pneumophila histone methyltransferase work together to modify host chromatin. mBio 2023; 14:e0165523. [PMID: 37795993 PMCID: PMC10653858 DOI: 10.1128/mbio.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Legionella pneumophila is an intracellular bacterium responsible of Legionnaires' disease, a severe pneumonia that is often fatal when not treated promptly. The pathogen's ability to efficiently colonize the host resides in its ability to replicate intracellularly. Essential for intracellular replication is translocation of many different protein effectors via a specialized secretion system. One of them, called RomA, binds and directly modifies the host chromatin at a unique site (tri-methylation of lysine 14 of histone H3 [H3K14me]). However, the molecular mechanisms of binding are not known. Here, we resolve this question through structural characterization of RomA together with the H3 peptide. We specifically reveal an active role of the ankyrin repeats located in its C-terminal in the interaction with the histone H3 tail. Indeed, without the ankyrin domains, RomA loses its ability to act as histone methyltransferase. These results discover the molecular mechanisms by which a bacterial histone methyltransferase that is conserved in L. pneumophila strains acts to modify chromatin.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, Paris, France
| | - Ivy Yeuk Wah Chung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Caishuang Xu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, Paris, France
| | - Patrick England
- Institut Pasteur, Université de Paris, Plateforme de Biophysique Moléculaire, Paris, France
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires, Paris, France
| |
Collapse
|
6
|
Rolando M, Silvestre CD, Gomez-Valero L, Buchrieser C. Bacterial methyltransferases: from targeting bacterial genomes to host epigenetics. MICROLIFE 2022; 3:uqac014. [PMID: 37223361 PMCID: PMC10117894 DOI: 10.1093/femsml/uqac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 05/25/2023]
Abstract
Methyltransferase (MTases) enzymes transfer methyl groups particularly on proteins and nucleotides, thereby participating in controlling the epigenetic information in both prokaryotes and eukaryotes. The concept of epigenetic regulation by DNA methylation has been extensively described for eukaryotes. However, recent studies have extended this concept to bacteria showing that DNA methylation can also exert epigenetic control on bacterial phenotypes. Indeed, the addition of epigenetic information to nucleotide sequences confers adaptive traits including virulence-related characteristics to bacterial cells. In eukaryotes, an additional layer of epigenetic regulation is obtained by post-translational modifications of histone proteins. Interestingly, in the last decades it was shown that bacterial MTases, besides playing an important role in epigenetic regulations at the microbe level by exerting an epigenetic control on their own gene expression, are also important players in host-microbe interactions. Indeed, secreted nucleomodulins, bacterial effectors that target the nucleus of infected cells, have been shown to directly modify the epigenetic landscape of the host. A subclass of nucleomodulins encodes MTase activities, targeting both host DNA and histone proteins, leading to important transcriptional changes in the host cell. In this review, we will focus on lysine and arginine MTases of bacteria and their hosts. The identification and characterization of these enzymes will help to fight bacterial pathogens as they may emerge as promising targets for the development of novel epigenetic inhibitors in both bacteria and the host cells they infect.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Cristina Di Silvestre
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
7
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
8
|
Ectopic Expression of Human Thymosin β4 Confers Resistance to Legionella pneumophila during Pulmonary and Systemic Infection in Mice. Infect Immun 2021; 89:IAI.00735-20. [PMID: 33468581 DOI: 10.1128/iai.00735-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Thymosin beta-4 (Tβ4) is an actin-sequestering peptide that plays important roles in regeneration and remodeling of injured tissues. However, its function in a naturally occurring pathogenic bacterial infection model has remained elusive. We adopted Tβ4-overexpressing transgenic (Tg) mice to investigate the role of Tβ4 in acute pulmonary infection and systemic sepsis caused by Legionella pneumophila Upon infection, Tβ4-Tg mice demonstrated significantly lower bacterial loads in the lung, less hyaline membranes and necrotic abscess, with lower interstitial infiltration of neutrophils, CD4+, and CD8+ T cells. Bronchoalveolar lavage fluid of Tβ4-Tg mice possessed higher bactericidal activity against exogenously added L. pneumophila, suggesting that constitutive expression of Tβ4 could efficiently control L. pneumophila Furthermore, qPCR analysis of lung homogenates demonstrated significant reduction of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), which primarily originate from lung macrophages, in Tβ4-Tg mice after pulmonary infection. Upon L. pneumophila challenge of bone marrow-derived macrophages (BMDM) in vitro, secretion of IL-1β and TNF-α proteins was also reduced in Tβ4-Tg macrophages, without affecting their survival. The anti-inflammatory effects of BMDM in Tβ4-Tg mice on each cytokine were affected when triggering with tlr2, tlr4, tlr5, or tlr9 ligands, suggesting that anti-inflammatory effects of Tβ4 are likely mediated by the reduced activation of Toll-like receptors (TLR). Finally, Tβ4-Tg mice in a systemic sepsis model were protected from L. pneumophila-induced lethality compared to wild-type controls. Therefore, Tβ4 confers effective resistance against L. pneumophila via two pathways, a bactericidal and an anti-inflammatory pathway, which can be harnessed to treat acute pneumonia and septic conditions caused by L. pneumophila in humans.
Collapse
|
9
|
Hanford HE, Von Dwingelo J, Abu Kwaik Y. Bacterial nucleomodulins: A coevolutionary adaptation to the eukaryotic command center. PLoS Pathog 2021; 17:e1009184. [PMID: 33476322 PMCID: PMC7819608 DOI: 10.1371/journal.ppat.1009184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Through long-term interactions with their hosts, bacterial pathogens have evolved unique arsenals of effector proteins that interact with specific host targets and reprogram the host cell into a permissive niche for pathogen proliferation. The targeting of effector proteins into the host cell nucleus for modulation of nuclear processes is an emerging theme among bacterial pathogens. These unique pathogen effector proteins have been termed in recent years as "nucleomodulins." The first nucleomodulins were discovered in the phytopathogens Agrobacterium and Xanthomonas, where their nucleomodulins functioned as eukaryotic transcription factors or integrated themselves into host cell DNA to promote tumor induction, respectively. Numerous nucleomodulins were recently identified in mammalian pathogens. Bacterial nucleomodulins are an emerging family of pathogen effector proteins that evolved to target specific components of the host cell command center through various mechanisms. These mechanisms include: chromatin dynamics, histone modification, DNA methylation, RNA splicing, DNA replication, cell cycle, and cell signaling pathways. Nucleomodulins may induce short- or long-term epigenetic modifications of the host cell. In this extensive review, we discuss the current knowledge of nucleomodulins from plant and mammalian pathogens. While many nucleomodulins are already identified, continued research is instrumental in understanding their mechanisms of action and the role they play during the progression of pathogenesis. The continued study of nucleomodulins will enhance our knowledge of their effects on nuclear chromatin dynamics, protein homeostasis, transcriptional landscapes, and the overall host cell epigenome.
Collapse
Affiliation(s)
- Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Juanita Von Dwingelo
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
- Center for Predicative Medicine, College of Medicine, University of Louisville, Kentucky, United States of America
| |
Collapse
|
10
|
Abstract
Through coevolution with host cells, microorganisms have acquired mechanisms to avoid the detection by the host surveillance system and to use the cell's supplies to establish themselves. Indeed, certain pathogens have evolved proteins that imitate specific eukaryotic cell proteins, allowing them to manipulate host pathways, a phenomenon termed molecular mimicry. Bacterial "eukaryotic-like proteins" are a remarkable example of molecular mimicry. They are defined as proteins that strongly resemble eukaryotic proteins or that carry domains that are predominantly present in eukaryotes and that are generally absent from prokaryotes. The widest diversity of eukaryotic-like proteins known to date can be found in members of the bacterial genus Legionella, some of which cause a severe pneumonia in humans. The characterization of a number of these proteins shed light on their importance during infection. The subsequent identification of eukaryotic-like genes in the genomes of other amoeba-associated bacteria and bacterial symbionts suggested that eukaryotic-like proteins are a common means of bacterial evasion and communication, shaped by the continuous interactions between bacteria and their protozoan hosts. In this review, we discuss the concept of molecular mimicry using Legionella as an example and show that eukaryotic-like proteins effectively manipulate host cell pathways. The study of the function and evolution of such proteins is an exciting field of research that is leading us toward a better understanding of the complex world of bacterium-host interactions. Ultimately, this knowledge will teach us how host pathways are manipulated and how infections may possibly be tackled.
Collapse
|
11
|
The Legionella pneumophila Metaeffector Lpg2505 (MesI) Regulates SidI-Mediated Translation Inhibition and Novel Glycosyl Hydrolase Activity. Infect Immun 2020; 88:IAI.00853-19. [PMID: 32122942 DOI: 10.1128/iai.00853-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Legionella pneumophila, the etiological agent of Legionnaires' disease, employs an arsenal of hundreds of Dot/Icm-translocated effector proteins to facilitate replication within eukaryotic phagocytes. Several effectors, called metaeffectors, function to regulate the activity of other Dot/Icm-translocated effectors during infection. The metaeffector Lpg2505 is essential for L. pneumophila intracellular replication only when its cognate effector, SidI, is present. SidI is a cytotoxic effector that interacts with the host translation factor eEF1A and potently inhibits eukaryotic protein translation by an unknown mechanism. Here, we evaluated the impact of Lpg2505 on SidI-mediated phenotypes and investigated the mechanism of SidI function. We determined that Lpg2505 binds with nanomolar affinity to SidI and suppresses SidI-mediated inhibition of protein translation. SidI binding to eEF1A and Lpg2505 is not mutually exclusive, and the proteins bind distinct regions of SidI. We also discovered that SidI possesses GDP-dependent glycosyl hydrolase activity and that this activity is regulated by Lpg2505. We have therefore renamed Lpg2505 MesI (metaeffector of SidI). This work reveals novel enzymatic activity for SidI and provides insight into how intracellular replication of L. pneumophila is regulated by a metaeffector.
Collapse
|
12
|
Tan X, Ravasio A, Ong HT, Wu J, Hew CL. White spot syndrome viral protein VP9 alters the cellular higher-order chromatin structure. FASEB Bioadv 2020; 2:264-279. [PMID: 32259052 PMCID: PMC7133739 DOI: 10.1096/fba.2019-00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 10/26/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Viral protein 9 (VP9) is a non-structural protein of white spot syndrome virus (WSSV) highly expressed during the early stage of infection. The crystal structure of VP9 suggests that the polymers of VP9 dimers resemble a DNA mimic, but its function remains elusive. In this study, we demonstrated that VP9 impedes histones binding to DNA via single-molecule manipulation. We established VP9 expression in HeLa cells due to the lack of a WSSV-susceptible cell line, and observed abundant VP9 in the nucleus, which mirrors its distribution in the hemocytes of WSSV-infected shrimp. VP9 expression increased the dynamics and rotational mobility of histones in stable H3-GFP HeLa cells as revealed by fluorescent recovery after photobleaching and fluorescence anisotropy imaging, which suggested a loosened compaction of chromatin structure. Successive salt fractionation showed that a prominent population of histones was solubilized in high salt concentrations, which implies alterations of bulk chromatin structure. Southern blotting identified that VP9 alters juxtacentromeric chromatin structures to be more accessible to micrococcal nuclease digestion. RNA microarray revealed that VP9 expression also leads to significant changes of cellular gene expression. Our findings provide evidence that VP9 alters the cellular higher-order chromatin structure, uncovering a potential strategy adopted by WSSV to facilitate its replication.
Collapse
Affiliation(s)
- Xi Tan
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
- Present address:
School of Basic Medical SciencesGuizhou University of Traditional Chinese MedicineGuiyangGuizhou ProvinceChina
| | - Andrea Ravasio
- Institute for Biological and Medical EngineeringSchools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Hui T. Ong
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
| | - Jinlu Wu
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Choy L. Hew
- Mechanobiology InstituteNational University of SingaporeSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
13
|
Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins (Basel) 2020; 12:toxins12040220. [PMID: 32244550 PMCID: PMC7232420 DOI: 10.3390/toxins12040220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called “nucleomodulins”. In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.
Collapse
|
14
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
15
|
Palusinska-Szysz M, Luchowski R, Gruszecki WI, Choma A, Szuster-Ciesielska A, Lück C, Petzold M, Sroka-Bartnicka A, Kowalczyk B. The Role of Legionella pneumophila Serogroup 1 Lipopolysaccharide in Host-Pathogen Interaction. Front Microbiol 2019; 10:2890. [PMID: 31921066 PMCID: PMC6927915 DOI: 10.3389/fmicb.2019.02890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
The Legionella pneumophila TF3/1 mutant of the Corby strain, which possesses a point mutation in the active site of the O-acetyltransferase, synthesized the polysaccharide chain with a reduced degree of substitution with O-acetyl groups. The mutant did not produce a high-molecular-weight lipopolysaccharide (LPS) fraction above 12 kDa. The disturbances in LPS synthesis have an effect on the composition of other macromolecules (lipids and proteins), as indicated by differences in the infrared absorption spectra between the L. pneumophila Corby strain and its TF3/1 mutant. The wild-type strain contained less N+-CH3 and C-N groups as well as more CH3 groups than the mutant. The fatty acid composition showed that the wild type strain synthesized more branched acyl residues (a15:0, i16:0, and a17:0), a less unsaturated acid (16:1), and a straight-chain acid (18:0) than the mutant. The mutant synthesized approximately twice more a long-chain fatty acid (20:0) than the wild type. The main differences in the phospholipids between both strains were found in the classes of phosphatidylcholines and phosphatidylglycerols (PG). Substantial differences in the cell surface topography of these bacteria and their nanomechanical properties were shown by atomic force microscopy (AFM). The wild type strain had no undulated surface and produced numerous vesicles. In the case of the mutant type, the vesicles were not numerous, but there were grooves on the cell surface. The average roughness of the cell surface of the mutant was approximately twofold higher than in the wild-type strain. In turn, the wild-type strain exhibited much better adhesive properties than the mutant. The kinetic study of the interaction between the L. pneumophila strains and Acanthamoeba castellanii monitored by Förster resonance energy transfer revealed a pronounced difference, i.e., almost instantaneous and highly efficient binding of the L. pneumophila Corby strain to the amoeba surface, followed by penetration into the amoeba cells. This process was clearly not as efficient in the case of the mutant. The results point to LPS and, in particular, to the length of the polysaccharide fraction as an important L. pneumophila determinant involved in the process of adhesion to the host cell.
Collapse
Affiliation(s)
- Marta Palusinska-Szysz
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Rafal Luchowski
- Department of Biophysics, Faculty of Mathematics, Physics and Computer Science, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Wieslaw I Gruszecki
- Department of Biophysics, Faculty of Mathematics, Physics and Computer Science, Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Adam Choma
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Christian Lück
- National Reference Laboratory for Legionella, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Markus Petzold
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Sroka-Bartnicka
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.,Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Bozena Kowalczyk
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
16
|
Gomez-Valero L, Buchrieser C. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Microbes Infect 2019; 21:230-236. [PMID: 31252216 DOI: 10.1016/j.micinf.2019.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
Abstract
Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia called Legionnaires' disease that is often fatal when not promptly diagnosed and treated. Legionella parasitize aquatic protozoa with which it co-evolved over an evolutionary long time. The close relationship between hosts and pathogens, their co-evolution, led to molecular interactions such as the exchange of genetic material through horizontal gene transfer (HGT). Genome sequencing of L. pneumophila and of the entire genus Legionella that comprises over 60 species revealed that Legionellae have co-opted genes and thus cellular functions from their eukaryotic hosts to a surprisingly high extent. Acquisition and loss of these eukaryotic-like genes and domains is an on-going process underlining the highly dynamic nature of the Legionella genomes. Although the large amount and diversity of HGT in Legionella seems to be unique in the prokaryotic world the analyses of more and more genomes from environmental organisms and symbionts of amoeba revealed that such genetic exchanges occur among all amoeba associated bacteria and also among the different microorganisms that infect amoeba. This dynamic reshuffling and gene-acquisition has led to the emergence of Legionella as human pathogen and may lead to the emergence of new human pathogens from the environment.
Collapse
Affiliation(s)
- Laure Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France.
| |
Collapse
|
17
|
Gomez-Valero L, Buchrieser C. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Genes Immun 2019; 20:394-402. [PMID: 31053752 DOI: 10.1038/s41435-019-0074-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia called Legionnaires' disease that is often fatal when not promptly diagnosed and treated. However, L. pneumophila is mainly an environmental pathogen of protozoa. This bacterium parasitizes free-living amoeba and other aquatic protozoa with which it co-evolved over an evolutionary long time. Due to the close relationship between hosts and pathogens, their co-evolution leads to molecular interactions such as the exchange of genetic material through horizontal gene transfer (HGT). Those genes that confer an advantage to the bacteria were fixed in their genomes and help these pathogens to subvert host functions to their advantage. Genome sequencing of L. pneumophila and recently of the entire genus Legionella that comprises over 60 species revealed that Legionellae have co-opted genes and thus cellular functions from their eukaryotic hosts to a surprisingly high extent never observed before for an prokaryotic organism. Acquisition and loss of these eukaryotic-like genes and eukaryotic domains is an ongoing process underlining the highly dynamic nature of the Legionella genomes. Although the large amount and diversity of HGT that occurred between Legionella and their protozoan hosts seems to be unique in the prokaryotic world, the analyses of more and more genomes from environmental organisms and symbionts of amoeba revealed that such genetic exchanges occur among all amoeba-associated bacteria and also among the different microorganisms that infect amoeba such as viruses. This dynamic reshuffling and gene-acquisition has led to the emergence of major human pathogens such as Legionella and may lead to the emergence of new human pathogens from the environment.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, 75724, Paris, France.
| |
Collapse
|
18
|
New targets for HIV drug discovery. Drug Discov Today 2019; 24:1139-1147. [PMID: 30885676 DOI: 10.1016/j.drudis.2019.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.
Collapse
|
19
|
Legionella pneumophila translocated translation inhibitors are required for bacterial-induced host cell cycle arrest. Proc Natl Acad Sci U S A 2019; 116:3221-3228. [PMID: 30718423 PMCID: PMC6386690 DOI: 10.1073/pnas.1820093116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cell cycle machinery controls diverse cellular pathways and is tightly regulated. Misregulation of cell division plays a central role in the pathogenesis of many disease processes. Various microbial pathogens interfere with the cell cycle machinery to promote host cell colonization. Although cell cycle modulation is a common theme among pathogens, the role this interference plays in promoting diseases is unclear. Previously, we demonstrated that the G1 and G2/M phases of the host cell cycle are permissive for Legionella pneumophila replication, whereas S phase provides a toxic environment for bacterial replication. In this study, we show that L. pneumophila avoids host S phase by blocking host DNA synthesis and preventing cell cycle progression into S phase. Cell cycle arrest upon Legionella contact is dependent on the Icm/Dot secretion system. In particular, we found that cell cycle arrest is dependent on the intact enzymatic activity of translocated substrates that inhibits host translation. Moreover, we show that, early in infection, the presence of these translation inhibitors is crucial to induce the degradation of the master regulator cyclin D1. Our results demonstrate that the bacterial effectors that inhibit translation are associated with preventing entry of host cells into a phase associated with restriction of L. pneumophila Furthermore, control of cyclin D1 may be a common strategy used by intracellular pathogens to manipulate the host cell cycle and promote bacterial replication.
Collapse
|
20
|
Sorting of Phagocytic Cells Infected with Legionella pneumophila. Methods Mol Biol 2019; 1921:179-189. [PMID: 30694492 DOI: 10.1007/978-1-4939-9048-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The ability of Legionella pneumophila to colonize host cells and to form a replicative vacuole depends on its ability to counteract the host cell response by secreting more than 300 effectors. The host cell responds to this bacterial invasion with extensive intracellular signaling to counteract the replication of the pathogen. When studying L. pneumophila infection in vitro, only a small proportion of the cell lines or primary cells used to analyze the host response are infected; the study of such a mixed cell population leads to unprecise results. In order to study the multitude of pathogen-induced phenotypic changes occurring in the host cell, the separation of infected from uninfected cells is a top priority. Here we describe a highly efficient FACS-derived protocol to separate cells infected with a L. pneumophila strain encoding a fluorescent protein. Indeed, the highly infected, homogenous cell population obtained after sorting is the best possible starting point for the studies of infection-induced effects.
Collapse
|
21
|
Best AM, Abu Kwaik Y. Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila. Cell Microbiol 2018; 21:e12971. [PMID: 30370624 DOI: 10.1111/cmi.12971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
Collapse
Affiliation(s)
- Ashley M Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
22
|
Rüter C, Lubos ML, Norkowski S, Schmidt MA. All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. Int J Med Microbiol 2018; 308:872-881. [PMID: 29936031 DOI: 10.1016/j.ijmm.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
|
23
|
Schuelein R, Spencer H, Dagley LF, Li PF, Luo L, Stow JL, Abraham G, Naderer T, Gomez-Valero L, Buchrieser C, Sugimoto C, Yamagishi J, Webb AI, Pasricha S, Hartland EL. Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL. Cell Microbiol 2018; 20:e12852. [PMID: 29691989 DOI: 10.1111/cmi.12852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/24/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
The intracellular pathogen Legionella pneumophila influences numerous eukaryotic cellular processes through the Dot/Icm-dependent translocation of more than 300 effector proteins into the host cell. Although many translocated effectors localise to the Legionella replicative vacuole, other effectors can affect remote intracellular sites. Following infection, a subset of effector proteins localises to the nucleus where they subvert host cell transcriptional responses to infection. Here, we identified Lpw27461 (Lpp2587), Lpg2519 as a new nuclear-localised effector that we have termed SnpL. Upon ectopic expression or during L. pneumophila infection, SnpL showed strong nuclear localisation by immunofluorescence microscopy but was excluded from nucleoli. Using immunoprecipitation and mass spectrometry, we determined the host-binding partner of SnpL as the eukaryotic transcription elongation factor, Suppressor of Ty5 (SUPT5H)/Spt5. SUPT5H is an evolutionarily conserved component of the DRB sensitivity-inducing factor complex that regulates RNA Polymerase II dependent mRNA processing and transcription elongation. Protein interaction studies showed that SnpL bound to the central Kyprides, Ouzounis, Woese motif region of SUPT5H. Ectopic expression of SnpL led to massive upregulation of host gene expression and macrophage cell death. The activity of SnpL further highlights the ability of L. pneumophila to control fundamental eukaryotic processes such as transcription that, in the case of SnpL, leads to global upregulation of host gene expression.
Collapse
Affiliation(s)
- Ralf Schuelein
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hugh Spencer
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Peng Fei Li
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Lin Luo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Gilu Abraham
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Thomas Naderer
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Chihiro Sugimoto
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junya Yamagishi
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Shivani Pasricha
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
24
|
Schuhmacher MK, Rolando M, Bröhm A, Weirich S, Kudithipudi S, Buchrieser C, Jeltsch A. The Legionella pneumophila Methyltransferase RomA Methylates Also Non-histone Proteins during Infection. J Mol Biol 2018; 430:1912-1925. [PMID: 29733858 DOI: 10.1016/j.jmb.2018.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
RomA is a SET-domain containing protein lysine methyltransferase encoded by the Gram-negative bacterium Legionella pneumophila. It is exported into human host cells during infection and has been previously shown to methylate histone H3 at lysine 14 [Rolando et al. (2013), Cell Host Microbe, 13, 395-405]. Here, we investigated the substrate specificity of RomA on peptide arrays showing that it mainly recognizes a G-K-X-(PA) sequence embedded in a basic amino acid sequence context. Based on the specificity profile, we searched for possible additional RomA substrates in the human proteome and identified 34 novel peptide substrates. For nine of these, the corresponding full-length protein or protein domains could be cloned and purified. Using radioactive and antibody-based methylation assays, we showed that seven of them are methylated by RomA, four of them strongly, one moderately, and two weakly. Mutagenesis confirmed for the seven methylated proteins that methylation occurs at target lysine residues fitting to the specificity profile. Methylation of one novel substrate (AROS) was investigated in HEK293 cells overexpressing RomA and during infection with L. pneumophila. Methylation could be detected in both conditions, confirming that RomA methylates non-histone proteins in human cells. Our data show that the bacterial methyltransferase RomA methylates also human non-histone proteins suggesting a multifaceted role in the infection process.
Collapse
Affiliation(s)
- Maren Kirstin Schuhmacher
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724 Paris, France; CNRS UMR 3525, 75724 Paris, France
| | - Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Srikanth Kudithipudi
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724 Paris, France; CNRS UMR 3525, 75724 Paris, France
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
25
|
Genome Sequencing Links Persistent Outbreak of Legionellosis in Sydney (New South Wales, Australia) to an Emerging Clone of Legionella pneumophila Sequence Type 211. Appl Environ Microbiol 2018; 84:AEM.02020-17. [PMID: 29247056 DOI: 10.1128/aem.02020-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
The city of Sydney, Australia, experienced a persistent outbreak of Legionella pneumophila serogroup 1 (Lp1) pneumonia in 2016. To elucidate the source and guide public health actions, the genomes of clinical and environmental Lp1 isolates recovered over 7 weeks were examined. A total of 48 isolates from human cases and cooling towers were sequenced and compared using single-nucleotide polymorphism (SNP)-based core-genome multilocus sequencing typing (MLST) and pangenome approaches. All three methods confirmed phylogenetic relatedness between isolates associated with outbreaks in the Central Business District (CBD) in March and May and those in suburb 1. These isolates were designated the "main cluster" and consisted of isolates from two patients from the CBD March outbreak, one patient and one tower isolate from suburb 1, and isolates from two cooling towers and three patients from the CBD May outbreak. All main cluster isolates were sequence type 211 (ST211), which previously has only been reported in Canada. Significantly, pangenome analysis identified mobile genetic elements containing a unique type IV A F-type secretion system (T4ASS), which was specific to the main cluster, and cocirculating clinical strains, suggesting a potential mechanism for increased fitness and persistence of the outbreak clone. Genome sequencing enabled linking of the geographically dispersed environmental sources of infection among the spatially and temporally coinciding cases of legionellosis in a highly populated urban setting. The discovery of a unique T4ASS emphasizes the role of genome recombination in the emergence of successful Lp1 clones.IMPORTANCE A new emerging clone has been responsible for a prolonged legionellosis outbreak in Sydney, Australia. The use of whole-genome sequencing linked two outbreaks thought to be unrelated and confirmed the outliers. These findings led to the resampling and subsequent identification of the source, guiding public health actions and bringing the outbreak to a close. Significantly, the outbreak clone was identified as sequence type 211 (ST211). Our study reports this ST in the Southern Hemisphere and presents a description of ST211 genomes from both clinical and environmental isolates. A unique mobile genetic element containing a type IV secretion system was identified in Lp1 ST211 isolates linked to the main cluster and Lp1 ST42 isolates that were cocirculating at the time of the outbreak.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Legionella pneumophila is a facultative intracellular pathogen and an important cause of community-acquired and nosocomial pneumonia. This review focuses on the latest literature examining Legionella's virulence strategies and the mammalian host response. RECENT FINDINGS Recent studies identify novel virulence strategies used by L. pneumophila and new aspects of the host immune response to this pathogen. Legionella prevents acidification of the phagosome by recruiting Rab1, a host protein. Legionella also blocks a conserved endoplasmic reticulum stress response. To access iron from host stores, L. pneumophila upregulates more regions allowing vacuolar colocalization N. In response to Legionella, the host cell may activate caspase-1, caspase-11 (mice) or caspase-4 (humans). Caspase-3 and apoptosis are activated by a secreted, bacterial effector. Infected cells send signals to their uninfected neighbors, allowing the elaboration of inflammatory cytokines in trans. Antibody subclasses provide robust protection against Legionella. SUMMARY L. pneumophila is a significant human pathogen that lives in amoebae in the environment but may opportunistically infect the alveolar macrophage. To maintain its intracellular lifestyle, Legionella extracts essential iron from the cell, blocks inflammatory responses and manipulates trafficking to avoid fusion with the lysosome. The mammalian host has counter strategies, which include the release of proinflammatory cytokines, the activation of caspases and antibody-mediated immunity.
Collapse
|
27
|
Gradowski M, Pawłowski K. The Legionella pneumophila effector Lpg1137 is a homologue of mitochondrial SLC25 carrier proteins, not of known serine proteases. PeerJ 2017; 5:e3849. [PMID: 28966893 PMCID: PMC5621508 DOI: 10.7717/peerj.3849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Many bacterial effector proteins that are delivered to host cells during infection are enzymes targeting host cell signalling. Recently, Legionella pneumophila effector Lpg1137 was experimentally characterised as a serine protease that cleaves human syntaxin 17. We present strong bioinformatic evidence that Lpg1137 is a homologue of mitochondrial carrier proteins and is not related to known serine proteases. We also discuss how this finding can be reconciled with the apparently contradictory experimental results.
Collapse
Affiliation(s)
- Marcin Gradowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Guzmán-Herrador DL, Steiner S, Alperi A, González-Prieto C, Roy CR, Llosa M. DNA Delivery and Genomic Integration into Mammalian Target Cells through Type IV A and B Secretion Systems of Human Pathogens. Front Microbiol 2017; 8:1503. [PMID: 28878740 PMCID: PMC5572225 DOI: 10.3389/fmicb.2017.01503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
We explore the potential of bacterial secretion systems as tools for genomic modification of human cells. We previously showed that foreign DNA can be introduced into human cells through the Type IV A secretion system of the human pathogen Bartonella henselae. Moreover, the DNA is delivered covalently attached to the conjugative relaxase TrwC, which promotes its integration into the recipient genome. In this work, we report that this tool can be adapted to other target cells by using different relaxases and secretion systems. The promiscuous relaxase MobA from plasmid RSF1010 can be used to deliver DNA into human cells with higher efficiency than TrwC. MobA also promotes DNA integration, albeit at lower rates than TrwC. Notably, we report that DNA transfer to human cells can also take place through the Type IV secretion system of two intracellular human pathogens, Legionella pneumophila and Coxiella burnetii, which code for a distantly related Dot/Icm Type IV B secretion system. This suggests that DNA transfer could be an intrinsic ability of this family of secretion systems, expanding the range of target human cells. Further analysis of the DNA transfer process showed that recruitment of MobA by Dot/Icm was dependent on the IcmSW chaperone, which may explain the higher DNA transfer rates obtained. Finally, we observed that the presence of MobA negatively affected the intracellular replication of C. burnetii, suggesting an interference with Dot/Icm translocation of virulence factors.
Collapse
Affiliation(s)
- Dolores L. Guzmán-Herrador
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| | - Samuel Steiner
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New HavenCT, United States
| | - Anabel Alperi
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| | - Coral González-Prieto
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New HavenCT, United States
| | - Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, UC-CSIC-SODERCAN)Santander, Spain
| |
Collapse
|
29
|
|
30
|
Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System. J Bacteriol 2017; 199:JB.00690-16. [PMID: 27994017 DOI: 10.1128/jb.00690-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein.IMPORTANCELegionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyRLp) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyRLp expression is regulated remain elusive, this study shows that OxyRLp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa.
Collapse
|
31
|
Park RJ, Wang T, Koundakjian D, Hultquist JF, Lamothe-Molina P, Monel B, Schumann K, Yu H, Krupzcak KM, Garcia-Beltran W, Piechocka-Trocha A, Krogan NJ, Marson A, Sabatini DM, Lander ES, Hacohen N, Walker BD. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 2016; 49:193-203. [PMID: 27992415 DOI: 10.1038/ng.3741] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4+ T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention.
Collapse
Affiliation(s)
- Ryan J Park
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Tim Wang
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - Dylan Koundakjian
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, QB3, University of California at San Francisco (UCSF), San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Pedro Lamothe-Molina
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Blandine Monel
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathrin Schumann
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA
| | - Haiyan Yu
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Kevin M Krupzcak
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Wilfredo Garcia-Beltran
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, QB3, University of California at San Francisco (UCSF), San Francisco, California, USA.,Gladstone Institute of Virology and Immunology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, USA.,Diabetes Center, University of California at San Francisco, San Francisco, California, USA.,Department of Medicine, University of California at San Francisco, San Francisco, California, USA.,Innovative Genomics Initiative (IGI), University of California, Berkeley, Berkeley, California, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California, USA
| | - David M Sabatini
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
33
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
34
|
Du Bois I, Marsico A, Bertrams W, Schweiger MR, Caffrey BE, Sittka-Stark A, Eberhardt M, Vera J, Vingron M, Schmeck BT. Genome-wide Chromatin Profiling of Legionella pneumophila-Infected Human Macrophages Reveals Activation of the Probacterial Host Factor TNFAIP2. J Infect Dis 2016; 214:454-63. [PMID: 27130431 DOI: 10.1093/infdis/jiw171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/21/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Legionella pneumophila is a causative agent of severe pneumonia. Infection leads to a broad host cell response, as evident, for example, on the transcriptional level. Chromatin modifications, which control gene expression, play a central role in the transcriptional response to L. pneumophila METHODS We infected human-blood-derived macrophages (BDMs) with L. pneumophila and used chromatin immunoprecipitation followed by sequencing to screen for gene promoters with the activating histone 4 acetylation mark. RESULTS We found the promoter of tumor necrosis factor α-induced protein 2 (TNFAIP2) to be acetylated at histone H4. This factor has not been characterized in the pathology of L. pneumophila TNFAIP2 messenger RNA and protein were upregulated in response to L. pneumophila infection of human-BDMs and human alveolar epithelial (A549) cells. We showed that L. pneumophila-induced TNFAIP2 expression is dependent on the NF-κB transcription factor. Importantly, knock down of TNFAIP2 led to reduced intracellular replication of L. pneumophila Corby in A549 cells. CONCLUSIONS Taken together, genome-wide chromatin analysis of L. pneumophila-infected macrophages demonstrated induction of TNFAIP2, a NF-κB-dependent factor relevant for bacterial replication.
Collapse
Affiliation(s)
- Ilona Du Bois
- Institute for Lung Research/iLung Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics Free University, Berlin
| | - Wilhelm Bertrams
- Institute for Lung Research/iLung Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| | | | | | - Alexandra Sittka-Stark
- Institute for Lung Research/iLung Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital Erlangen, Germany
| | | | - Bernd T Schmeck
- Institute for Lung Research/iLung Department of Medicine, Pulmonary, and Critical Care Medicine, University Medical Center Marburg, Philipps-University Universities of Giessen and arburg Lung Centre, German Center for Lung Research
| |
Collapse
|
35
|
Tanner JR, Li L, Faucher SP, Brassinga AKC. The CpxRA two-component system contributes to Legionella pneumophila virulence. Mol Microbiol 2016; 100:1017-38. [PMID: 26934669 DOI: 10.1111/mmi.13365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
The bacterium Legionella pneumophila is capable of intracellular replication within freshwater protozoa as well as human macrophages, the latter of which results in the serious pneumonia Legionnaires' disease. A primary factor involved in these host cell interactions is the Dot/Icm Type IV secretion system responsible for translocating effector proteins needed to establish and maintain the bacterial replicative niche. Several regulatory factors have been identified to control the expression of the Dot/Icm system and effectors, one of which is the CpxRA two-component system, suggesting essentiality for virulence. In this study, we generated cpxR, cpxA and cpxRA in-frame null mutant strains to further delineate the role of the CpxRA system in bacterial survival and virulence. We found that cpxR is essential for intracellular replication within Acanthamoeba castellanii, but not in U937-derived macrophages. Transcriptome analysis revealed that CpxRA regulates a large number of virulence-associated proteins including Dot/Icm effectors as well as Type II secreted substrates. Furthermore, the cpxR and cpxRA mutant strains were more sodium resistant than the parental strain Lp02, and cpxRA expression reaches maximal levels during postexponential phase. Taken together, our findings suggest the CpxRA system is a key contributor to L. pneumophila virulence in protozoa via virulence factor regulation.
Collapse
Affiliation(s)
- Jennifer R Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Laam Li
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Sébastien P Faucher
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
36
|
Rolando M, Gomez-Valero L, Buchrieser C. Bacterial remodelling of the host epigenome: functional role and evolution of effectors methylating host histones. Cell Microbiol 2016; 17:1098-107. [PMID: 26031999 DOI: 10.1111/cmi.12463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 12/25/2022]
Abstract
The modulation of the chromatin organization of eukaryotic cells plays an important role in regulating key cellular processes including host defence mechanisms against pathogens. Thus, to successfully survive in a host cell, a sophisticated bacterial strategy is the subversion of nuclear processes of the eukaryotic cell. Indeed, the number of bacterial proteins that target host chromatin to remodel the host epigenetic machinery is expanding. Some of the identified bacterial effectors that target the chromatin machinery are 'eukaryotic-like' proteins as they mimic eukaryotic histone writers in carrying the same enzymatic activities. The best-studied examples are the SET domain proteins that methylate histones to change the chromatin landscape. In this review, we will discuss SET domain proteins identified in the Legionella, Chlamydia and Bacillus genomes that encode enzymatic activities targeting host histones. Moreover, we discuss their possible origin as having evolved from prokaryotic ancestors or having been acquired from their eukaryotic hosts during their co-evolution. The characterization of such bacterial effectors as modifiers of the host chromatin landscape is an exciting field of research as it elucidates new bacterial strategies to not only manipulate host functions through histone modifications but it may also identify new modifications of the mammalian host cells not known before.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| |
Collapse
|
37
|
Cianciotto NP. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Future Microbiol 2016; 10:841-51. [PMID: 26000653 DOI: 10.2217/fmb.15.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires' disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, 'model' organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria.
Collapse
|
38
|
Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr Opin Microbiol 2016; 29:74-80. [DOI: 10.1016/j.mib.2015.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
|
39
|
Bugalhão JN, Mota LJ, Franco IS. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking. Microbiologyopen 2015; 5:118-33. [PMID: 26626407 PMCID: PMC4767423 DOI: 10.1002/mbo3.316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023] Open
Abstract
The Legionella pneumophila effector protein VipA is an actin nucleator that co‐localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2‐terminal (amino acid residues 1–133) and central coiled‐coil (amino acid residues 133–206) regions, and suggested a role for the COOH‐terminal (amino acid residues 206–339) region in association with actin filaments and for the NH2‐terminal in co‐localization with early endosomes. Co‐immunoprecipitation and in vitro assays showed that the COOH‐terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH‐terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2‐terminal region and its capacity to bind and polymerize actin through its COOH‐terminal region.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Irina S Franco
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
40
|
Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 2015; 14:5-19. [PMID: 26594043 DOI: 10.1038/nrmicro.2015.1] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.
Collapse
|
41
|
Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjšek R, Ettema TJG, Horn M. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol 2015; 18:2326-42. [PMID: 25908022 DOI: 10.1111/1462-2920.12881] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/03/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
The Rickettsiae comprise intracellular bacterial symbionts and pathogens infecting diverse eukaryotes. Here, we provide a detailed characterization of 'Candidatus Jidaibacter acanthamoeba', a rickettsial symbiont of Acanthamoeba. The bacterium establishes the infection in its amoeba host within 2 h where it replicates within vacuoles. Higher bacterial loads and accelerated spread of infection at elevated temperatures were observed. The infection had a negative impact on host growth rate, although no increased levels of host cell lysis were seen. Phylogenomic analysis identified this bacterium as member of the Midichloriaceae. Its 2.4 Mb genome represents the largest among Rickettsiales and is characterized by a moderate degree of pseudogenization and a high coding density. We found an unusually large number of genes encoding proteins with eukaryotic-like domains such as ankyrins, leucine-rich repeats and tetratricopeptide repeats, which likely function in host interaction. There are a total of three divergent, independently acquired type IV secretion systems, and 35 flagellar genes representing the most complete set found in an obligate intracellular Alphaproteobacterium. The deeply branching phylogenetic position of 'Candidatus Jidaibacter acanthamoeba' together with its ancient features place it closely to the rickettsial ancestor and helps to better understand the transition from a free-living to an intracellular lifestyle.
Collapse
Affiliation(s)
- Frederik Schulz
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Florian Wascher
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Ilias Lagkouvardos
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Rok Kostanjšek
- Department of Biology, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| |
Collapse
|
42
|
Michard C, Doublet P. Post-translational modifications are key players of the Legionella pneumophila infection strategy. Front Microbiol 2015; 6:87. [PMID: 25713573 PMCID: PMC4322725 DOI: 10.3389/fmicb.2015.00087] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
Post-translational modifications (PTMs) are widely used by eukaryotes to control the enzymatic activity, localization or stability of their proteins. Traditionally, it was believed that the broad biochemical diversity of the PTMs is restricted to eukaryotic cells, which exploit it in extensive networks to fine-tune various and complex cellular functions. During the last decade, the advanced detection methods of PTMs and functional studies of the host-pathogen relationships highlight that bacteria have also developed a large arsenal of PTMs, particularly to subvert host cell pathways to their benefit. Legionella pneumophila, the etiological agent of the severe pneumonia legionellosis, is the paradigm of highly adapted intravacuolar pathogens that have set up sophisticated biochemical strategies. Among them, L. pneumophila has evolved eukaryotic-like and rare/novel PTMs to hijack host cell processes. Here, we review recent progress about the diversity of PTMs catalyzed by Legionella: ubiquitination, prenylation, phosphorylation, glycosylation, methylation, AMPylation, and de-AMPylation, phosphocholination, and de-phosphocholination. We focus on the host cell pathways targeted by the bacteria catalyzed PTMs and we stress the importance of the PTMs in the Legionella infection strategy. Finally, we highlight that the discovery of these PTMs undoubtedly made significant breakthroughs on the molecular basis of Legionella pathogenesis but also lead the way in improving our knowledge of the eukaryotic PTMs and complex cellular processes that are associated to.
Collapse
Affiliation(s)
- Céline Michard
- Legionella Pathogenesis Group, International Center for Infectiology Research, Université de Lyon Lyon, France ; INSERM U1111 Lyon, France ; Ecole Normale Supérieure de Lyon Lyon, France ; Centre International de Recherche en Infectiologie, Université Lyon 1 Lyon, France ; Centre National de la Recherche Scientifique, UMR5308 Lyon, France
| | - Patricia Doublet
- Legionella Pathogenesis Group, International Center for Infectiology Research, Université de Lyon Lyon, France ; INSERM U1111 Lyon, France ; Ecole Normale Supérieure de Lyon Lyon, France ; Centre International de Recherche en Infectiologie, Université Lyon 1 Lyon, France ; Centre National de la Recherche Scientifique, UMR5308 Lyon, France
| |
Collapse
|
43
|
Price CTD, Abu Kwaik Y. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages. PLoS One 2014; 9:e114914. [PMID: 25485627 PMCID: PMC4259488 DOI: 10.1371/journal.pone.0114914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/15/2014] [Indexed: 11/19/2022] Open
Abstract
Background Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs) to actively replicating L. pneumophila. Methodology/Principal Findings Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling), anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression. Conclusion/Significance Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, KY, 40202, United States of America
- * E-mail: (YAK); (CP)
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, KY, 40202, United States of America
- Center for Predictive Medicine, University of Louisville, KY, 40202, United States of America
- * E-mail: (YAK); (CP)
| |
Collapse
|