1
|
Zhang J, Liu J, Ding J, Yu H, Li Z, Chen Y, Lin Y, Niu Y, Lu L, Jin X, Zheng Y. Tris(2-chloroethyl) Phosphate Leads to Unbalanced Circulating Erythrocyte in Mice by Activating both Medullary and Extramedullary Erythropoiesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39743774 DOI: 10.1021/acs.est.4c09436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tris(2-chloroethyl) phosphate (TCEP), a prevalent organophosphorus flame retardant, has been identified in various environmental matrices and human blood samples, provoking alarm regarding its hematological toxicity, a subject that has not been thoroughly investigated. Red blood cells (RBCs), or erythrocytes, are the predominant cell type in peripheral blood and are crucial for the maintenance of physiological health. This investigation employed oral gavage to examine the effects of TCEP exposure on erythrocyte counts in mice and to clarify the underlying mechanisms. The results demonstrated a marked increase in circulating RBC counts post-TCEP exposure, concomitantly heightening the risk of polycythemia vera (PV). TCEP exposure stimulated erythropoiesis across all stages of medullary development, including the differentiation of hematopoietic stem cells into erythroid progenitors, the progression of erythrocyte development, and the maturation of erythrocyte. Moreover, TCEP potentiated extramedullary erythropoiesis in the spleen and liver. Subsequent bioinformatics analysis implied that TCEP-induced erythropoiesis was attributed to p53 downregulation. Thus, these findings indicate that TCEP disrupts erythrocyte-mediated hematological homeostasis through the enhancement of both medullary and extramedullary erythropoiesis, leading to the alteration of hematological equilibrium.
Collapse
Affiliation(s)
- Jingxu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jing Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jian Ding
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongyan Yu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Ziyuan Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yidi Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lin Lu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoting Jin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 2024; 24:192-215. [PMID: 38287107 DOI: 10.1038/s41568-023-00658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
Collapse
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Selivanova
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Rocha VA, Aquino AM, Magosso N, Souza PV, Justulin LA, Domeniconi RF, Barbisan LF, Romualdo GR, Scarano WR. 2,4-dichlorophenoxyacetic acid (2,4-D) exposure during postnatal development alters the effects of western diet on mouse prostate. Reprod Toxicol 2023; 120:108449. [PMID: 37516258 DOI: 10.1016/j.reprotox.2023.108449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Western diet (WD), abundant in saturated fats and simple carbohydrates, has been associated with the development of prostate diseases. In addition, 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide used in agricultural and non-agricultural settings, may interfere with the endocrine system impacting reproductive health. The association of both factors is something common in everyday life, however, there are no relevant studies associating them as possible modulators of prostatic diseases. This study evaluated the action of the herbicide 2,4-D on the postnatal development of the prostate in mice fed with WD. Male C57Bl/6J mice received simultaneously a WD and 2,4-D at doses of 0.02, 2.0, or 20.0 mg/kg b.w./day for 6 months. The prolongated WD intake induced obesity and glucose intolerance, increasing body weight and fat. WD induced morphological changes and increased PCNA-positive epithelial cells in prostate. Additionally, the WD increased gene expression of AR, antioxidant targets, inflammation-related cytokines, cell repair and turnover, and targets related to methylation and miRNAs biosynthesis compared to the counterpart (basal diet). 2,4-D (0.02 and 2.0) changed prostate morphology and gene expression evoked by WD. In contrast, the WD group exposed to 20 mg/kg of 2,4-D reduced feed intake and body weight, and increased expression of androgen receptor and genes related to cell repair and DNA methylation compared to the negative control. Our results showed that 2,4-D was able to modulate the effects caused by WD, mainly at lower doses. However, further studies are needed to elucidate the mechanisms of 2,4-D on the obesogenic environment caused by the WD.
Collapse
Affiliation(s)
- V A Rocha
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - A M Aquino
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - N Magosso
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - P V Souza
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - L A Justulin
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - R F Domeniconi
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - L F Barbisan
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - G R Romualdo
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil
| | - W R Scarano
- São Paulo State University (UNESP), Department of Structural and Functional Biology, Institute of Biosciences, Botucatu, São Paulo, Brazil.
| |
Collapse
|
4
|
Rahmé R, Braun T, Manfredi JJ, Fenaux P. TP53 Alterations in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Biomedicines 2023; 11:biomedicines11041152. [PMID: 37189770 DOI: 10.3390/biomedicines11041152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
TP53 mutations are less frequent in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) than in solid tumors, except in secondary and therapy-related MDS/AMLs, and in cases with complex monosomal karyotype. As in solid tumors, missense mutations predominate, with the same hotspot mutated codons (particularly codons 175, 248, 273). As TP53-mutated MDS/AMLs are generally associated with complex chromosomal abnormalities, it is not always clear when TP53 mutations occur in the pathophysiological process. It is also uncertain in these MDS/AML cases, which often have inactivation of both TP53 alleles, if the missense mutation is only deleterious through the absence of a functional p53 protein, or through a potential dominant-negative effect, or finally a gain-of-function effect of mutant p53, as demonstrated in some solid tumors. Understanding when TP53 mutations occur in the disease course and how they are deleterious would help to design new treatments for those patients who generally show poor response to all therapeutic approaches.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université Paris Cité, 75010 Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université Paris Cité, 75010 Paris, France
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - Thorsten Braun
- Clinical Hematology Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Sorbonne Paris Nord, 93000 Bobigny, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Fenaux
- Senior Hematology Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, 75010 Paris, France
| |
Collapse
|
5
|
Nishikawa S, Iwakuma T. Drugs Targeting p53 Mutations with FDA Approval and in Clinical Trials. Cancers (Basel) 2023; 15:429. [PMID: 36672377 PMCID: PMC9856662 DOI: 10.3390/cancers15020429] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Mutations in the tumor suppressor p53 (p53) promote cancer progression. This is mainly due to loss of function (LOS) as a tumor suppressor, dominant-negative (DN) activities of missense mutant p53 (mutp53) over wild-type p53 (wtp53), and wtp53-independent oncogenic activities of missense mutp53 by interacting with other tumor suppressors or oncogenes (gain of function: GOF). Since p53 mutations occur in ~50% of human cancers and rarely occur in normal tissues, p53 mutations are cancer-specific and ideal therapeutic targets. Approaches to target p53 mutations include (1) restoration or stabilization of wtp53 conformation from missense mutp53, (2) rescue of p53 nonsense mutations, (3) depletion or degradation of mutp53 proteins, and (4) induction of p53 synthetic lethality or targeting of vulnerabilities imposed by p53 mutations (enhanced YAP/TAZ activities) or deletions (hyperactivated retrotransposons). This review article focuses on clinically available FDA-approved drugs and drugs in clinical trials that target p53 mutations and summarizes their mechanisms of action and activities to suppress cancer progression.
Collapse
Affiliation(s)
- Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Abu-Serie MM, Habashy NH. Suppressing crucial oncogenes of leukemia initiator cells by major royal jelly protein 2 for mediating apoptosis in myeloid and lymphoid leukemia cells. Food Funct 2022; 13:8951-8966. [PMID: 35929786 DOI: 10.1039/d2fo00999d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relapse of leukemia and drug resistance are still the major obstacles to therapy due to leukemia-initiating stem/progenitor cells (LICs); thus, targeting them using safe compounds is crucial. Here, we evaluated the anti-leukemic effect of royal jelly (RJ) components, which had a higher safe concentration (EC100 values) than the chemotherapeutic drug doxorubicin (DOX). The RJ-protein fraction 50 (PF50, precipitated at 40-50% ammonium sulfate saturation) and its constituents, major RJ protein (MRJP) 2 and its isoform X1, exhibited the highest growth inhibitory effect against myeloid NFS-60 and lymphoid Jurkat cell lines. MRJP2 has a nanosize, which may be the reason for its higher anti-leukemic activity than its isoform. These RJ proteins, particularly MRJP2, suppressed LIC-associated oncogenes (GATA2 and Evi-1) and eliminated CD34+ LICs, in contrast to the low anti-LIC efficacy of DOX. MRJP2 demonstrated higher apoptotic activity than its isoform by upregulating p53 and p21-mediated cell cycle arrest. This study also reported the potent inhibitory effect of RJ-proteins on matrix metallopeptidase 10 (metastatic marker) and histone deacetylase 8 (mediates LIC survival) activities. Thus, MRJP2 can be considered a promising novel therapeutic agent for both myeloid and lymphoid leukemia.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab 21934, Alexandria, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
7
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
8
|
Kung CP, Weber JD. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front Cell Dev Biol 2022; 10:818744. [PMID: 35155432 PMCID: PMC8833255 DOI: 10.3389/fcell.2022.818744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023] Open
Abstract
Anti-tumorigenic mechanisms mediated by the tumor suppressor p53, upon oncogenic stresses, are our bodies’ greatest weapons to battle against cancer onset and development. Consequently, factors that possess significant p53-regulating activities have been subjects of serious interest from the cancer research community. Among them, MDM2 and ARF are considered the most influential p53 regulators due to their abilities to inhibit and activate p53 functions, respectively. MDM2 inhibits p53 by promoting ubiquitination and proteasome-mediated degradation of p53, while ARF activates p53 by physically interacting with MDM2 to block its access to p53. This conventional understanding of p53-MDM2-ARF functional triangle have guided the direction of p53 research, as well as the development of p53-based therapeutic strategies for the last 30 years. Our increasing knowledge of this triangle during this time, especially through identification of p53-independent functions of MDM2 and ARF, have uncovered many under-appreciated molecular mechanisms connecting these three proteins. Through recognizing both antagonizing and synergizing relationships among them, our consideration for harnessing these relationships to develop effective cancer therapies needs an update accordingly. In this review, we will re-visit the conventional wisdom regarding p53-MDM2-ARF tumor-regulating mechanisms, highlight impactful studies contributing to the modern look of their relationships, and summarize ongoing efforts to target this pathway for effective cancer treatments. A refreshed appreciation of p53-MDM2-ARF network can bring innovative approaches to develop new generations of genetically-informed and clinically-effective cancer therapies.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| | - Jason D. Weber
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| |
Collapse
|
9
|
Wortmann L, Bräuer N, Holton SJ, Irlbacher H, Weiske J, Lechner C, Meier R, Karén J, Siöberg CB, Pütter V, Christ CD, Ter Laak A, Lienau P, Lesche R, Nicke B, Cheung SH, Bauser M, Haegebarth A, von Nussbaum F, Mumberg D, Lemos C. Discovery and Characterization of the Potent and Highly Selective 1,7-Naphthyridine-Based Inhibitors BAY-091 and BAY-297 of the Kinase PIP4K2A. J Med Chem 2021; 64:15883-15911. [PMID: 34699202 DOI: 10.1021/acs.jmedchem.1c01245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.
Collapse
Affiliation(s)
- Lars Wortmann
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Nico Bräuer
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Simon J Holton
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Horst Irlbacher
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Jörg Weiske
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Christian Lechner
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Robin Meier
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Jakob Karén
- Pelago Bioscience AB, Banvaktsvägen 20, 171 48 Solna, Sweden
| | | | - Vera Pütter
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Clara D Christ
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Antonius Ter Laak
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Barbara Nicke
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Shing-Hu Cheung
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Marcus Bauser
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Andrea Haegebarth
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany
| |
Collapse
|
10
|
Liu Y, Zheng C, Huang Y, He M, Xu WW, Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm (Beijing) 2021; 2:315-340. [PMID: 34766149 PMCID: PMC8554658 DOI: 10.1002/mco2.55] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Surgery is the primary treatment approach for cancer, but the survival rate is very low due to the rapid progression of the disease and presence of local and distant metastasis at diagnosis. Adjuvant chemotherapy and radiotherapy are important components of the multidisciplinary approaches for cancer treatment. However, resistance to radiotherapy and chemotherapy may result in treatment failure or even cancer recurrence. Radioresistance in cancer is often caused by the repair response to radiation-induced DNA damage, cell cycle dysregulation, cancer stem cells (CSCs) resilience, and epithelial-mesenchymal transition (EMT). Understanding the molecular alterations that lead to radioresistance may provide new diagnostic markers and therapeutic targets to improve radiotherapy efficacy. Patients who develop resistance to chemotherapy drugs cannot benefit from the cytotoxicity induced by the prescribed drug and will likely have a poor outcome with these treatments. Chemotherapy often shows a low response rate due to various drug resistance mechanisms. This review focuses on the molecular mechanisms of radioresistance and chemoresistance in cancer and discusses recent developments in therapeutic strategies targeting chemoradiotherapy resistance to improve treatment outcomes.
Collapse
Affiliation(s)
- Ya‐Ping Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Can‐Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Yun‐Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Ming‐Liang He
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| |
Collapse
|
11
|
Petersen I. Classification and Treatment of Diseases in the Age of Genome Medicine Based on Pathway Pathology. Int J Mol Sci 2021; 22:ijms22179418. [PMID: 34502326 PMCID: PMC8431301 DOI: 10.3390/ijms22179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/20/2022] Open
Abstract
The focus of pathology as a biomedical discipline is the identification of the pathomechanisms of diseases and the integration of this knowledge into routine diagnosis and classification. Standard tools are macroscopic and microscopic analysis complemented by immunohistochemistry and molecular pathology. So far, classification has been based on the paradigm of cellular pathology established by Rudolf Virchow and others more than 150 years ago, stating that diseases originate from diseased cells. This dogma is meanwhile challenged by the fact that cells can be fully reprogrammed. Many diseases are nowadays considered to originate from undifferentiated stem cells, induced into a diseased state by genetic or epigenetic alterations. In addition, the completion of the Human Genome Project, with the identification of more than 20.000 genes and a much higher number of gene variants and mutations, led to the concept that diseases are dominated by genetics/epigenetics rather than cells of origin. The axiom of cellular pathology, however, still holds true, as cells are the smallest animate units from which diseases originate. Medical doctors and researchers nowadays have to deal with a tremendous amount of data. The International Classification of Diseases will expand from 14.400 entities/codes in ICD-10 to more than 55.000 in ICD-11. In addition, large datasets generated by “genomics“, e.g., whole-genome sequencing, expression profiling or methylome analysis, are meanwhile not only applied in research but also introduced into clinical settings. It constitutes a major task to incorporate all the data into routine medical work. Pathway pathology may help solve this problem. It is based on the realization that diseases are characterized by three essential components: (i) cells of origin/cellular context and (ii) the alteration of cellular as well as (iii) molecular/signal transduction pathways. The concept is illustrated by elaborating on two key cellular pathways, i.e., the cellular senescence of normal cells and the immortality of cancer cells, and by contrasting single cell/single pathway diseases, such as mycoplasma and coughing pneumonia, with complex diseases such as cancer, with multiple cell types as well as multiple affected cellular and signaling pathways. Importantly, the concept of pathway pathology is not just intended to classify disease, but also to conceive new treatment modalities. This article is dedicated to Dr. Leonard Hayflick, who made basic discoveries in pathway pathology not only by identifying cells causing disease (Mycoplasma pneumoniae) and establishing cell strains for treating disease (WI-38 for viral vaccines), but also by first describing cellular senescence and immortality.
Collapse
Affiliation(s)
- Iver Petersen
- Institute of Pathology, SRH Poliklinik Gera, SRH-Wald-Klinikum Gera, Strasse des Friedens 122, D-07548 Gera, Germany
| |
Collapse
|
12
|
Hu W, Feng Z. Hypothermia Is a Potential New Therapy for a Subset of Tumors with Mutant p53. Cancer Res 2021; 81:3762-3763. [PMID: 34266914 DOI: 10.1158/0008-5472.can-21-1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 gene is mutated in approximately 50% of all human tumors. Many tumor-associated mutant p53 proteins misfold into a common, denatured conformation and accumulate to high levels in human tumors. In such tumors, these mutant forms of p53 provide a "gain of function" to promote tumor progression. Therefore, targeting mutant p53 has become an attractive approach for cancer therapy. In this issue, the study by Lu and colleagues supports the premise that certain forms of mutant p53 are temperature sensitive in conformation; these forms of p53 are mutant in conformation at physiologic temperature, but can refold into a normal, or "wild-type" conformation at lower temperature (32°C to 34°C). Notably, these temperature-sensitive mutants account for up to 7.5% of all human tumors that carry mutant p53, so this fraction of patients is estimated to be quite significant. Results from this study show that employing therapeutic hypothermia to reduce the core temperature of mice bearing tumors with these temperature-sensitive mutant forms of p53 (ts mutant p53) causes ts mutant p53 to switch to a wild-type conformation in tumors, inhibiting tumor growth. Moreover, combining hypothermia with chemotherapy leads to durable remission of such tumors, with no obvious toxicity to normal tissues.See related article by Lu et al., p. 3905.
Collapse
Affiliation(s)
- Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.
| |
Collapse
|
13
|
Xu L, Qian F, Sun L. [Dibenzyl trisulfide inhibits proliferation and induces apoptosis of HN30 cells via Akt/ p53 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:847-853. [PMID: 34238736 DOI: 10.12122/j.issn.1673-4254.2021.06.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effect of dibenzyl trisulfide (DTS) on cell proliferation and apoptosis in human head and neck squamous cell carcinoma (HNSCC) HN30 cells. OBJECTIVE The effects of DTS on proliferation of HNSCC cell lines HN30, HN12, and SCC25 were examined by assessing colony formation ability of the treated cells. The effect of different concentrations of DTS on viability of HN30 cells was assessed using MTT assay. HN30 cells were treated with 3, 10, or 30 μmol/L DTS for 24 h, and the cell apoptosis and mitochondrial membrane potential (MMP) were detected using flow cytometry with annexin Ⅴ-FITC/PI double staining and JC-1 fluorescent probe staining. Western blotting was performed to determine the protein expressions of caspase-3, cleaved caspase-3 and Bcl-2 in the treated cells. The phosphorylation levels of Akt and p53 in HN30 cells were detected using Western blotting after treatment with 10 μmol/L DTS for 0.5, 1, 2, 4, 8, or 16 h. OBJECTIVE DTS at 1 μmol/L significantly inhibited the proliferation of HN30, HN12 and SCC25 cells as shown by colony formation assay. MTT assay showed that DTS dose-dependently decreased HN30 cell viability as compared with the solvent control group, and 100 μmol/L DTS produced the strongest inhibitory effect (P < 0.0001). Treatment with DTS below 30 μmol/L concentrationdependently promoted apoptosis (P < 0.01) and lowered the MMP (P < 0.01) of HN30 cells, and after treatment for 24 h, the cells showed significantly increased cleaved caspase-3 (P < 0.01) and decreased Bcl-2 expression (P < 0.01). Treatment with 10 μmol/L DTS for 16 h significantly inhibited Akt phosphorylation (P < 0.001) and enhanced p53 phosphorylation (P < 0.01) in HN30 cells. OBJECTIVE DTS inhibits proliferation and induces apoptosis of HN30 cells possibly through mechanisms involving the inhibition of Akt and the activation of p53.
Collapse
Affiliation(s)
- L Xu
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - F Qian
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - L Sun
- Engineering Research Center of Cell and Therapeutic Antibody, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
14
|
Papachristou F, Anninou N, Koukoulis G, Paraskakis S, Sertaridou E, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha A. Differential effects of cisplatin combined with the flavonoid apigenin on HepG2, Hep3B, and Huh7 liver cancer cell lines. Mutat Res 2021; 866:503352. [PMID: 33985696 DOI: 10.1016/j.mrgentox.2021.503352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The potential of apigenin (APG) to enhance cisplatin's (CDDP) chemotherapeutic efficacy was investigated in HepG2, Hep3B, and Huh7 liver cancer cell lines. The presence of 20 μM APG sensitized all cell lines to CDDP treatment (degree of sensitization based on the MTT assay: HepG2>Huh7>Hep3B). As reflected by sister chromatid exchange levels, the degree of genetic instability as well as DNA repair by homologous recombination differed among cell lines. CDDP and 20 μM APG cotreatment exhibited a synergistic genotoxic effect on Hep3B cells and a less than additive effect on HepG2 and Huh7 cells. Cell cycle delays were noticed during the first mitotic division in Hep3B and Huh7 cells and the second mitotic division in HepG2 cells. CDDP and CDDP + APG treatments reduced the clonogenic capacity of all cell lines; however, there was a discordance in drug sensitivity compared with the MMT assay. Furthermore, a senescence-like phenotype was induced, especially in Hep3B and Huh7 cells. Unlike CDDP monotherapy, the combined treatment exhibited a significant anti-invasive and anti-migratory action in all cancer cell lines. The fact that the three liver cancer cell lines responded differently, yet positively, to CDDP + APG cotreatment could be attributed to variations they present in gene expression. Complex mechanisms seem to influence cellular responses and cell fate.
Collapse
Affiliation(s)
- Fotini Papachristou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece.
| | - Nikolia Anninou
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Georgios Koukoulis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Stefanos Paraskakis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Eleni Sertaridou
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Constantinos Simopoulos
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece; Postgraduate Program in Hepatobiliary and Pancreatic Surgery, 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, 68 100, Greece
| |
Collapse
|
15
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
16
|
Gorecki L, Andrs M, Korabecny J. Clinical Candidates Targeting the ATR-CHK1-WEE1 Axis in Cancer. Cancers (Basel) 2021; 13:795. [PMID: 33672884 PMCID: PMC7918546 DOI: 10.3390/cancers13040795] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (L.G.); (M.A.)
| |
Collapse
|
17
|
Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers (Basel) 2021; 13:cancers13030399. [PMID: 33499022 PMCID: PMC7865797 DOI: 10.3390/cancers13030399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumors are a complex ecosystem including not only cancer cells, but also many distinct cell types of the tumor micro-environment. While the Warburg effect assessing high glucose uptake in tumors was recognized a long time ago, metabolic heterogeneity within tumors has only recently been demonstrated. Indeed, several recent studies have highlighted other sources of carbon than glucose, including amino acids, fatty acids and lactate. These newly identified metabolic trajectories modulate key cancer cell features, such as invasion capacities. In addition, cancer metabolic heterogeneity is not restricted to cancer cells. Here, we also describe heterogeneity of Cancer-Associated Fibroblast (CAF) subpopulations and their complex metabolic crosstalk with cancer cells. Abstract During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particular, a high diversity of carbon sources used by tumor cells has now been shown to contribute to this metabolic heterogeneity in cancer. Moreover, the molecular mechanisms newly highlighted are multiple and shed light on novel actors. Furthermore, the impact of this metabolic heterogeneity on tumor microenvironment has also been an intense subject of research recently. Here, we will describe the new metabolic pathways newly uncovered in tumor cells. We will also have a particular focus on Cancer-Associated Fibroblasts (CAF), whose identity, function and metabolism have been recently under profound investigation. In that sense, we will discuss about the metabolic crosstalk between tumor cells and CAF.
Collapse
|
18
|
Russell E, McMahon SJ, Russell B, Mohamud H, McGarry CK, Schettino G, Prise KM. Effects of Gadolinium MRI Contrast Agents on DNA Damage and Cell Survival when Used in Combination with Radiation. Radiat Res 2020; 194:298-309. [PMID: 32942305 DOI: 10.1667/rade-20-00008.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/23/2020] [Indexed: 11/03/2022]
Abstract
Gadolinium is a commonly used contrast agent for magnetic resonance imaging (MRI). The goal of this work was to determine how MRI contrast agents affect radiosensitivity for tumour cells. Using a 225kVp X-ray cabinet source, immunofluorescence and clonogenic assays were performed on six cancer cell lines: lung (H460), pancreas (MiaPaCa2), prostate (DU145), breast (MCF7), brain (U87) and liver (HEPG2). Dotarem® contrast agent, at concentrations of 0.2, 2 and 20 mM, was used to determine its effect on DNA damage and cell survival. Measurements were performed using inductively coupled plasma mass spectrometry (ICP-MS) to determine the amount of gadolinium taken up by each cell line for each concentration. A statistically significant increase in DNA damage was seen for all cell lines at a dose of 1 Gy for concentrations of 2 and 20 mM, at 1 h postirradiation. At 24 h postirradiation, most of the DNA damage had been repaired, with approximately 90% repair for almost all doses of radiation and concentrations of Dotarem. Clonogenic results showed no statistically significant decrease in cell survival for any cell line or concentration. Uptake measurements showed cell line-specific variations in uptake, with MCF7 and HEPG2 cells having a high percentage uptake compared to other cell lines, with 151.4 ± 0.3 × 10-15 g and 194.8 ± 0.4 × 10-15 g per cell, respectively, at 2 mM Dotarem concentration. In this work, a variability in gadolinium uptake was observed between cell lines. A significant increase was seen in initial levels of DNA damage after 1 Gy irradiation for all six cancer cell lines; however, no significant decrease in cell survival was seen with the clonogenic assay. The observation of high levels of repair suggest that while initial levels of DNA damage are increased, this damage is almost entirely repaired within 24 h, and does not affect the ability of cells to survive and produce colonies.
Collapse
Affiliation(s)
- Emily Russell
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom.,National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Stephen J McMahon
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| | - Ben Russell
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Hibaaq Mohamud
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Conor K McGarry
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Giuseppe Schettino
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom.,University of Surrey, Department of Physics, Guilford, GU2 7XH, United Kingdom
| | - Kevin M Prise
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| |
Collapse
|
19
|
Chang HW, Lee M, Lee YS, Kim SH, Lee JC, Park JJ, Nam HY, Kim MR, Han MW, Kim SW, Kim SY. p53-dependent glutamine usage determines susceptibility to oxidative stress in radioresistant head and neck cancer cells. Cell Signal 2020; 77:109820. [PMID: 33137455 DOI: 10.1016/j.cellsig.2020.109820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023]
Abstract
The manner in which p53 maintains redox homeostasis and the means by which two key metabolic elements, glucose and glutamine, contribute to p53-dependent redox stability remain unclear. To elucidate the manner in which p53 deals with glucose-deprived, reactive oxygen species (ROS)-prone conditions in this regard, two isogenic cancer subclones (HN3R-A and HN3R-B) bearing distinct p53 mutations as an in vitro model of intratumoral p53 heterogeneity were identified. Following cumulative irradiation, the subclones showed a similar metabolic shift to aerobic glycolysis and increasing NADPH biogenesis for cellular defense against oxidative damage irrespective of p53 status. The radioresistant cancer cells became more sensitive to glycolysis-targeting drugs. However, in glucose-deprived and ROS-prone conditions, HN3R-B, the subclone with the original p53 increased the utilization of glutamine by GLS2, thereby maintaining redox homeostasis and ATP. Conversely, HN3R-A, the p53-deficient radioresistant subclone displayed an impairment in glutamine usage and high susceptibility to metabolic stresses as well as ROS-inducing agents despite the increased ROS scavenging system. Collectively, our findings suggest that p53 governs the alternative utilization of metabolic ingredients, such as glucose and glutamine, in ROS-prone conditions. Thus, p53 status may be an important biomarker for selecting cancer treatment strategies, including metabolic drugs and ROS-inducing agents, for recurrent cancers after radiotherapy.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - MyungJin Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Sun Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Song Hee Kim
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jong Cheol Lee
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Jung Je Park
- Department of Otolaryngology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hae Yun Nam
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Ra Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Myung Woul Han
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Gong H, Nie D, Li Z. Targeting Six Hallmarks of Cancer in Ovarian Cancer Therapy. Curr Cancer Drug Targets 2020; 20:853-867. [PMID: 32807056 DOI: 10.2174/1568009620999200816130218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Normal cells must overcome multiple protective mechanisms to develop into cancer cells. Their new capabilities include self-sufficiency in growth signals and insensitivity to antigrowth signals, evasion of apoptosis, a limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis; these are also termed the six hallmarks of cancer. A deep understanding of the genetic and protein alterations involved in these processes has enabled the development of targeted therapeutic strategies and clinical trial design in the search for ovarian cancer treatments. Clinically, significantly longer progression-free survival has been observed in the single use of PARP, MEK, VEGF and Chk1/Chk2 inhibitors. However, the clinical efficacy of the targeted agents is still restricted to specific molecular subtypes and no trials illustrate a benefit in overall survival. Exploring novel drug targets or combining current feasible biological agents hold great promise to further improve outcomes in ovarian cancer. In this review, we intend to provide a comprehensive description of the molecular alterations involved in ovarian cancer carcinogenesis and of emerging biological agents and combined strategies that target aberrant pathways, which might shed light on future ovarian cancer treatment.
Collapse
Affiliation(s)
- Han Gong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Nie
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
21
|
Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol 2020; 11:284-292. [PMID: 30500901 PMCID: PMC6487777 DOI: 10.1093/jmcb/mjy070] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
p53 plays a key role in tumor suppression. The tumor suppressive function of p53 has long been attributed to its ability to induce apoptosis, cell cycle arrest, and senescence in cells. However, recent studies suggest that other functions of p53 also contribute to its role as a tumor suppressor, such as its function in metabolic regulation. p53 regulates various metabolic pathways to maintain the metabolic homeostasis of cells and adapt cells to stress. In addition, recent studies have also shown that gain-of-function (GOF) mutant p53 proteins drive metabolic reprogramming in cancer cells, contributing to cancer progression. Further understanding of p53 and its GOF mutants in metabolism will provide new opportunities for cancer therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Cancer Institute of New Jersey, Rutgers University, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
22
|
Gu J, Han T, Sun L, Yan AH, Jiang XJ. miR-552 promotes laryngocarcinoma cells proliferation and metastasis by targeting p53 pathway. Cell Cycle 2020; 19:1012-1021. [PMID: 32233984 DOI: 10.1080/15384101.2020.1743910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous researches show that MicroRNAs (miRNAs) participate in tumorigenesis, progression, recurrence and drug resistance of malignant tumors, including laryngocarcinoma. miR-552 works as an oncogene in both colorectal cancer and liver cancer. However, the potential role of miR-552 in laryngocarcinoma is unknown. Herein, we for first found that miR-552 expression was upregulated in laryngocarcinoma tissues compared with their normal controls. Moreover, miR-552 expression was also increasing in the laryngocarcinoma cells. miR-552 interference inhibited the proliferation and metastasis of laryngocarcinoma cells in vitro and in vivo. Mechanically, bioinformatics and luciferase reporter analysis identified p53 as a direct target of miR-552. miR-552 knockdown upregulated the p53 mRNA and protein expression in laryngocarcinoma cells. miR-552 expression was negatively associated with p53 expression in laryngocarcinoma tissues. More importantly, the p53 siRNA or p53 overexpression virus abrogated the discrepancy of growth and metastasis capacity between miR-552 interference laryngocarcinoma cells and control cells.
Collapse
Affiliation(s)
- Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tao Han
- Department of Oncology, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Lei Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ai-Hui Yan
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue-Jun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Gorecki L, Andrs M, Rezacova M, Korabecny J. Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): Clinical candidate for cancer therapy. Pharmacol Ther 2020; 210:107518. [PMID: 32109490 DOI: 10.1016/j.pharmthera.2020.107518] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Chemoresistance, radioresistance, and the challenge of achieving complete resection are major driving forces in the search for more robust and targeted anticancer therapies. Targeting the DNA damage response has recently attracted research interest, as these processes are enhanced in tumour cells. The major replication stress responder is ATM and Rad3-related (ATR) kinase, which is attracting attention worldwide with four drug candidates currently in phase I/II clinical trials. This review addresses a potent and selective small-molecule ATR inhibitor, which is known as VX-970 (also known as berzosertib or M6620), and summarizes the existing preclinical data to provide deep insight regarding its real potential. We also outline the transition from preclinical to clinical studies, as well as its relationships with other clinical candidates (AZD6738, VX-803 [M4344], and BAY1895344). The results suggest that VX-970 is indeed a promising anticancer drug that can be used both as monotherapy and in combination with either chemotherapy or radiotherapy strategies. Based on patient anamnesis and biomarker identification, VX-970 could become a valuable tool for oncologists in the fight against cancer.
Collapse
Affiliation(s)
- Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Andrs
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Laboratory of Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 38 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
24
|
Capece D, Verzella D, Di Francesco B, Alesse E, Franzoso G, Zazzeroni F. NF-κB and mitochondria cross paths in cancer: mitochondrial metabolism and beyond. Semin Cell Dev Biol 2020; 98:118-128. [PMID: 31132468 DOI: 10.1016/j.semcdb.2019.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
NF-κB plays a pivotal role in oncogenesis. This transcription factor is best known for promoting cancer cell survival and tumour-driving inflammation. However, several lines of evidence support a crucial role for NF-κB in governing energy homeostasis and mediating cancer metabolic reprogramming. Mitochondria are central players in many metabolic processes altered in cancer. Beyond their bioenergetic activity, several facets of mitochondria biology, including mitochondrial dynamics and oxidative stress, promote and sustain malignant transformation. Recent reports revealed an intimate connection between NF-κB pathway and the oncogenic mitochondrial functions. NF-κB can impact mitochondrial respiration and mitochondrial dynamics, and, reciprocally, mitochondria can sense stress signals and convert them into cell biological responses leading to NF-κB activation. In this review we discuss their emerging reciprocal regulation and the significance of this interplay for anticancer therapy.
Collapse
Affiliation(s)
- Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, W12 0NN London, UK.
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
25
|
Jariyal H, Weinberg F, Achreja A, Nagarath D, Srivastava A. Synthetic lethality: a step forward for personalized medicine in cancer. Drug Discov Today 2020; 25:305-320. [DOI: 10.1016/j.drudis.2019.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
|
26
|
Jentsch M, Snyder P, Sheng C, Cristiano E, Loewer A. p53 dynamics in single cells are temperature-sensitive. Sci Rep 2020; 10:1481. [PMID: 32001771 PMCID: PMC6992775 DOI: 10.1038/s41598-020-58267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cells need to preserve genome integrity despite varying cellular and physical states. p53, the guardian of the genome, plays a crucial role in the cellular response to DNA damage by triggering cell cycle arrest, apoptosis or senescence. Mutations in p53 or alterations in its regulatory network are major driving forces in tumorigenesis. As multiple studies indicate beneficial effects for hyperthermic treatments during radiation- or chemotherapy of human cancers, we aimed to understand how p53 dynamics after genotoxic stress are modulated by changes in temperature across a physiological relevant range. To this end, we employed a combination of time-resolved live-cell microscopy and computational analysis techniques to characterise the p53 response in thousands of individual cells. Our results demonstrate that p53 dynamics upon ionizing radiation are temperature dependent. In the range of 33 °C to 39 °C, pulsatile p53 dynamics are modulated in their frequency. Above 40 °C, which corresponds to mild hyperthermia in a clinical setting, we observed a reversible phase transition towards sustained hyperaccumulation of p53 disrupting its canonical response to DNA double strand breaks. Moreover, we provide evidence that mild hyperthermia alone is sufficient to induce a p53 response in the absence of genotoxic stress. These insights highlight how the p53-mediated DNA damage response is affected by alterations in the physical state of a cell and how this can be exploited by appropriate timing of combination therapies to increase the efficiency of cancer treatments.
Collapse
Affiliation(s)
- Marcel Jentsch
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Petra Snyder
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Caibin Sheng
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Basel, Switzerland
| | - Elena Cristiano
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
27
|
Prognosis, Biology, and Targeting of TP53 Dysregulation in Multiple Myeloma. Cells 2020; 9:cells9020287. [PMID: 31991614 PMCID: PMC7072230 DOI: 10.3390/cells9020287] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer and is characterized by genetic features including translocations, chromosomal copy number aberrations, and mutations in key oncogene and tumor suppressor genes. Dysregulation of the tumor suppressor TP53 is important in the pathogenesis of many cancers, including MM. In newly-diagnosed MM patients, TP53 dysregulation occurs in three subsets: monoallelic deletion as part of deletion of chromosome 17p (del17p) (~8%), monoallelic mutations (~6%), and biallelic inactivation (~4%). Del17p is an established high-risk feature in MM and is included in current disease staging criteria. Biallelic inactivation and mutation have also been reported in MM patients but are not yet included in disease staging criteria for high-risk disease. Emerging clinical and genomics data suggest that the biology of high-risk disease is complex, and so far, traditional drug development efforts to target dysregulated TP53 have not been successful. Here we review the TP53 dysregulation literature in cancer and in MM, including the three segments of TP53 dysregulation observed in MM patients. We propose a reverse translational approach to identify novel targets and disease drivers from TP53 dysregulated patients to address the unmet medical need in this setting.
Collapse
|
28
|
Ramraj SK, Elayapillai SP, Pelikan RC, Zhao YD, Isingizwe ZR, Kennedy AL, Lightfoot SA, Benbrook DM. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53. Int J Cancer 2020; 147:1086-1097. [PMID: 31845320 DOI: 10.1002/ijc.32830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Current ovarian cancer maintenance therapy is limited by toxicity and no proven impact on overall survival. To study a maintenance strategy targeted at missense mutant p53, we hypothesized that the release of mutant p53 from mortalin inhibition by the SHetA2 drug combined with reactivation of mutant p53 with the PRIMA-1MET drug inhibits growth and tumor establishment synergistically in a mutant-p53 dependent manner. The Cancer Genome Atlas (TCGA) data and serous ovarian tumors were evaluated for TP53 and HSPA9/mortalin status. SHetA2 and PRIMA-1MET were tested in ovarian cancer cell lines and fallopian tube secretory epithelial cells using isobolograms, fluorescent cytometry, Western blots and ELISAs. Drugs were administered to mice after peritoneal injection of MESOV mutant p53 ovarian cancer cells and prior to tumor establishment, which was evaluated by logistic regression. Fifty-eight percent of TP53 mutations were missense and there were no mortalin mutations in TCGA high-grade serous ovarian cancers. Mortalin levels were sequentially increased in serous benign, borderline and carcinoma tumors. SHetA2 caused p53 nuclear and mitochondrial accumulation in cancer, but not in healthy, cells. Endogenous or exogenous mutant p53 increased SHetA2 resistance. PRIMA-1MET decreased this resistance and interacted synergistically with SHetA2 in mutant and wild type p53-expressing cell lines in association with elevated reactive oxygen species/ATP ratios. Tumor-free rates in animals were 0% (controls), 25% (PRIMA1MET ), 42% (SHetA2) and 67% (combination). SHetA2 (p = 0.004) and PRIMA1MET (p = 0.048) functioned additively in preventing tumor development with no observed toxicity. These results justify the development of SHetA2 and PRIMA-1MET alone and in combination for ovarian cancer maintenance therapy.
Collapse
Affiliation(s)
- Satish K Ramraj
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sugantha P Elayapillai
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Richard C Pelikan
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Yan D Zhao
- Biostatistics & Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zitha R Isingizwe
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Amy L Kennedy
- Department of Pathology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Stanley A Lightfoot
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Doris M Benbrook
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK.,Obstetrics and Gynecologic, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
29
|
Li J, Su T, Yang L, Deng L, Zhang C, He Y. High SLC17A9 expression correlates with poor survival in gastric carcinoma. Future Oncol 2019; 15:4155-4166. [PMID: 31799885 DOI: 10.2217/fon-2019-0283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To elucidate the clinicopathological significance and prognostic value of SLC17A9 expression in gastric carcinoma (GC). Methods: SLC17A9 mRNA level and its relationship with TP53 mutation was analyzed. SLC17A9 protein expression was examined by immunohistochemistry in 161 patients. Results: SLC17A9 mRNA and protein expression were higher in GC tissues than in adjacent normal tissues (p < 0.01). SLC17A9 mRNA expression was higher in GC tissues having mutated TP53 than in tissues with wild-type TP53 (p < 0.001). High SLC17A9 expression was also significantly associated with poor overall survival and recurrence-free survival and was also found to be an independent prognostic factor for long-term survival in GC patients.Conclusion: Our results show that SLC17A9 may serve as a potential prognostic biomarker in GC patients.
Collapse
Affiliation(s)
- Junqing Li
- Digestive Medicine Centre, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, PR China
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | - Taiqiang Su
- Digestive Medicine Centre, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, PR China
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | - Liang Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
- General Surgical Laboratory, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Lingna Deng
- Scientific Research Centre, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, PR China
| | - Changhua Zhang
- Digestive Medicine Centre, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, PR China
| | - Yulong He
- Digestive Medicine Centre, Seventh Affiliated Hospital, Sun Yat-sen University, 628 Zhenyuan Road, Shenzhen 518000, PR China
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
| |
Collapse
|
30
|
Chen JQ, Chen HY, Dai WJ, Lv QJ, Chen CYC. Artificial Intelligence Approach to Find Lead Compounds for Treating Tumors. J Phys Chem Lett 2019; 10:4382-4400. [PMID: 31304749 DOI: 10.1021/acs.jpclett.9b01426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
It has been demonstrated that MMP13 enzyme is related to most cancer cell tumors. The world's largest traditional Chinese medicine database was applied to screen for structure-based drug design and ligand-based drug design. To predict drug activity, machine learning models (Random Forest (RF), AdaBoost Regressor (ABR), Gradient Boosting Regressor (GBR)), and Deep Learning models were utilized to validate the Docking results, and we obtained an R2 of 0.922 on the training set and 0.804 on the test set in the RF algorithm. For the Deep Learning algorithm, R2 of the training set is 0.90, and R2 of the test set is 0.810. However, these TCM compounds fly away during the molecular dynamics (MD) simulation. We seek another method: peptide design. All peptide database were screened by the Docking process. Modification peptides were optimized the interaction modes, and the affinities were assessed with ZDOCK protocol and Refine Docked protein protocol. The 300 ns MD simulation evaluated the stability of receptor-peptide complexes. The double-site effect appeared on S2, a designed peptide based on a known inhibitor, when complexed with BCL2. S3, a designed peptide referred from endogenous inhibitor P16, competed against cyclin when binding with CDK6. The MDM2 inhibitors S5 and S6 were derived from the P53 structure and stable binding with MDM2. A flexible region of peptides S5 and S6 may enhance the binding ability by changing its own conformation, which was unforeseen. These peptides (S2, S3, S5, and S6) are potentially interesting to treat cancer; however, these findings need to be affirmed by biological testing, which will be conducted in the near future.
Collapse
Affiliation(s)
- Jian-Qiang Chen
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center , Sun Yat-sen University , Shenzhen 510275 , China
| | - Hsin-Yi Chen
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center , Sun Yat-sen University , Shenzhen 510275 , China
| | - Wen-Jie Dai
- School of Pharmacy , Sun Yat-sen University , Shenzhen 510275 , China
| | - Qiu-Jie Lv
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center , Sun Yat-sen University , Shenzhen 510275 , China
| | - Calvin Yu-Chian Chen
- School of Intelligent Systems Engineering, Artificial Intelligence Medical Center , Sun Yat-sen University , Shenzhen 510275 , China
- Department of Medical Research , China Medical University Hospital , Taichung 40447 , Taiwan
- Department of Bioinformatics and Medical Engineering , Asia University , Taichung 41354 , Taiwan
| |
Collapse
|
31
|
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther 2019; 202:149-164. [PMID: 31276706 DOI: 10.1016/j.pharmthera.2019.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Amanda Curl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Tomoo Iwakuma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Translational Laboratory Oncology Research, Children's Mercy Research Institute, Kansas City, MO 64108, USA.
| |
Collapse
|
32
|
Goswami MT, VanDenBerg KR, Han S, Wang LL, Singh B, Weiss T, Barlow M, Kamberov S, Wilder-Romans K, Rhodes DR, Feng FY, Tomlins SA. Identification of TP53RK-Binding Protein (TPRKB) Dependency in TP53-Deficient Cancers. Mol Cancer Res 2019; 17:1652-1664. [PMID: 31110156 DOI: 10.1158/1541-7786.mcr-19-0144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/28/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023]
Abstract
Tumor protein 53 (TP53; p53) is the most frequently altered gene in human cancer. Identification of vulnerabilities imposed by TP53 alterations may enable effective therapeutic approaches. Through analyzing short hairpin RNA (shRNA) screening data, we identified TP53RK-Binding Protein (TPRKB), a poorly characterized member of the tRNA-modifying EKC/KEOPS complex, as the most significant vulnerability in TP53-mutated cancer cell lines. In vitro and in vivo, across multiple benign-immortalized and cancer cell lines, we confirmed that TPRKB knockdown in TP53-deficient cells significantly inhibited proliferation, with minimal effect in TP53 wild-type cells. TP53 reintroduction into TP53-null cells resulted in loss of TPRKB sensitivity, confirming the importance of TP53 status in this context. In addition, cell lines with mutant TP53 or amplified MDM2 (E3-ubiquitin ligase for TP53) also showed high sensitivity to TPRKB knockdown, consistent with TPRKB dependence in a wide array of TP53-altered cancers. Depletion of other EKC/KEOPS complex members exhibited TP53-independent effects, supporting complex-independent functions of TPRKB. Finally, we found that TP53 indirectly mediates TPRKB degradation, which was rescued by coexpression of PRPK, an interacting member of the EKC/KEOPS complex, or proteasome inhibition. Together, these results identify a unique and specific requirement of TPRKB in a variety of TP53-deficient cancers. IMPLICATIONS: Cancer cells with genomic alterations in TP53 are dependent on TPRKB.
Collapse
Affiliation(s)
- Moloy T Goswami
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kelly R VanDenBerg
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sumin Han
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lei Lucy Wang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bhavneet Singh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Travis Weiss
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Myles Barlow
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Steven Kamberov
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan. .,Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
33
|
Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel) 2019; 11:cancers11050614. [PMID: 31052524 PMCID: PMC6563084 DOI: 10.3390/cancers11050614] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
The capability of cancer cells to manage stress induced by hypoxia, nutrient shortage, acidosis, redox imbalance, loss of calcium homeostasis and exposure to drugs is a key factor to ensure cancer survival and chemoresistance. Among the protective mechanisms utilized by cancer cells to cope with stress a pivotal role is played by the activation of heat shock proteins (HSP) response, anti-oxidant response induced by nuclear factor erythroid 2-related factor 2 (NRF2), the hypoxia-inducible factor-1 (HIF-1), the unfolded protein response (UPR) and autophagy, cellular processes strictly interconnected. However, depending on the type, intensity or duration of cellular stress, the balance between pro-survival and pro-death pathways may change, and cell survival may be shifted into cell death. Mutations of p53 (mutp53), occurring in more than 50% of human cancers, may confer oncogenic gain-of-function (GOF) to the protein, mainly due to its stabilization and interaction with the above reported cellular pathways that help cancer cells to adapt to stress. This review will focus on the interplay of mutp53 with HSPs, NRF2, UPR, and autophagy and discuss how the manipulation of these interconnected processes may tip the balance towards cell death or survival, particularly in response to therapies.
Collapse
|
34
|
Florescu-Ţenea RM, Kamal AM, Mitruţ P, Mitruţ R, Ilie DS, Nicolaescu AC, Mogoantă L. Colorectal Cancer: An Update on Treatment Options and Future Perspectives. CURRENT HEALTH SCIENCES JOURNAL 2019; 45:134-141. [PMID: 31624639 PMCID: PMC6778294 DOI: 10.12865/chsj.45.02.02] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/18/2019] [Indexed: 12/24/2022]
Abstract
Throughout the years, colorectal cancer has steadily become a global health problem. While other types of cancers have seen a decline in cases because of screening and vaccination programs, colorectal cancer has risen become the third most diagnosed cancer worldwide and, more worryingly, the second leading cancer-related cause of death. The introduction of targeted therapy has been widely considered a major paradigm shift in the treatment of colorectal cancer, which agents such as bevacizumab and cetuximab quickly becoming mainstay options in the treatment of locally advanced or metastatic disease. However, this type of treatment has also shown its limitations, with limited or no benefit for a large portion of the patients. With more and more knowledge being gathered on the molecular mechanisms which govern the malignant phenotype presented by colorectal cancer, scientists are engaged in a continuous effort to develop new therapies based on these discoveries.
Collapse
Affiliation(s)
- R M Florescu-Ţenea
- PhD Student, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - A M Kamal
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - P Mitruţ
- Department of Gastroenterology, "Renaşterea" Medical Center, Craiova, Romania
- Department of Semiology, University of Medicine and Pharmacy of Craiova, Romania
| | - R Mitruţ
- PhD Student, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - D S Ilie
- PhD Student, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| | - A C Nicolaescu
- PhD Student, Department of Surgery, University of Medicine and Pharmacy of Craiova, Romania
| | - L Mogoantă
- Department of Histology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
35
|
Zhou X, Hao Q, Lu H. Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol 2019; 11:293-305. [PMID: 30508182 PMCID: PMC6487791 DOI: 10.1093/jmcb/mjy072] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Since wild-type p53 is central for maintaining genomic stability and preventing oncogenesis, its coding gene TP53 is highly mutated in ~50% of human cancers, and its activity is almost abrogated in the rest of cancers. Approximately 80% of p53 mutations are single point mutations with several hotspot mutations. Besides loss of function and dominant-negative effect on the wild-type p53 activity, the hotspot p53 mutants also acquire new oncogenic functions, so-called 'gain-of-functions' (GOF). Because the GOF of mutant p53 is highly associated with late-stage malignance and drug resistance, these p53 mutants have become hot targets for developing novel cancer therapies. In this essay, we review some recent progresses in better understanding of the role of mutant p53 GOF in chemoresistance and the underlying mechanisms, and discuss the pros and cons of targeting mutant p53 for the development of anti-cancer therapies.
Collapse
Affiliation(s)
- Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, and Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
36
|
Wang L, Zhao T, Wang S, Jin J, Cai Y, Wang F. Expression, purification, and in vitro mitochondrial interaction analysis of full-length and truncated human tumor suppresser p53. Biosci Biotechnol Biochem 2019; 83:1220-1226. [PMID: 30898040 DOI: 10.1080/09168451.2019.1594674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p53 is a potent tumor suppressor which can prevent the propagation of cells carrying oncogenic lesions via a multitude of pathways. Besides the transactivation of downstream genes encoding proapoptotic proteins, p53 is also able to physically interact with mitochondria and induce apoptosis through a so called transcriptional-independent pathway. In this study, we described a quick method for the expression and purification of soluble recombinant p53 and its different truncations in E. coli. These proteins are able to interact with mitochondria and induce mitochondrial outer membrane permeabilization and associated downstream apoptotic events in a cell-free apoptosis analysis system.
Collapse
Affiliation(s)
- Lingyao Wang
- a School of Life Sciences , Jilin University , Changchun , Jilin , P.R. China
| | - Tong Zhao
- a School of Life Sciences , Jilin University , Changchun , Jilin , P.R. China
| | - Song Wang
- a School of Life Sciences , Jilin University , Changchun , Jilin , P.R. China
| | - Jingji Jin
- a School of Life Sciences , Jilin University , Changchun , Jilin , P.R. China.,b National Engineering Laboratory for AIDS Vaccine , Jilin University , Changchun , Jilin , P.R. China.,c Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education , Jilin University , Changchun , Jilin , P.R. China
| | - Yong Cai
- a School of Life Sciences , Jilin University , Changchun , Jilin , P.R. China.,b National Engineering Laboratory for AIDS Vaccine , Jilin University , Changchun , Jilin , P.R. China.,c Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education , Jilin University , Changchun , Jilin , P.R. China
| | - Fei Wang
- a School of Life Sciences , Jilin University , Changchun , Jilin , P.R. China.,b National Engineering Laboratory for AIDS Vaccine , Jilin University , Changchun , Jilin , P.R. China.,c Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education , Jilin University , Changchun , Jilin , P.R. China
| |
Collapse
|
37
|
Aning OA, Cheok CF. Drugging in the absence of p53. J Mol Cell Biol 2019; 11:255-264. [PMID: 30865230 PMCID: PMC6478123 DOI: 10.1093/jmcb/mjz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Inactivation of the p53 gene is a key driver of tumorigenesis in various cancer cohorts and types. The quest for a successful p53-based therapy that holds the promise of treating more than half of the cancer population has culminated in extensive knowledge about the role and function of p53 and led to new proposed innovative strategies against p53-defective cancers. We will discuss some of these latest studies with a focus on metabolic regulation and DNA damage response and also highlight novel functions of p53 in these pathways that may provide a contemporary rationale for targeting p53 loss in tumors.
Collapse
Affiliation(s)
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology, A*STAR, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
38
|
Zhou J, Li WL, Wang ZX, Chen NY, Tang Y, Hu XX, Deng JH, Lu Y, Lu GD. Varacin-1, a novel analog of varacin C, induces p53-independent apoptosis in cancer cells through ROS-mediated reduction of XIAP. Acta Pharmacol Sin 2019; 40:222-230. [PMID: 29773887 DOI: 10.1038/s41401-018-0005-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Varacin C is a promising anticancer agent and possesses acid-promoted and photo-induced DNA-damaging activities. In this study, we synthesized an analog varacin-1 (VCA-1) and examined its anticancer potentials. The results demonstrated that VCA-1 caused dose-dependent apoptotic cell death in cancer cells. Note that this action is independent of p53 status, because VCA-1 induced similar levels of apoptosis in two different panels of cell lines (HCT116 p53- wild-type vs. HCT116 p53-knockout colon cancer cells, and p53-expressing U2OS vs. p53-deficient saos2 osteosarcoma cancer cells). VCA-1-induced apoptosis was found to be mainly via the extrinsic apoptosis pathway involving caspase-8 activation and XIAP reduction. Forced over-expression of XIAP markedly prevented apoptosis, indicating its essential role in VCA-1 induced apoptosis. On the other hand, VCA-1 treatment enhanced intracellular ROS (reactive oxygen species) generation also in a p53-independent manner, and consequently promoted caspase activation. Pretreatment of N-acetyl cysteine (an antioxidant), rather than z-VAD (specific caspase inhibitor), markedly prevented XIAP reduction, suggesting that XIAP reduction may be resulted from oxidative stress. In conclusion, data from this study reveal the essential roles of ROS generation and XIAP reduction in VCA-1-induced apoptosis in cancer cells. VCA-1 may be a novel cancer therapeutic agent, especially in p53-mutant human cancers.
Collapse
|
39
|
Schirmer B, Giehl K, Kubatzky KF. Report of the Signal Transduction Society Meeting 2018-Signaling: From Past to Future. Int J Mol Sci 2019; 20:ijms20010227. [PMID: 30626122 PMCID: PMC6337256 DOI: 10.3390/ijms20010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
The annual meeting “Signal Transduction—Receptors, Mediators, and Genes” of the Signal Transduction Society (STS) is an interdisciplinary conference open to all scientists sharing the common interest in elucidating signaling pathways in physiological or pathological processes in humans, animals, plants, fungi, prokaryotes, and protists. On the occasion of the 20th anniversary of the STS, the 22nd joint meeting took place in Weimar from 5–7 November 2018. With the focus topic “Signaling: From Past to Future” the evolution of the multifaceted research concerning signal transduction since foundation of the society was highlighted. Invited keynote speakers introduced the respective workshop topics and were followed by numerous speakers selected from the submitted abstracts. All presentations were lively discussed during the workshops. Here, we provide a concise summary of the various workshops and further aspects of the scientific program.
Collapse
Affiliation(s)
- Bastian Schirmer
- Institut für Pharmakologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Klaudia Giehl
- Signaltransduktion zellulärer Motilität, Innere Medizin V, Justus-Liebig-Universität Giessen, Aulweg 128, 35392 Giessen, Germany.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Rotblat B, Agostini M, Niklison-Chirou MV, Amelio I, Willis AE, Melino G. Sustained protein synthesis and reduced eEF2K levels in TAp73 -\- mice brain: a possible compensatory mechanism. Cell Cycle 2018; 17:2637-2643. [PMID: 30507330 DOI: 10.1080/15384101.2018.1553341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factor p73 is a member of the p53 family, of which the transactivation domain containing isoform (TAp73) plays key roles in brain development and neuronal stem cells. TAp73 also facilitates homoeostasis and prevents oxidative damage in vivo by inducing the expression of its target genes. Recently, we found that in addition to its role in regulation of transcription, TAp73 also affects mRNA translation. In cultured cells, acute TAp73 depletion activates eEF2K, which phosphorylates eEF2 reducing mRNA translation elongation. As a consequence, there is a reduction in global proteins synthesis rates and reprogramming of the translatome, leading to a selective decrease in the translation of rRNA processing factors. Given the dramatic effects of Tap73 depletion in vitro it was important to determine whether similar effects were observed in vivo. Here, we report the surprising finding that in brains of TAp73 KO mice there is a reduced level of eEF2K, which allows protein synthesis rates to be maintained suggesting a compensation model. These data provide new insights to the role of TAp73 in translation regulation and the eEF2K pathway in the brain.
Collapse
Affiliation(s)
- Barak Rotblat
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,b Department of Life Sciences , Ben Gurion University in the Negev , Beer Sheva , Israel
| | - Massimiliano Agostini
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,c Department of Experimental Medicine and Surgery, IDI-IRCCS , University of Rome Tor Vergata , Rome , Italy
| | - Maria Victoria Niklison-Chirou
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,d Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry , Queen Mary University of London , London , UK
| | - Ivano Amelio
- a MRC Toxicology Unit , University of Cambridge , Rome , UK
| | - Anne E Willis
- a MRC Toxicology Unit , University of Cambridge , Rome , UK
| | - Gerry Melino
- a MRC Toxicology Unit , University of Cambridge , Rome , UK.,c Department of Experimental Medicine and Surgery, IDI-IRCCS , University of Rome Tor Vergata , Rome , Italy
| |
Collapse
|
41
|
Tee SH. Mechanism diagrams and abstraction-by-aggregation. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2018; 71:17-25. [PMID: 30318277 DOI: 10.1016/j.shpsc.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/01/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
Mechanism diagrams exhibit visually the organized parts and operations of a biological mechanism. A mechanism diagram can facilitate mechanistic research by providing a mechanistic explanation of the phenomenon of interest. Much research has been focusing on the mechanistic explanation and the explanatory mechanistic models. As a specific type of scientific diagram, a simple mechanism diagram can be explanatory by drawing on the rich explanatory resources of non-depicted background knowledge. The relationship between the visually depicted and the background knowledge is underexplored. It is unclear how the non-depicted background knowledge of a mechanism diagram contributes to providing a better-informed explanation of the phenomenon of interest in biological sciences. With the aim to explore this relationship, I articulate that a mechanism diagram provides a mechanistic explanation by a process called abstraction-by-aggregation. Through visual cues, the unified relevant background knowledge provides an epistemic access to a better-informed explanation.
Collapse
Affiliation(s)
- Sim-Hui Tee
- Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia.
| |
Collapse
|
42
|
Abstract
The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field.
Collapse
Affiliation(s)
- Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
43
|
Orlowska E, Babak MV, Dömötör O, Enyedy EA, Rapta P, Zalibera M, Bučinský L, Malček M, Govind C, Karunakaran V, Farid YCS, McDonnell TE, Luneau D, Schaniel D, Ang WH, Arion VB. NO Releasing and Anticancer Properties of Octahedral Ruthenium–Nitrosyl Complexes with Equatorial 1H-Indazole Ligands. Inorg Chem 2018; 57:10702-10717. [DOI: 10.1021/acs.inorgchem.8b01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ewelina Orlowska
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Maria V. Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| | - Eva A. Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Michal Zalibera
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Lukáš Bučinský
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Michal Malček
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019 Kerala India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019 Kerala India
| | | | - Tara E. McDonnell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Dominique Luneau
- Laboratoire des Multimatériaux et Interfaces (UMR5615), Université Claude Bernard Lyon 1, Campus de la Doua, 69622 Villeurbanne Cedex, France
| | | | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
44
|
Sinkala M, Mulder N, Martin DP. Integrative landscape of dysregulated signaling pathways of clinically distinct pancreatic cancer subtypes. Oncotarget 2018; 9:29123-29139. [PMID: 30018740 PMCID: PMC6044387 DOI: 10.18632/oncotarget.25632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Despite modern therapeutic advances, the survival prospects of pancreatic cancer patients have remained poor. Besides being highly metastatic, pancreatic cancer is challenging to treat because it is caused by a heterogeneous array of somatic mutations that impact a variety of signaling pathways and cellular regulatory systems. Here we use publicly available transcriptomic, copy number alteration and mutation profiling datasets from pancreatic cancer patients together with data on disease outcomes to show that the three major pancreatic cancer subtypes each display distinctive aberrations in cell signaling and metabolic pathways. Importantly, patients afflicted with these different pancreatic cancer subtypes also exhibit distinctive survival profiles. Within these patients, we find that dysregulation of the phosphoinositide 3-kinase and mitogen-activated protein kinase pathways, and p53 mediated disruptions of cell cycle processes are apparently drivers of disease. Further, we identify for the first time the molecular perturbations of signalling networks that are likely the primary causes of oncogenesis in each of the three pancreatic cancer subtypes.
Collapse
Affiliation(s)
- Musalula Sinkala
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Observatory, 7925, South Africa
| | - Nicola Mulder
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Observatory, 7925, South Africa
| | - Darren Patrick Martin
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Observatory, 7925, South Africa
| |
Collapse
|
45
|
Nie J, Yang HM, Sun CY, Liu YL, Zhuo JY, Zhang ZB, Lai XP, Su ZR, Li YC. Scutellarin Enhances Antitumor Effects and Attenuates the Toxicity of Bleomycin in H22 Ascites Tumor-Bearing Mice. Front Pharmacol 2018; 9:615. [PMID: 29962947 PMCID: PMC6011816 DOI: 10.3389/fphar.2018.00615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
Bleomycin (BLM) is a broad spectrum anti-tumor drug and inducing pulmonary fibrosis. As an anti-tumor drug without immunosuppression, it is urgent to find a drug that reduces the side effects of BLM. Scutellarin (SCU), a flavone extracted from Erigeron breviscapus (Vant.) Hand-Mazz, has anti-inflammatory activity and ability to inhibit tumor cell growth, migration, and invasion. However, the combined role of SCU and BLM treatment in tumor is unclear. This study aimed to investigate the possible effect and related mechanisms of BLM combined with SCU in the treatment of tumor through in vivo and in vitro experiments. In vivo experiments showed that BLM combined with SCU in the treatment of mice bearing H22 ascites tumor prolonged the survival time, alleviated BLM-induced pulmonary fibrosis, reduced the production of TNF-α; IL-6, and the levels of MDA and MPO. BLM combined with SCU increased the apoptotic rate of H22 ascites cells and the levels of cleaved-caspases-3 and -8. Furthermore, BLM combined with SCU increased the protein expression of p53 and gene expression of miR-29b, and decreased the expression of TGF-β1. In vitro experiment results showed that BLM combined with SCU inhibited the viability of H22 cells and MRC-5 cells, promoted H22 cell apoptosis, up-regulated the protein expression of p53 and down-regulated the protein expression of α-SMA and collagen-I in MRC-5 cells. These experimental results suggested that SCU could enhance the anti-tumor effect of BLM and reduce BLM-induced pulmonary fibrosis, indicating SCU as a potential adjuvant for BLM in the future.
Collapse
Affiliation(s)
- Juan Nie
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Mei Yang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao-Yue Sun
- Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, China
| | - Yan-Lu Liu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Yi Zhuo
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen-Biao Zhang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ping Lai
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-Ren Su
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Cui Li
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
McGowan EM, Lin Y, Hatoum D. Good Guy or Bad Guy? The Duality of Wild-Type p53 in Hormone-Dependent Breast Cancer Origin, Treatment, and Recurrence. Cancers (Basel) 2018; 10:cancers10060172. [PMID: 29857525 PMCID: PMC6025368 DOI: 10.3390/cancers10060172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
"Lactation is at one point perilously near becoming a cancerous process if it is at all arrested", Beatson, 1896. Most breast cancers arise from the milk-producing cells that are characterized by aberrant cellular, molecular, and epigenetic translation. By understanding the underlying molecular disruptions leading to the origin of cancer, we might be able to design novel strategies for more efficacious treatments or, ambitiously, divert the cancerous process. It is an established reality that full-term pregnancy in a young woman provides a lifetime reduction in breast cancer risk, whereas delay in full-term pregnancy increases short-term breast cancer risk and the probability of latent breast cancer development. Hormonal activation of the p53 protein (encode by the TP53 gene) in the mammary gland at a critical time in pregnancy has been identified as one of the most important determinants of whether the mammary gland develops latent breast cancer. This review discusses what is known about the protective influence of female hormones in young parous women, with a specific focus on the opportune role of wild-type p53 reprogramming in mammary cell differentiation. The importance of p53 as a protector or perpetrator in hormone-dependent breast cancer, resistance to treatment, and recurrence is also explored.
Collapse
Affiliation(s)
- Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
47
|
Vikhreva P, Melino G, Amelio I. p73 Alternative Splicing: Exploring a Biological Role for the C-Terminal Isoforms. J Mol Biol 2018; 430:1829-1838. [PMID: 29733853 PMCID: PMC5995411 DOI: 10.1016/j.jmb.2018.04.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
p73 (encoded by TP73 gene) is a p53 related protein that functions as a transcriptional factor. Similarly to p53, following DNA damage, p73 is stabilized and activated and controls expression of target genes that are involved in the regulation of cycle arrest and apoptosis. However, great complexity to the function of this gene is given by the wide range of its non-tumor-related roles, which include neurological development, ciliogenesis and fertility. From the structural point of view, p73 displays an intricate range of regulations because it can be expressed both as an N-terminally deleted dominant-negative isoforms and as multiple alternatively spliced C-terminal isoforms, which can include or not a sterile alpha motif domain. More is known about the functions of the N-terminal isoforms of p73 (TAp73 and ΔNp73) and their opposing pro- and anti-apoptotic roles, whereas the functional differences of the distinct C-terminal splice forms of p73 are very far away from been defined. Here we summarize the current available literature regarding p73 C-terminal isoforms and the contribution of the sterile alpha motif domain to p73 function, trying to provide an unified view in this complex and sometime controversial field. Current data indicate that the full-length, TAp73α, is the major, if not the exclusive, isoform detected in physiological systems, indicating that detailed spatio-temporal expression analysis and functional studies are highly demanded to support a physiological role for the p73 alternative splicing. With this article, we also aim to emphasize the need to further investigation on the topic, refocusing the attention on what we believe are the most relevant unanswered questions.
Collapse
Affiliation(s)
- Polina Vikhreva
- MRC Toxicology Unit, University of Cambridge, United Kingdom
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, United Kingdom; Department of Experimental Medicine and Surgery, IDI-IRCCS, University of Rome Tor Vergata, Italy
| | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, United Kingdom.
| |
Collapse
|
48
|
p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res 2018; 131:75-86. [DOI: 10.1016/j.phrs.2018.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
|
49
|
Fumarola C, Petronini PG, Alfieri R. Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 2018. [PMID: 29530507 DOI: 10.1016/j.bcp.2018.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell metabolic reprogramming is one of the main hallmarks of cancer and many oncogenic pathways that drive the cancer-promoting signals also drive the altered metabolism. This review focuses on recent data on the use of oncogene-targeting agents as potential modulators of deregulated metabolism in different solid cancers. Many drugs, originally designed to inhibit a specific target, then have turned out to have different effects involving also cell metabolism, which may contribute to the mechanisms underlying the growth inhibitory activity of these drugs. Metabolic reprogramming may also represent a way by which cancer cells escape from the selective pressure of targeted drugs and become resistant. Here we discuss how targeting metabolism could emerge as a new effective strategy to overcome such resistance. Finally, accumulating evidence indicates that cancer metabolic rewiring may have profound effects on tumor-infiltrating immune cells. Modulating cancer metabolic pathways through oncogene-targeting agents may not only restore more favorable conditions for proper lymphocytes activation, but also increase the persistence of memory T cells, thereby improving the efficacy of immune-surveillance.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
50
|
Toren A, Pismenyuk T, Yalon M, Freedman S, Simon AJ, Fisher T, Moshe I, Reichardt JKV, Constantini S, Mardor Y, Last D, Guez D, Daniels D, Assoulin M, Mehrian-Shai R. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems. Oncotarget 2018; 7:74860-74871. [PMID: 27556862 PMCID: PMC5342707 DOI: 10.18632/oncotarget.11382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/26/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients.
Collapse
Affiliation(s)
- Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tatyana Pismenyuk
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Shani Freedman
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Amos J Simon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tamar Fisher
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Itai Moshe
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv-Sourasky Medical Center, Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - David Guez
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dianne Daniels
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Moria Assoulin
- The Advanced Technology Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ruty Mehrian-Shai
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer Affiliated to The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|