1
|
Midlej V, Tenaglia AH, Luján HD, de Souza W. Tunneling Nanotube-like Structures in Giardia duodenalis. Cells 2024; 13:1538. [PMID: 39329722 PMCID: PMC11430593 DOI: 10.3390/cells13181538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Giardia doudenalis (lamblia, intestinalis) is a protozoan parasite that inhabits the lumen of the upper small intestine of vertebrates, causing chronic abdominal pains and severe diarrhea, symptoms of giardiasis, a persistent and recurrent infection. This characteristic is mainly due to the presence of membrane variant-specific surface proteins (VSPs) that give this parasite the ability to successively infect the host through antigenic variation. Using high-resolution scanning microscopy (HR-SM), we observed the presence, formation, and extension of tunneling-nanotube-like surface structures in Giardia, especially following parasite challenges with VSP antibodies. They were seen all over the parasite surface, both in vitro and in vivo, showing that G. duodenalis nanotube formation occurs in complex environments such as the gut. In addition, we also observed that some of these nanotubes displayed a periodic strangulation that produces 100 nm vesicles that seemed to be released in a process similar to that previously observed in Trypanosoma brucei. The presence of nanotube-like structures in G. duodenalis highlights yet another strategy of cellular communication utilized by these parasites, whether between themselves or with the host cell.
Collapse
Affiliation(s)
- Victor Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Albano H. Tenaglia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba 5004, Argentina
| | - Hugo D. Luján
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
3
|
Dullweber T, Erzberger A. Mechanochemical feedback loops in contact-dependent fate patterning. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 32-33:None. [PMID: 37090955 PMCID: PMC10112234 DOI: 10.1016/j.coisb.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To reliably form and maintain structures with specific functions, many multicellular systems evolved to leverage the interplay between biochemical signaling, mechanics, and morphology. We review mechanochemical feedback loops in cases where cell-cell contact-based Notch signaling drives fate decisions, and the corresponding differentiation process leads to contact remodeling. We compare different mechanisms for initial symmetry breaking and subsequent pattern refinement, as well as discuss how patterning outcomes depend on the relationship between biochemical and mechanical timescales. We conclude with an overview of new approaches, including the study of synthetic circuits, and give an outlook on future experimental and theoretical developments toward dissecting and harnessing mechanochemical feedback.
Collapse
Affiliation(s)
- T. Dullweber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| | - A. Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg, 69117, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, 69120, Germany
| |
Collapse
|
4
|
Jahnke R, Matthiesen S, Zaeck LM, Finke S, Knittler MR. Chlamydia trachomatis Cell-to-Cell Spread through Tunneling Nanotubes. Microbiol Spectr 2022; 10:e0281722. [PMID: 36219107 PMCID: PMC9769577 DOI: 10.1128/spectrum.02817-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Tunneling nanotubes (TNTs) are transient cellular connections that consist of dynamic membrane protrusions. They play an important role in cell-to-cell communication and mediate the intercellular exchanges of molecules and organelles. TNTs can form between different cell types and may contribute to the spread of pathogens by serving as cytoplasmic corridors. We demonstrate that Chlamydia (C.) trachomatis-infected human embryonic kidney (HEK) 293 cells and other cells form TNT-like structures through which reticulate bodies (RBs) pass into uninfected cells. Observed TNTs have a life span of 1 to 5 h and contain microtubules, which are essential for chlamydial transfer. They can bridge distances of up to 50 μm between connecting neighboring cells. Consistent with the biological role for TNTs, we show that C. trachomatis spread also occurs under conditions in which the extracellular route of chlamydial entry into host cells is blocked. Based on our findings, we propose that TNTs play a critical role in the direct, cell-to-cell transmission of chlamydia. IMPORTANCE Intracellular bacterial pathogens often undergo a life cycle in which they parasitize infected host cells in membranous vacuoles. Two pathways have been described by which chlamydia can exit infected host cells: lytic cell destruction or exit via extrusion formation. Whether direct, cell-to-cell contact may also play a role in the spread of infection is unknown. Tunneling nanotubes (TNTs) interconnect the cytoplasm of adjacent cells to mediate efficient communication and the exchange of material between them. We used Chlamydia trachomatis and immortalized cells to analyze whether TNTs mediate bacterial transmission from an infected donor to uninfected acceptor cells. We show that chlamydia-infected cells build TNTs through which the intracellular reticulate bodies (RBs) of the chlamydia can pass into uninfected neighboring cells. Our study contributes to the understanding of the function of TNTs in the cell-to-cell transmission of intracellular pathogens and provides new insights into the strategies by which chlamydia spreads among multicellular tissues.
Collapse
Affiliation(s)
- Rico Jahnke
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Svea Matthiesen
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| |
Collapse
|
5
|
Ceran Y, Ergüder H, Ladner K, Korenfeld S, Deniz K, Padmanabhan S, Wong P, Baday M, Pengo T, Lou E, Patel CB. TNTdetect.AI: A Deep Learning Model for Automated Detection and Counting of Tunneling Nanotubes in Microscopy Images. Cancers (Basel) 2022; 14:4958. [PMID: 36230881 PMCID: PMC9562025 DOI: 10.3390/cancers14194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Tunneling nanotubes (TNTs) are cellular structures connecting cell membranes and mediating intercellular communication. TNTs are manually identified and counted by a trained investigator; however, this process is time-intensive. We therefore sought to develop an automated approach for quantitative analysis of TNTs. METHODS We used a convolutional neural network (U-Net) deep learning model to segment phase contrast microscopy images of both cancer and non-cancer cells. Our method was composed of preprocessing and model development. We developed a new preprocessing method to label TNTs on a pixel-wise basis. Two sequential models were employed to detect TNTs. First, we identified the regions of images with TNTs by implementing a classification algorithm. Second, we fed parts of the image classified as TNT-containing into a modified U-Net model to estimate TNTs on a pixel-wise basis. RESULTS The algorithm detected 49.9% of human expert-identified TNTs, counted TNTs, and calculated the number of TNTs per cell, or TNT-to-cell ratio (TCR); it detected TNTs that were not originally detected by the experts. The model had 0.41 precision, 0.26 recall, and 0.32 f-1 score on a test dataset. The predicted and true TCRs were not significantly different across the training and test datasets (p = 0.78). CONCLUSIONS Our automated approach labeled and detected TNTs and cells imaged in culture, resulting in comparable TCRs to those determined by human experts. Future studies will aim to improve on the accuracy, precision, and recall of the algorithm.
Collapse
Affiliation(s)
- Yasin Ceran
- School of Information Systems and Technology, San José State University, San José, CA 95192, USA
- Department of Management Information Systems, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hamza Ergüder
- Department of Electronics and Communication Engineering, Yildiz Technical University, 34349 Istanbul, Turkey
| | - Katherine Ladner
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sophie Korenfeld
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Karina Deniz
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sanyukta Padmanabhan
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Phillip Wong
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Pengo
- Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emil Lou
- Department of Medicine Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Chirag B. Patel
- Department of Neuro-Oncology, MD Anderson Cancer Center, The University of Texas System, Houston, TX 77030, USA
- Neuroscience Graduate Program, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Cancer Biology Graduate Program, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
6
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Engevik MA, Engevik AC. Myosins and membrane trafficking in intestinal brush border assembly. Curr Opin Cell Biol 2022; 77:102117. [PMID: 35870341 DOI: 10.1016/j.ceb.2022.102117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
Myosins are a class of motors that participate in a wide variety of cellular functions including organelle transport, cell adhesion, endocytosis and exocytosis, movement of RNA, and cell motility. Among the emerging roles for myosins is regulation of the assembly, morphology, and function of actin protrusions such as microvilli. The intestine harbors an elaborate apical membrane composed of highly organized microvilli. Microvilli assembly and function are intricately tied to several myosins including Myosin 1a, non-muscle Myosin 2c, Myosin 5b, Myosin 6, and Myosin 7b. Here, we review the research progress made in our understanding of myosin mediated apical assembly.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina
| | - Amy C Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina.
| |
Collapse
|
8
|
Kann AP, Hung M, Wang W, Nguyen J, Gilbert PM, Wu Z, Krauss RS. An injury-responsive Rac-to-Rho GTPase switch drives activation of muscle stem cells through rapid cytoskeletal remodeling. Cell Stem Cell 2022; 29:933-947.e6. [PMID: 35597234 PMCID: PMC9177759 DOI: 10.1016/j.stem.2022.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/14/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Many tissues harbor quiescent stem cells that are activated upon injury, subsequently proliferating and differentiating to repair tissue damage. Mechanisms by which stem cells sense injury and transition from quiescence to activation, however, remain largely unknown. Resident skeletal muscle stem cells (MuSCs) are essential orchestrators of muscle regeneration and repair. Here, with a combination of in vivo and ex vivo approaches, we show that quiescent MuSCs have elaborate, Rac GTPase-promoted cytoplasmic projections that respond to injury via the upregulation of Rho/ROCK signaling, facilitating projection retraction and driving downstream activation events. These early events involve rapid cytoskeletal rearrangements and occur independently of exogenous growth factors. This mechanism is conserved across a broad range of MuSC activation models, including injury, disease, and genetic loss of quiescence. Our results redefine MuSC activation and present a central mechanism by which quiescent stem cells initiate responses to injury.
Collapse
Affiliation(s)
- Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Wang
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
| | - Zhuhao Wu
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
10
|
Ma N, Chen D, Lee JH, Kuri P, Hernandez EB, Kocan J, Mahmood H, Tichy ED, Rompolas P, Mourkioti F. Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. SCIENCE ADVANCES 2022; 8:eabn0485. [PMID: 35302846 PMCID: PMC8932657 DOI: 10.1126/sciadv.abn0485] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/26/2022] [Indexed: 05/08/2023]
Abstract
Muscle stem cells (MuSCs) are essential for tissue homeostasis and regeneration, but the potential contribution of MuSC morphology to in vivo function remains unknown. Here, we demonstrate that quiescent MuSCs are morphologically heterogeneous and exhibit different patterns of cellular protrusions. We classified quiescent MuSCs into three functionally distinct stem cell states: responsive, intermediate, and sensory. We demonstrate that the shift between different stem cell states promotes regeneration and is regulated by the sensing protein Piezo1. Pharmacological activation of Piezo1 is sufficient to prime MuSCs toward more responsive cells. Piezo1 deletion in MuSCs shifts the distribution toward less responsive cells, mimicking the disease phenotype we find in dystrophic muscles. We further demonstrate that Piezo1 reactivation ameliorates the MuSC morphological and regenerative defects of dystrophic muscles. These findings advance our fundamental understanding of how stem cells respond to injury and identify Piezo1 as a key regulator for adjusting stem cell states essential for regeneration.
Collapse
Affiliation(s)
- Nuoying Ma
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia Chen
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ji-Hyung Lee
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paola Kuri
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Blake Hernandez
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Kocan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamd Mahmood
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisia D. Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Lacoste J, Soula H, Burg A, Audibert A, Darnat P, Gho M, Louvet-Vallée S. A neural progenitor mitotic wave is required for asynchronous axon outgrowth and morphology. eLife 2022; 11:75746. [PMID: 35254258 PMCID: PMC8933001 DOI: 10.7554/elife.75746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Spatiotemporal mechanisms generating neural diversity are fundamental for understanding neural processes. Here, we investigated how neural diversity arises from neurons coming from identical progenitors. In the dorsal thorax of Drosophila, rows of mechanosensory organs originate from the division of sensory organ progenitor (SOPs). We show that in each row of the notum, an anteromedial located central SOP divides first, then neighbouring SOPs divide, and so on. This centrifugal wave of mitoses depends on cell-cell inhibitory interactions mediated by SOP cytoplasmic protrusions and Scabrous, a secreted protein interacting with the Delta/Notch complex. Furthermore, when this mitotic wave was reduced, axonal growth was more synchronous, axonal terminals had a complex branching pattern and fly behaviour was impaired. We show that the temporal order of progenitor divisions influences the birth order of sensory neurons, axon branching and impact on grooming behaviour. These data support the idea that developmental timing controls axon wiring neural diversity.
Collapse
Affiliation(s)
- Jérôme Lacoste
- UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
| | - Hédi Soula
- NutriOmics Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Angélique Burg
- UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
| | - Agnès Audibert
- UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
| | - Pénélope Darnat
- UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
| | - Michel Gho
- UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
| | - Sophie Louvet-Vallée
- UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
| |
Collapse
|
12
|
Patel A, Wu Y, Han X, Su Y, Maugel T, Shroff H, Roy S. Cytonemes coordinate asymmetric signaling and organization in the Drosophila muscle progenitor niche. Nat Commun 2022; 13:1185. [PMID: 35246530 PMCID: PMC8897416 DOI: 10.1038/s41467-022-28587-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/02/2022] [Indexed: 12/29/2022] Open
Abstract
Asymmetric signaling and organization in the stem-cell niche determine stem-cell fates. Here, we investigate the basis of asymmetric signaling and stem-cell organization using the Drosophila wing-disc that creates an adult muscle progenitor (AMP) niche. We show that AMPs extend polarized cytonemes to contact the disc epithelial junctions and adhere themselves to the disc/niche. Niche-adhering cytonemes localize FGF-receptor to selectively adhere to the FGF-producing disc and receive FGFs in a contact-dependent manner. Activation of FGF signaling in AMPs, in turn, reinforces disc-specific cytoneme polarity/adhesion, which maintains their disc-proximal positions. Loss of cytoneme-mediated adhesion promotes AMPs to lose niche occupancy and FGF signaling, occupy a disc-distal position, and acquire morphological hallmarks of differentiation. Niche-specific AMP organization and diversification patterns are determined by localized expression and presentation patterns of two different FGFs in the wing-disc and their polarized target-specific distribution through niche-adhering cytonemes. Thus, cytonemes are essential for asymmetric signaling and niche-specific AMP organization.
Collapse
Affiliation(s)
- Akshay Patel
- grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA
| | - Yicong Wu
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| | - Xiaofei Han
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| | - Yijun Su
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD USA
| | - Tim Maugel
- grid.164295.d0000 0001 0941 7177Department of Biology, Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD USA
| | - Hari Shroff
- grid.94365.3d0000 0001 2297 5165Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD USA
| | - Sougata Roy
- grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA
| |
Collapse
|
13
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
14
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
15
|
Romero JJ, De Rossi MC, Oses C, Echegaray CV, Verneri P, Francia M, Guberman A, Levi V. Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biol 2022; 20:6. [PMID: 34996451 PMCID: PMC8742348 DOI: 10.1186/s12915-021-01207-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cytoskeleton is a key component of the system responsible for transmitting mechanical cues from the cellular environment to the nucleus, where they trigger downstream responses. This communication is particularly relevant in embryonic stem (ES) cells since forces can regulate cell fate and guide developmental processes. However, little is known regarding cytoskeleton organization in ES cells, and thus, relevant aspects of nuclear-cytoskeletal interactions remain elusive. RESULTS We explored the three-dimensional distribution of the cytoskeleton in live ES cells and show that these filaments affect the shape of the nucleus. Next, we evaluated if cytoskeletal components indirectly modulate the binding of the pluripotency transcription factor OCT4 to chromatin targets. We show that actin depolymerization triggers OCT4 binding to chromatin sites whereas vimentin disruption produces the opposite effect. In contrast to actin, vimentin contributes to the preservation of OCT4-chromatin interactions and, consequently, may have a pro-stemness role. CONCLUSIONS Our results suggest roles of components of the cytoskeleton in shaping the nucleus of ES cells, influencing the interactions of the transcription factor OCT4 with the chromatin and potentially affecting pluripotency and cell fate.
Collapse
Affiliation(s)
- Juan José Romero
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - María Cecilia De Rossi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Camila Vázquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, C1428EGA, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Matkó J, Tóth EA. Membrane nanotubes are ancient machinery for cell-to-cell communication and transport. Their interference with the immune system. Biol Futur 2021; 72:25-36. [PMID: 34554502 PMCID: PMC7869423 DOI: 10.1007/s42977-020-00062-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022]
Abstract
Nanotubular connections between mammalian cell types came into the focus only two decades ago, when “live cell super-resolution imaging” was introduced. Observations of these long-time overlooked structures led to understanding mechanisms of their growth/withdrawal and exploring some key genetic and signaling factors behind their formation. Unbelievable level of multiple supportive collaboration between tumor cells undergoing cytotoxic chemotherapy, cross-feeding” between independent bacterial strains or “cross-dressing” collaboration of immune cells promoting cellular immune response, all via nanotubes, have been explored recently. Key factors and "calling signals" determining the spatial directionality of their growth and their overall in vivo significance, however, still remained debated. Interestingly, prokaryotes, including even ancient archaebacteria, also seem to use such NT connections for intercellular communication. Herein, we will give a brief overview of current knowledge of membrane nanotubes and depict a simple model about their possible “historical role”.
Collapse
Affiliation(s)
- János Matkó
- Department of Immunology, Institute of Biology, Eötvös Loránd University, H-1117 Pázmány Péter sétány 1/C, Budapest, Hungary.
| | - Eszter Angéla Tóth
- ATRC Aurigon Toxicological Research Center, H-2120 Pálya utca 2, Dunakeszi, Hungary
| |
Collapse
|
17
|
Putavet DA, de Keizer PLJ. Residual Disease in Glioma Recurrence: A Dangerous Liaison with Senescence. Cancers (Basel) 2021; 13:1560. [PMID: 33805316 PMCID: PMC8038015 DOI: 10.3390/cancers13071560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation. These residual, therapy-resistant cells lead to rapid recurrence, against which no effective treatment exists to date. Thus, new experimental approaches need to be developed against residual disease to prevent GBM survival and recurrence. Cellular senescence is an attractive area for the development of such new approaches. Senescence can occur in healthy cells when they are irreparably damaged. Senescent cells develop a chronic secretory phenotype that is generally considered pro-tumorigenic and pro-migratory. Age is a negative prognostic factor for GBM stage, and, with age, senescence steadily increases. Moreover, chemo-/radiotherapy can provide an additional increase in senescence close to the tumor. In light of this, we will review the importance of senescence in the tumor-supportive brain parenchyma, focusing on the invasion and growth of GBM in residual disease. We will propose a future direction on the application of anti-senescence therapies against recurrent GBM.
Collapse
Affiliation(s)
| | - Peter L. J. de Keizer
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands;
| |
Collapse
|
18
|
Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P. Mitochondrial Transfer in Cancer: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22063245. [PMID: 33806730 PMCID: PMC8004668 DOI: 10.3390/ijms22063245] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Depending on their tissue of origin, genetic and epigenetic marks and microenvironmental influences, cancer cells cover a broad range of metabolic activities that fluctuate over time and space. At the core of most metabolic pathways, mitochondria are essential organelles that participate in energy and biomass production, act as metabolic sensors, control cancer cell death, and initiate signaling pathways related to cancer cell migration, invasion, metastasis and resistance to treatments. While some mitochondrial modifications provide aggressive advantages to cancer cells, others are detrimental. This comprehensive review summarizes the current knowledge about mitochondrial transfers that can occur between cancer and nonmalignant cells. Among different mechanisms comprising gap junctions and cell-cell fusion, tunneling nanotubes are increasingly recognized as a main intercellular platform for unidirectional and bidirectional mitochondrial exchanges. Understanding their structure and functionality is an important task expected to generate new anticancer approaches aimed at interfering with gains of functions (e.g., cancer cell proliferation, migration, invasion, metastasis and chemoresistance) or damaged mitochondria elimination associated with mitochondrial transfer.
Collapse
|
19
|
Zhu C, Shi Y, You J. Immune Cell Connection by Tunneling Nanotubes: The Impact of Intercellular Cross-Talk on the Immune Response and Its Therapeutic Applications. Mol Pharm 2021; 18:772-786. [PMID: 33529022 DOI: 10.1021/acs.molpharmaceut.0c01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Direct intercellular communication is an important prerequisite for the development of multicellular organisms, the regeneration of tissue, and the maintenance of various physiological activities. Tunnel nanotubes (TNTs), which have diameters of approximately 50-1500 nm and lengths of up to several cell diameters, can connect cells over long distances and have emerged as one of the most important recently discovered types of efficient communication between cells. Moreover, TNTs can also directly transfer organelles, vehicles, proteins, genetic material, ions, and small molecules from one cell to adjacent and even distant cells. However, the mechanism of intercellular communication between various immune cells within the complex immune system has not been fully elucidated. Studies in the past decades have confirmed the existence of TNTs in many types of cells, especially in various kinds of immune cells. TNTs display different structural and functional characteristics between and within different immunocytes, playing a major role in the transmission of signals across various kinds of immune cells. In this review, we introduce the discovery and structure of TNTs, as well as their different functional properties within different immune cells. We also discuss the roles of TNTs in potentiating the immune response and their potential therapeutic applications.
Collapse
Affiliation(s)
- Chunqi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
20
|
Antel M, Baena V, Terasaki M, Inaba M. Ultrastructural Analysis of Cell-Cell Interactions in Drosophila Ovary. Methods Mol Biol 2021; 2346:79-90. [PMID: 33460026 DOI: 10.1007/7651_2020_342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila ovary is an exceptional model for studying cell-cell interactions in vivo. Cells communicate with each other in a highly coordinated manner. Accurate spatiotemporal regulation of cell-cell interaction is critical for the development of eggs. Ultrastructural analysis using electron microscopy (EM) permits the visualization of both cells and subcellular signaling structures with high resolution. Here we describe a method for the processing of intact fly ovaries by scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
21
|
Kim Y, Lindberg E, Bleck CKE, Glancy B. Endothelial cell nanotube insertions into cardiac and skeletal myocytes during coordinated tissue development. Cardiovasc Res 2020; 116:260-261. [PMID: 31688919 DOI: 10.1093/cvr/cvz285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yuho Kim
- National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr Room B1D416, Bethesda, MD 20892, USA
| | - Eric Lindberg
- National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr Room B1D416, Bethesda, MD 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr Room B1D416, Bethesda, MD 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Dr Room B1D416, Bethesda, MD 20892, USA.,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
TRPV4 activates the Cdc42/N-wasp pathway to promote glioblastoma invasion by altering cellular protrusions. Sci Rep 2020; 10:14151. [PMID: 32843668 PMCID: PMC7447819 DOI: 10.1038/s41598-020-70822-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The invasion ability of glioblastoma (GBM) causes tumor cells to infiltrate the surrounding brain parenchyma and leads to poor outcomes. Transient receptor potential vanilloid 4 (TRPV4) exhibits a remarkable role in cancer cell motility, but the contribution of TRPV4 to glioblastoma metastasis is not fully understood. Here, we reported that TRPV4 expression was significantly elevated in malignant glioma compared to normal brain and low-grade glioma, and TRPV4 expression was negatively correlated with the prognosis of glioma patients. Functionally, stimulation of TRPV4 promoted glioblastoma cell migration and invasion, and repression of TRPV4 hindered the migration and invasion of glioblastoma cells in vitro. Molecularly, TRPV4 strongly colocalized and interacted with skeletal protein-F-actin at cellular protrusions, and TRPV4 regulated the formation of invadopodia and filopodia in glioblastoma cells. Furthermore, the Cdc42/N-wasp axis mediated the effect of TRPV4-regulated cellular protrusions and invasion. Foremost, TRPV4 inhibitor treatment or downregulation of TRPV4 significantly reduced the invasion-growth of subcutaneously and intracranially transplanted glioblastoma in mice. In conclusion, the TRPV4/Cdc42/wasp signaling axis regulates cellular protrusion formation in glioblastoma cells and influences the invasion-growth phenotype of glioblastoma in vivo. TRPV4 may serve as a prognostic factor and specific therapeutic target for GBM patients.
Collapse
|
23
|
RSU-1 Maintains Integrity of Caenorhabditis elegans Vulval Muscles by Regulating α-Actinin. G3-GENES GENOMES GENETICS 2020; 10:2507-2517. [PMID: 32461202 PMCID: PMC7341117 DOI: 10.1534/g3.120.401185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Egg-laying behavior in Caenorhabditis elegans is a well-known model for investigating fundamental cellular processes. In egg-laying, muscle contraction is the relaxation of the vulval muscle to extrude eggs from the vulva. Unlike skeletal muscle, vulval muscle lacks visible striations of the sarcomere. Therefore, vulval muscle must counteract the mechanical stress, caused by egg extrusion and body movement, from inducing cell-shape distortion by maintaining its cytoskeletal integrity. However, the underlying mechanisms that regulate the cellular integrity in vulval muscles remain unclear. Here, we demonstrate that C. elegans egg-laying requires proper vulval muscle 1 (vm1), in which the actin bundle organization of vm1 muscles is regulated by Ras suppressor protein 1 (RSU-1). In the loss of RSU-1, as well as RasLET-60 overactivation, blister-like membrane protrusions and disorganized actin bundles were observed in the vm1 muscles. Moreover, RasLET-60 depletion diminished the defected actin-bundles in rsu-1 mutant. These results reveal the genetic interaction of RSU-1 and RasLET-60 in vivo In addition, our results further demonstrated that the fifth to seventh leucine-rich region of RSU-1 is required to promote actin-bundling protein, α-actinin, for actin bundle stabilization in the vm1 muscles. This expands our understanding of the molecular mechanisms of actin bundle organization in a specialized smooth muscle.
Collapse
|
24
|
Movilla N, Valero C, Borau C, García-Aznar JM. Matrix degradation regulates osteoblast protrusion dynamics and individual migration. Integr Biol (Camb) 2020; 11:404-413. [PMID: 31922533 DOI: 10.1093/intbio/zyz035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/06/2019] [Accepted: 10/19/2019] [Indexed: 01/21/2023]
Abstract
Protrusions are one of the structures that cells use to sense their surrounding environment in a probing and exploratory manner as well as to communicate with other cells. In particular, osteoblasts embedded within a 3D matrix tend to originate a large number of protrusions compared to other type of cells. In this work, we study the role that mechanochemical properties of the extracellular matrix (ECM) play on the dynamics of these protrusions, namely, the regulation of the size and number of emanating structures. In addition, we also determine how the dynamics of the protrusions may lead the 3D movement of the osteoblasts. Significant differences were found in protrusion size and cell velocity, when degradation activity due to metalloproteases was blocked by means of an artificial broad-spectrum matrix metalloproteinase inhibitor, whereas stiffening of the matrix by introducing transglutaminase crosslinking, only induced slight changes in both protrusion size and cell velocity, suggesting that the ability of cells to create a path through the matrix is more critical than the matrix mechanical properties themselves. To confirm this, we developed a cell migration computational model in 3D including both the mechanical and chemical properties of the ECM as well as the protrusion mechanics, obtaining good agreement with experimental results.
Collapse
Affiliation(s)
- Nieves Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Clara Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
25
|
Tunneling Nanotubes and the Eye: Intercellular Communication and Implications for Ocular Health and Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7246785. [PMID: 32352005 PMCID: PMC7171654 DOI: 10.1155/2020/7246785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Cellular communication is an essential process for the development and maintenance of all tissues including the eye. Recently, a new method of cellular communication has been described, which relies on formation of tubules, called tunneling nanotubes (TNTs). These structures connect the cytoplasm of adjacent cells and allow the direct transport of cellular cargo between cells without the need for secretion into the extracellular milieu. TNTs may be an important mechanism for signaling between cells that reside long distances from each other or for cells in aqueous environments, where diffusion-based signaling is challenging. Given the wide range of cargoes transported, such as lysosomes, endosomes, mitochondria, viruses, and miRNAs, TNTs may play a role in normal homeostatic processes in the eye as well as function in ocular disease. This review will describe TNT cellular communication in ocular cell cultures and the mammalian eye in vivo, the role of TNTs in mitochondrial transport with an emphasis on mitochondrial eye diseases, and molecules involved in TNT biogenesis and their function in eyes, and finally, we will describe TNT formation in inflammation, cancer, and stem cells, focusing on pathological processes of particular interest to vision scientists.
Collapse
|
26
|
Niche Cell Wrapping Ensures Primordial Germ Cell Quiescence and Protection from Intercellular Cannibalism. Curr Biol 2020; 30:708-714.e4. [PMID: 32008902 DOI: 10.1016/j.cub.2019.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/12/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022]
Abstract
Niche cells often wrap membrane extensions around stem cell surfaces. Niche wrapping has been proposed to retain stem cells in defined positions and affect signaling [e.g., 1, 2]. To test these hypotheses and uncover additional functions of wrapping, we investigated niche wrapping of primordial germ cells (PGCs) in the C. elegans embryonic gonad primordium. The gonad primordium contains two PGCs that are wrapped individually by two somatic gonad precursor cells (SGPs). SGPs are known to promote PGC survival during embryogenesis and exit from quiescence after hatching, although how they do so is unknown [3]. Here, we identify two distinct functions of SGP wrapping that are critical for PGC quiescence and survival. First, niche cell wrapping templates a laminin-based basement membrane around the gonad primordium. Laminin and the basement membrane receptor dystroglycan function to maintain niche cell wrapping, which is critical for normal gonad development. We find that laminin also preserves PGC quiescence during embryogenesis. Exit from quiescence following laminin depletion requires glp-1/Notch and is accompanied by inappropriate activation of the GLP-1 target sygl-1 in PGCs. Independent of basement membrane, SGP wrapping performs a second, crucial function to ensure PGC survival. Endodermal cells normally engulf and degrade large lobes extended by the PGCs [4]. When SGPs are absent, we show that endodermal cells can inappropriately engulf and cannibalize the PGC cell body. Our findings demonstrate how niche cell wrapping protects germ cells by manipulating their signaling environment and by shielding germ cells from unwanted cellular interactions that can compromise their survival.
Collapse
|
27
|
Hadjivasiliou Z, Moore RE, McIntosh R, Galea GL, Clarke JDW, Alexandre P. Basal Protrusions Mediate Spatiotemporal Patterns of Spinal Neuron Differentiation. Dev Cell 2020; 49:907-919.e10. [PMID: 31211994 PMCID: PMC6584357 DOI: 10.1016/j.devcel.2019.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
During early spinal cord development, neurons of particular subtypes differentiate with a sparse periodic pattern while later neurons differentiate in the intervening space to eventually produce continuous columns of similar neurons. The mechanisms that regulate this spatiotemporal pattern are unknown. In vivo imaging in zebrafish reveals that differentiating spinal neurons transiently extend two long protrusions along the basal surface of the spinal cord before axon initiation. These protrusions express Delta protein, consistent with the hypothesis they influence Notch signaling at a distance of several cell diameters. Experimental reduction of Laminin expression leads to smaller protrusions and shorter distances between differentiating neurons. The experimental data and a theoretical model support the proposal that neuronal differentiation pattern is regulated by transient basal protrusions that deliver temporally controlled lateral inhibition mediated at a distance. This work uncovers a stereotyped protrusive activity of newborn neurons that organize long-distance spatiotemporal patterning of differentiation.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Rachel E Moore
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK
| | - Rebecca McIntosh
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK; Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Paula Alexandre
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
28
|
Kuret T, Sodin-Šemrl S, Mrak-Poljšak K, Čučnik S, Lakota K, Erman A. Interleukin-1β Induces Intracellular Serum Amyloid A1 Expression in Human Coronary Artery Endothelial Cells and Promotes its Intercellular Exchange. Inflammation 2020; 42:1413-1425. [PMID: 31011929 DOI: 10.1007/s10753-019-01003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Serum amyloid A (SAA) is an acute-phase protein with important, pathogenic role in the development of atherosclerosis. Since dysfunctional endothelium represents a key early step in atherogenesis, we aimed to determine whether induced human coronary artery endothelial cells (HCAEC) modulate SAA1/2/4 expression and influence intracellular location and intercellular transport of SAA1. HCAEC were stimulated with 1 ng/ml IL-1β, 10 ng/ml IL-6, and/or 1 μM dexamethasone for 24 h. QPCR, Western blots, ELISA, and immunofluorescent labeling were performed for detection of SAA1/2/4 mRNA and protein levels, respectively. In SAA1 transport experiments, FITC- or Cy3-labeled SAA1 were added to HCAEC separately, for 24 h, followed by a combined incubation of SAA1-FITC and SAA1-Cy3 positive cells, with IL-1β and analysis by flow cytometry. IL-1β upregulated SAA1 (119.9-fold, p < 0.01) and SAA2 (9.3-fold; p < 0.05) mRNA expression levels, while mRNA expression of SAA4 was not affected. Intracellular SAA1 was found mainly as a monomer, while SAA2 and SAA4 formed octamers as analyzed by Western blots. Within HCAEC, SAA1/2/4 located mostly to the perinuclear area and tunneling membrane nanotubes. Co-culturing of SAA1-FITC and SAA1-Cy3 positive cells for 48 h showed a significantly higher percentage of double positive cells in IL-1β-stimulated (mean ± SD; 60 ± 4%) vs. non-stimulated cells (48 ± 2%; p < 0.05). IL-1β induces SAA1 expression in HCAEC and promotes its intercellular exchange, suggesting that direct communication between cells in inflammatory conditions could ultimately lead to faster development of atherosclerosis in coronary arteries.
Collapse
Affiliation(s)
- Tadeja Kuret
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova 62, SI-1000, Ljubljana, Slovenia.
- Faculty of Pharmacy, Chair of Clinical Biochemistry, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia.
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova 62, SI-1000, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000, Koper, Slovenia
| | - Katjuša Mrak-Poljšak
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova 62, SI-1000, Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova 62, SI-1000, Ljubljana, Slovenia
- Faculty of Pharmacy, Chair of Clinical Biochemistry, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Vodnikova 62, SI-1000, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000, Koper, Slovenia
| | - Andreja Erman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
29
|
Korenkova O, Pepe A, Zurzolo C. Fine intercellular connections in development: TNTs, cytonemes, or intercellular bridges? Cell Stress 2020; 4:30-43. [PMID: 32043076 PMCID: PMC6997949 DOI: 10.15698/cst2020.02.212] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intercellular communication is a fundamental property of multicellular organisms, necessary for their adequate responses to changing environment. Tunneling nanotubes (TNTs) represent a novel means of intercellular communication being a long cell-to-cell conduit. TNTs are actively formed under a broad range of stresses and are also proposed to exist under physiological conditions. Development is a physiological condition of particular interest, as it requires fine coordination. Here we discuss whether protrusions shown to exist during embryonic development of different species could be TNTs or if they represent other types of cell structure, like cytonemes or intercellular bridges, that are suggested to play an important role in development.
Collapse
Affiliation(s)
- Olga Korenkova
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.,Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Anna Pepe
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Chiara Zurzolo
- Unit of Membrane Traffic and Pathogenesis, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
30
|
Matejka N, Reindl J. Perspectives of cellular communication through tunneling nanotubes in cancer cells and the connection to radiation effects. Radiat Oncol 2019; 14:218. [PMID: 31796110 PMCID: PMC6889217 DOI: 10.1186/s13014-019-1416-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Direct cell-to-cell communication is crucial for the survival of cells in stressful situations such as during or after radiation exposure. This communication can lead to non-targeted effects, where non-treated or non-infected cells show effects induced by signal transduction from non-healthy cells or vice versa. In the last 15 years, tunneling nanotubes (TNTs) were identified as membrane connections between cells which facilitate the transfer of several cargoes and signals. TNTs were identified in various cell types and serve as promoter of treatment resistance e.g. in chemotherapy treatment of cancer. Here, we discuss our current understanding of how to differentiate tunneling nanotubes from other direct cellular connections and their role in the stress reaction of cellular networks. We also provide a perspective on how the capability of cells to form such networks is related to the ability to surpass stress and how this can be used to study radioresistance of cancer cells.
Collapse
Affiliation(s)
- Nicole Matejka
- Institut für angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Judith Reindl
- Institut für angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
31
|
Endow SA, Miller SE, Ly PT. Mitochondria-enriched protrusions are associated with brain and intestinal stem cells in Drosophila. Commun Biol 2019; 2:427. [PMID: 31799429 PMCID: PMC6874589 DOI: 10.1038/s42003-019-0671-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Brain stem cells stop dividing in late Drosophila embryos and begin dividing again in early larvae after feeding induces reactivation. Quiescent neural stem cells (qNSCs) display an unusual cytoplasmic protrusion that is no longer present in reactivated NSCs. The protrusions join the qNSCs to the neuropil, brain regions that are thought to maintain NSCs in an undifferentiated state, but the function of the protrusions is not known. Here we show that qNSC protrusions contain clustered mitochondria that are likely maintained in position by slow forward-and-backward microtubule growth. Larvae treated with a microtubule-stabilizing drug show bundled microtubules and enhanced mitochondrial clustering in NSCs, together with reduced qNSC reactivation. We further show that intestinal stem cells contain mitochondria-enriched protrusions. The qNSC and intestinal stem-cell protrusions differ from previously reported cytoplasmic extensions by forming stem-cell-to-niche mitochondrial bridges that could potentially both silence genes and sense signals from the stem cell niche.
Collapse
Affiliation(s)
- Sharyn A. Endow
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, 169857 Singapore
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| | - Phuong Thao Ly
- Programme in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, 169857 Singapore
| |
Collapse
|
32
|
Prominin-1 Modulates Rho/ROCK-Mediated Membrane Morphology and Calcium-Dependent Intracellular Chloride Flux. Sci Rep 2019; 9:15911. [PMID: 31685837 PMCID: PMC6828804 DOI: 10.1038/s41598-019-52040-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/12/2019] [Indexed: 01/18/2023] Open
Abstract
Membrane morphology is an important structural determinant as it reflects cellular functions. The pentaspan membrane protein Prominin-1 (Prom1/CD133) is known to be localised to protrusions and plays a pivotal role in migration and the determination of cellular morphology; however, the underlying mechanism of its action have been elusive. Here, we performed molecular characterisation of Prom1, focussing primarily on its effects on cell morphology. Overexpression of Prom1 in RPE-1 cells triggers multiple, long, cholesterol-enriched fibres, independently of actin and microtubule polymerisation. A five amino acid stretch located at the carboxyl cytosolic region is essential for fibre formation. The small GTPase Rho and its downstream Rho-associated coiled-coil-containing protein kinase (ROCK) are also essential for this process, and active Rho colocalises with Prom1 at the site of initialisation of fibre formation. In mouse embryonic fibroblast (MEF) cells we show that Prom1 is required for chloride ion efflux induced by calcium ion uptake, and demonstrate that fibre formation is closely associated with chloride efflux activity. Collectively, these findings suggest that Prom1 affects cell morphology and contributes to chloride conductance.
Collapse
|
33
|
Keratinocytes Share Gene Expression Fingerprint with Epidermal Langerhans Cells via mRNA Transfer. J Invest Dermatol 2019; 139:2313-2323.e8. [DOI: 10.1016/j.jid.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
34
|
Abstract
Conserved morphogenetic signaling proteins disperse across tissues to generate signal and signaling gradients, which in turn are considered to assign positional coordinates to the recipient cells. Recent imaging studies in Drosophila model have provided evidence for a "direct-delivery" mechanism of signal dispersion that is mediated by specialized actin-rich signaling filopodia, named cytonemes. Cytonemes establish contact between the signal-producing and target cells to directly exchange and transport the morphogenetic proteins. Although an increasing amount of evidence supports the critical role of these specialized signaling structures, imaging these highly dynamic 200 nm-thin structures in the complex three-dimensional contour of living tissues is challenging. Here, we describe the imaging methods that we optimized for studying cytonemes in Drosophila embryos.
Collapse
|
35
|
Ruf-Zamojski F, Ge Y, Pincas H, Shan J, Song Y, Hines N, Kelley K, Montagna C, Nair P, Toufaily C, Bernard DJ, Mellon PL, Nair V, Turgeon JL, Sealfon SC. Cytogenetic, Genomic, and Functional Characterization of Pituitary Gonadotrope Cell Lines. J Endocr Soc 2019; 3:902-920. [PMID: 31020055 PMCID: PMC6469952 DOI: 10.1210/js.2019-00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
LβT2 and αT3-1 are important, widely studied cell line models for the pituitary gonadotropes that were generated by targeted tumorigenesis in transgenic mice. LβT2 cells are more mature gonadotrope precursors than αT3-1 cells. Microsatellite authentication patterns, chromosomal characteristics, and their intercellular variation have not been reported. We performed microsatellite and cytogenetic analysis of both cell types at early passage numbers. Short tandem repeat (STR) profiling was consistent with a mixed C57BL/6J × BALB/cJ genetic background, with distinct patterns for each cell type. Spectral karyotyping in αT3-1 cells revealed cell-to-cell variation in chromosome composition and pseudodiploidy. In LβT2 cells, chromosome counting and karyotyping demonstrated pseudotriploidy and high chromosomal variation among cells. Chromosome copy number variation was confirmed by single-cell DNA sequencing. Chromosomal compositions were consistent with a male sex for αT3-1 and a female sex for LβT2 cells. Among LβT2 stocks used in multiple laboratories, we detected two genetically similar but distinguishable lines via STR authentication, LβT2a and LβT2b. The two lines differed in morphological appearance, with LβT2a having significantly smaller cell and nucleus areas. Analysis of immediate early gene and gonadotropin subunit gene expression revealed variations in basal expression and responses to continuous and pulsatile GnRH stimulation. LβT2a showed higher basal levels of Egr1, Fos, and Lhb but lower Fos induction. Fshb induction reached significance only in LβT2b cells. Our study highlights the heterogeneity in gonadotrope cell line genomes and provides reference STR authentication patterns that can be monitored to improve experimental reproducibility and facilitate comparisons of results within and across laboratories.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jidong Shan
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Yinghui Song
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Nika Hines
- Mouse Genetics and Gene Targeting CoRE, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Kelley
- Mouse Genetics and Gene Targeting CoRE, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cristina Montagna
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Pranav Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Venugopalan Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judith L Turgeon
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
36
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
37
|
Caviglia S, Ober EA. Non-conventional protrusions: the diversity of cell interactions at short and long distance. Curr Opin Cell Biol 2018; 54:106-113. [DOI: 10.1016/j.ceb.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 01/04/2023]
|
38
|
Deneke VE, Di Talia S. Chemical waves in cell and developmental biology. J Cell Biol 2018; 217:1193-1204. [PMID: 29317529 PMCID: PMC5881492 DOI: 10.1083/jcb.201701158] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022] Open
Abstract
Many biological events, such as the propagation of nerve impulses, the synchronized cell cycles of early embryogenesis, and collective cell migration, must be coordinated with remarkable speed across very large distances. Such rapid coordination cannot be achieved by simple diffusion of molecules alone and requires specialized mechanisms. Although active transport can provide a directed and efficient way to travel across subcellular structures, it cannot account for the most rapid examples of coordination found in biology. Rather, these appear to be driven by mechanisms involving traveling waves of chemical activities that are able to propagate information rapidly across biological or physical systems. Indeed, recent advances in our ability to probe the dynamics of signaling pathways are revealing many examples of coordination of cellular and developmental processes through traveling chemical waves. Here, we will review the theoretical principles underlying such waves; highlight recent literature on their role in different contexts, ranging from chemotaxis to development; and discuss open questions and future perspectives on the study of chemical waves as an essential feature of cell and tissue physiology.
Collapse
Affiliation(s)
- Victoria E Deneke
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| |
Collapse
|
39
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
Vincent AE, Turnbull DM, Eisner V, Hajnóczky G, Picard M. Mitochondrial Nanotunnels. Trends Cell Biol 2017; 27:787-799. [PMID: 28935166 PMCID: PMC5749270 DOI: 10.1016/j.tcb.2017.08.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 01/13/2023]
Abstract
Insight into the regulation of complex physiological systems emerges from understanding how biological units communicate with each other. Recent findings show that mitochondria communicate at a distance with each other via nanotunnels, thin double-membrane protrusions that connect the matrices of non-adjacent mitochondria. Emerging evidence suggest that mitochondrial nanotunnels are generated by immobilized mitochondria and transport proteins. This review integrates data from the evolutionarily conserved structure and function of intercellular projections in bacteria with recent developments in mitochondrial imaging that permit nanotunnel visualization in eukaryotes. Cell type-specificity, timescales, and the selective size-based diffusion of biomolecules along nanotunnels are also discussed. The joining of individual mitochondria into dynamic networks of communicating organelles via nanotunnels and other mechanisms has major implications for organelle and cellular behaviors.
Collapse
Affiliation(s)
- Amy E Vincent
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Veronica Eisner
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, The Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA; Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA.
| |
Collapse
|
41
|
Imaging Tunneling Membrane Tubes Elucidates Cell Communication in Tumors. Trends Cancer 2017; 3:678-685. [PMID: 28958386 DOI: 10.1016/j.trecan.2017.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/13/2017] [Accepted: 08/08/2017] [Indexed: 02/03/2023]
Abstract
Intercellular communication is a vital yet underdeveloped aspect of cancer pathobiology. This Opinion article reviews the importance and challenges of microscopic imaging of tunneling nanotubes (TNTs) in the complex tumor microenvironment. The use of advanced microscopy to characterize TNTs in vitro and ex vivo, and related extensions called tumor microtubes (TMs) reported in gliomas in vivo, has propelled this field forward. This topic is important because the identification of TNTs and TMs fills the gap in our knowledge of how cancer cells communicate at long range in vivo, inducing intratumor heterogeneity and resistance to treatment. Here we discuss the concept that TNTs/TMs fill an important niche in the ever-changing microenvironment and the role of advanced microscopic imaging to elucidate that niche.
Collapse
|
42
|
Affiliation(s)
- Martin Guilliams
- Lab of Immunoregulation and Mucosal Immunology, VIB Centre for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Abstract
Many stem cell niches contain support cells that increase contact with stem cells by enwrapping them in cellular processes. One example is the germ stem cell niche in C. elegans, which is composed of a single niche cell termed the distal tip cell (DTC) that extends cellular processes, constructing an elaborate plexus that enwraps germ stem cells. To identify genes required for plexus formation and to explore the function of this specialized enwrapping behavior, a series of targeted and tissue-specific RNAi screens were performed. Here we identify genes that promote stem cell enwrapment by the DTC plexus, including a set that specifically functions within the DTC, such as the chromatin modifier lin-40/MTA1, and others that act within the germline, such as the 14-3-3 signaling protein par-5. Analysis of genes that function within the germline to mediate plexus development reveal that they are required for expansion of the germ progenitor zone, supporting the emerging idea that germ stem cells signal to the niche to stimulate enwrapping behavior. Examination of wild-type animals with asymmetric plexus formation and animals with reduced DTC plexus elaboration via loss of two candidates including lin-40 indicate that cellular enwrapment promotes GLP-1/Notch signaling and germ stem cell fate. Together, our work identifies novel regulators of cellular enwrapment and suggests that reciprocal signaling between the DTC niche and the germ stem cells promotes enwrapment behavior and stem cell fate.
Collapse
|
44
|
Wilcockson SG, Sutcliffe C, Ashe HL. Control of signaling molecule range during developmental patterning. Cell Mol Life Sci 2017; 74:1937-1956. [PMID: 27999899 PMCID: PMC5418326 DOI: 10.1007/s00018-016-2433-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Tissue patterning, through the concerted activity of a small number of signaling pathways, is critical to embryonic development. While patterning can involve signaling between neighbouring cells, in other contexts signals act over greater distances by traversing complex cellular landscapes to instruct the fate of distant cells. In this review, we explore different strategies adopted by cells to modulate signaling molecule range to allow correct patterning. We describe mechanisms for restricting signaling range and highlight how such short-range signaling can be exploited to not only control the fate of adjacent cells, but also to generate graded signaling within a field of cells. Other strategies include modulation of signaling molecule action by tissue architectural properties and the use of cellular membranous structures, such as signaling filopodia and exosomes, to actively deliver signaling ligands to target cells. Signaling filopodia can also be deployed to reach out and collect particular signals, thereby precisely controlling their site of action.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
45
|
Vu TQ, de Castro RMB, Qin L. Bridging the gap: microfluidic devices for short and long distance cell-cell communication. LAB ON A CHIP 2017; 17:1009-1023. [PMID: 28205652 PMCID: PMC5473339 DOI: 10.1039/c6lc01367h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell-cell communication is a crucial component of many biological functions. For example, understanding how immune cells and cancer cells interact, both at the immunological synapse and through cytokine secretion, can help us understand and improve cancer immunotherapy. The study of how cells communicate and form synaptic connections is important in neuroscience, ophthalmology, and cancer research. But in order to increase our understanding of these cellular phenomena, better tools need to be developed that allow us to study cell-cell communication in a highly controlled manner. Some technical requirements for better communication studies include manipulating cells spatiotemporally, high resolution imaging, and integrating sensors. Microfluidics is a powerful platform that has the ability to address these requirements and other current limitations. In this review, we describe some new advances in microfluidic technologies that have provided researchers with novel methods to study intercellular communication. The advantages of microfluidics have allowed for new capabilities in both single cell-cell communication and population-based communication. This review highlights microfluidic communication devices categorized as "short distance", or primarily at the single cell level, and "long distance", which mostly encompasses population level studies. Future directions and translation/commercialization will also be discussed.
Collapse
Affiliation(s)
- Timothy Quang Vu
- Department of Bioengineering, Rice University, Houston, TX 77030, USA and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ricardo Miguel Bessa de Castro
- College of Engineering, Swansea University Singleton Park, Swansea, UK and Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA. and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
46
|
Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzás EI, Buck AH, de Candia P, Chow FWN, Das S, Driedonks TAP, Fernández-Messina L, Haderk F, Hill AF, Jones JC, Van Keuren-Jensen KR, Lai CP, Lässer C, Liegro ID, Lunavat TR, Lorenowicz MJ, Maas SLN, Mäger I, Mittelbrunn M, Momma S, Mukherjee K, Nawaz M, Pegtel DM, Pfaffl MW, Schiffelers RM, Tahara H, Théry C, Tosar JP, Wauben MHM, Witwer KW, Nolte-'t Hoen ENM. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell Vesicles 2017; 6:1286095. [PMID: 28326170 PMCID: PMC5345583 DOI: 10.1080/20013078.2017.1286095] [Citation(s) in RCA: 525] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/25/2016] [Indexed: 02/07/2023] Open
Abstract
The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.
Collapse
Affiliation(s)
- Bogdan Mateescu
- Department of Biology, Swiss Federal Institute of Technology Zurich (ETH Zürich) , Zurich , Switzerland
| | - Emma J K Kowal
- Department of Biology, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, UMC Utrecht , Utrecht , the Netherlands
| | - Sabine Bartel
- Experimental Asthma Research, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL) , Borstel , Germany
| | - Suvendra N Bhattacharyya
- Department of Science and Technology, CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University , Budapest , Hungary
| | - Amy H Buck
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | | | - Franklin W N Chow
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Saumya Das
- Cardiovascular Research Institute, Massachusetts General Hospital , Boston , MA , USA
| | - Tom A P Driedonks
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| | | | - Franziska Haderk
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medicine, Helen Diller Family Comprehensive Cancer Center, UC San Francisco, San Francisco, CA, USA
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora , Australia
| | - Jennifer C Jones
- Molecular Immunogenetics & Vaccine Research Section, Vaccine Branch, CCR, NCI , Bethesda , MD , USA
| | | | - Charles P Lai
- Institute of Biomedical Engineering, National Tsing Hua University , Hsinchu , Taiwan
| | - Cecilia Lässer
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA; Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Italia di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo , Palermo , Italy
| | - Taral R Lunavat
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA; Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magdalena J Lorenowicz
- Center for Molecular Medicine, University Medical Center Utrecht & Regenerative Medicine Center , Utrecht , the Netherlands
| | - Sybren L N Maas
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School , Boston , MA , USA
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Institute of Technology, University of Tartu, Tartu, Estonia
| | - Maria Mittelbrunn
- Instituto de Investigación del Hospital 12 de Octubre , Madrid , Spain
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School , Frankfurt am Main , Germany
| | - Kamalika Mukherjee
- Department of Science and Technology, CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Muhammed Nawaz
- Department of Pathology and Forensic Medicine, Ribeirão Preto School of Medicine, University of Sao Paulo , Sao Paulo , Brazil
| | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, VU University Medical Center , Amsterdam , the Netherlands
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich (TUM) Weihenstephan , Freising , Germany
| | - Raymond M Schiffelers
- Laboratory Clinical Chemistry & Haematology, University Medical Center Utrecht , Utrecht , the Netherlands
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute of Biomedical & Health Sciences, Hiroshima University , Hiroshima , Japan
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932 , Paris , France
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Nuclear Research Center, Faculty of Science, Universidad de la República , Montevideo , Uruguay
| | - Marca H M Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology and Department of Neurology, The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University , Utrecht , the Netherlands
| |
Collapse
|
47
|
Yamashita YM. Cellular fingers take hold. eLife 2016; 5. [PMID: 27502558 PMCID: PMC4978518 DOI: 10.7554/elife.19405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 12/03/2022] Open
Abstract
Invaginations in the membranes of embryonic cells appear to orient cell division in sea squirts.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|
48
|
Camley BA, Zimmermann J, Levine H, Rappel WJ. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance. PLoS Comput Biol 2016; 12:e1005008. [PMID: 27367541 PMCID: PMC4930173 DOI: 10.1371/journal.pcbi.1005008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster's size-clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion.
Collapse
Affiliation(s)
- Brian A. Camley
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Juliane Zimmermann
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
49
|
Schwan C, Aktories K. Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins. Curr Top Microbiol Immunol 2016; 399:35-51. [PMID: 27726005 DOI: 10.1007/82_2016_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large group of bacterial protein toxins, including binary ADP-ribosylating toxins, modify actin at arginine-177, thereby actin polymerization is blocked and the actin cytoskeleton is redistributed. Modulation of actin functions largely affects other components of the cytoskeleton, especially microtubules and septins. Here, recent findings about the functional interconnections of the actin cytoskeleton with microtubules and septins, affected by bacterial toxins, are reviewed.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|