1
|
Read DF, Booth GT, Daza RM, Jackson DL, Gladden RG, Srivatsan SR, Ewing B, Franks JM, Spurrell CH, Gomes AR, O'Day D, Gogate AA, Martin BK, Larson H, Pfleger C, Starita L, Lin Y, Shendure J, Lin S, Trapnell C. Single-cell analysis of chromatin and expression reveals age- and sex-associated alterations in the human heart. Commun Biol 2024; 7:1052. [PMID: 39187646 PMCID: PMC11347658 DOI: 10.1038/s42003-024-06582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Sex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors. We identify hundreds of differentially expressed genes by age and sex and find epigenetic signatures of variation in ATAC-Seq data in this discovery cohort. We then scale up our single-cell RNA-Seq analysis by combining our data with five recently published single nucleus RNA-Seq datasets of healthy adult hearts. We find variation such as metabolic alterations by sex and immune changes by age in differential expression tests, as well as alterations in abundance of cardiomyocytes by sex and neurons with age. In addition, we compare our adult-derived ATAC-Seq profiles to analogous fetal cell types to identify putative developmental-stage-specific regulatory factors. Finally, we train predictive models of cell-type-specific RNA expression levels utilizing ATAC-Seq profiles to link distal regulatory sequences to promoters, quantifying the predictive value of a simple TF-to-expression regulatory grammar and identifying cell-type-specific TFs. Our analysis represents the largest single-cell analysis of cardiac variation by age and sex to date and provides a resource for further study of healthy cardiac variation and transcriptional regulation at single-cell resolution.
Collapse
Affiliation(s)
- David F Read
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gregory T Booth
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rula Green Gladden
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer M Franks
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Diana O'Day
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Haleigh Larson
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Christian Pfleger
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA, USA
| | - Lea Starita
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Yiing Lin
- Department of Surgery, Washington University, St Louis, MO, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Children's Research Institute, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Shin Lin
- University of Washington School of Medicine, Division of Cardiology, Seattle, WA, USA.
| | - Cole Trapnell
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
2
|
Witmer NH, McLendon JM, Stein CS, Yoon JY, Berezhnaya E, Elrod JW, London BL, Boudreau RL. Upstream alternative polyadenylation in SCN5A produces a short transcript isoform encoding a mitochondria-localized NaV1.5 N-terminal fragment that influences cardiomyocyte respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607406. [PMID: 39211120 PMCID: PMC11360925 DOI: 10.1101/2024.08.09.607406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
SCN5A encodes the cardiac voltage-gated Na+ channel, NaV1.5, that initiates action potentials. SCN5A gene variants cause arrhythmias and increased heart failure risk. Mechanisms controlling NaV1.5 expression and activity are not fully understood. We recently found a well-conserved alternative polyadenylation (APA) signal downstream of the first SCN5A coding exon. This yields a SCN5A-short transcript isoform expressed in several species (e.g. human, pig, and cat), though rodents lack this upstream APA. Reanalysis of transcriptome-wide cardiac APA-seq and mRNA-seq data shows reductions in both upstream APA usage and short/full-length SCN5A mRNA ratios in failing hearts. Knock-in of the human SCN5A APA sequence into mice is sufficient to enable expression of SCN5A -short transcript, while significantly decreasing expression of full-length SCN5A mRNA. Notably, SCN5A -short transcript encodes a novel protein (NaV1.5-NT), composed of an N-terminus identical to NaV1.5 and a unique C-terminus derived from intronic sequence. AAV9 constructs were able to achieve stable NaV1.5-NT expression in mouse hearts, and western blot of human heart tissues showed bands co-migrating with NaV1.5-NT transgene-derived bands. NaV1.5-NT is predicted to contain a mitochondrial targeting sequence and localizes to mitochondria in cultured cardiomyocytes and in mouse hearts. NaV1.5-NT expression in cardiomyocytes led to elevations in basal oxygen consumption rate, ATP production, and mitochondrial ROS, while depleting NADH supply. Native PAGE analyses of mitochondria lysates revealed that NaV1.5-NT expression resulted in increased levels of disassembled complex V subunits and accumulation of complex I-containing supercomplexes. Overall, we discovered that APA-mediated regulation of SCN5A produces a short transcript encoding NaV1.5-NT. Our data support that NaV1.5-NT plays a multifaceted role in influencing mitochondrial physiology: 1) by increasing basal respiration likely through promoting complex V conformations that enhance proton leak, and 2) by increasing overall respiratory efficiency and NADH consumption by enhancing formation and/or stability of complex I-containing respiratory supercomplexes, though the specific molecular mechanisms underlying each of these remain unresolved.
Collapse
|
3
|
Zhang X, Guo J, Shi X, Zhou X, Chen Q. LUC7L3 is a downstream factor of SRSF1 and prevents genomic instability. CELL INSIGHT 2024; 3:100170. [PMID: 38590928 PMCID: PMC10999515 DOI: 10.1016/j.cellin.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
The RNA-binding protein LUC7L3 is the human homolog of yeast U1 small nuclear RNA (snRNA)-related splicing factor Luc7p. While the primary function of LUC7L3 as an RNA-binding protein is believed to be involved in RNA metabolism, particularly in the splicing process, its exact role and other functions are still not fully understood. In this study, we aimed to elucidate the role of LUC7L3 and its impact on cell proliferation. Our study revealed that LUC7L3 depletion impairs cell proliferation compared to the other Luc7p paralogs, resulting in cell apoptosis and senescence. We explored the underlying mechanisms and found that LUC7L3 depletion leads to R-loop accumulation, DNA replication stress, and genome instability. Furthermore, we discovered that LUC7L3 depletion caused abnormalities in spindle assembly, leading to the formation of multinuclear cells. This was attributed to the dysregulation of protein translation of spindle-associated proteins. Additionally, we investigated the interplay between LUC7L3 and SRSF1 and identified SRSF1 as an upper stream regulator of LUC7L3, promoting the translation of LUC7L3 protein. These findings highlight the importance of LUC7L3 in maintaining genome stability and its relationship with SRSF1 in this regulatory pathway.
Collapse
Affiliation(s)
- Xiaqing Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Jing Guo
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xin Shi
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xin Zhou
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Qiang Chen
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
4
|
Cao J, Wei Z, Nie Y, Chen HZ. Therapeutic potential of alternative splicing in cardiovascular diseases. EBioMedicine 2024; 101:104995. [PMID: 38350330 PMCID: PMC10874720 DOI: 10.1016/j.ebiom.2024.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
RNA splicing is an important RNA processing step required by multiexon protein-coding mRNAs and some noncoding RNAs. Precise RNA splicing is required for maintaining gene and cell function; however, mis-spliced RNA transcripts can lead to loss- or gain-of-function effects in human diseases. Mis-spliced RNAs induced by gene mutations or the dysregulation of splicing regulators may result in frameshifts, nonsense-mediated decay (NMD), or inclusion/exclusion of exons. Genetic animal models have characterised multiple splicing factors required for cardiac development or function. Moreover, sarcomeric and ion channel genes, which are closely associated with cardiovascular function and disease, are hotspots for AS. Here, we summarise splicing factors and their targets that are associated with cardiovascular diseases, introduce some therapies potentially related to pathological AS targets, and raise outstanding questions and future directions in this field.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China; University of Texas Medical Branch at Galveston, TX, 77555, USA
| | - Ziyu Wei
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China; Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang X, Xiong Z, Hong W, Liao X, Yang G, Jiang Z, Jing L, Huang S, Fu Z, Zhu F. Identification of cuproptosis-related gene clusters and immune cell infiltration in major burns based on machine learning models and experimental validation. Front Immunol 2024; 15:1335675. [PMID: 38410514 PMCID: PMC10894925 DOI: 10.3389/fimmu.2024.1335675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Burns are a global public health problem. Major burns can stimulate the body to enter a stress state, thereby increasing the risk of infection and adversely affecting the patient's prognosis. Recently, it has been discovered that cuproptosis, a form of cell death, is associated with various diseases. Our research aims to explore the molecular clusters associated with cuproptosis in major burns and construct predictive models. Methods We analyzed the expression and immune infiltration characteristics of cuproptosis-related factors in major burn based on the GSE37069 dataset. Using 553 samples from major burn patients, we explored the molecular clusters based on cuproptosis-related genes and their associated immune cell infiltrates. The WGCNA was utilized to identify cluster-specific genes. Subsequently, the performance of different machine learning models was compared to select the optimal model. The effectiveness of the predictive model was validated using Nomogram, calibration curves, decision curves, and an external dataset. Finally, five core genes related to cuproptosis and major burn have been was validated using RT-qPCR. Results In both major burn and normal samples, we determined the cuproptosis-related genes associated with major burns through WGCNA analysis. Through immune infiltrate profiling analysis, we found significant immune differences between different clusters. When K=2, the clustering number is the most stable. GSVA analysis shows that specific genes in cluster 2 are closely associated with various functions. After identifying the cross-core genes, machine learning models indicate that generalized linear models have better accuracy. Ultimately, a generalized linear model for five highly correlated genes was constructed, and validation with an external dataset showed an AUC of 0.982. The accuracy of the model was further verified through calibration curves, decision curves, and modal graphs. Further analysis of clinical relevance revealed that these correlated genes were closely related to time of injury. Conclusion This study has revealed the intricate relationship between cuproptosis and major burns. Research has identified 15 cuproptosis-related genes that are associated with major burn. Through a machine learning model, five core genes related to cuproptosis and major burn have been selected and validated.
Collapse
Affiliation(s)
- Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenfang Xiong
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wangbing Hong
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xincheng Liao
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guangping Yang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengying Jiang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lanxin Jing
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghua Fu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Zhang J, Chen WQ, Yang K, Wang ZX, Sun DL, Peng YY, Yu M, Wang SX, Guo Q. RBM25 induces trophoblast epithelial-mesenchymal transition and preeclampsia disorder by enhancing the positive feedback loop between Grhl2 and RBM25. Exp Biol Med (Maywood) 2023; 248:1267-1277. [PMID: 37728157 PMCID: PMC10621477 DOI: 10.1177/15353702231191199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/08/2023] [Indexed: 09/21/2023] Open
Abstract
Defects in migration and invasion caused by dysregulation of trophoblast epithelial-mesenchymal transformation (EMT) are one of the key factors in the pathogenesis of preeclampsia (PE). RNA-binding motif protein 25 (RBM25) is an RNA-binding protein involved in a variety of cellular processes, including cell proliferation, apoptosis, cell migration and invasion, and EMT. However, the expression and function of RBM25 in placental of PE remain unclear. In this study, we reveal that the expression of RBM25 is significantly elevated in PE placental tissue. RBM25 depletion and over-expression in trophoblast cells increase and decrease, respectively, cell migration and invasion by regulating EMT marker E-cadherin and Vimentin expression. Mechanistically, Grhl2 is involved in RBM25-regulated trophoblast cell migration, invasion, and EMT through RBM25-facilitated mRNA stabilization. Furthermore, the upregulation of Grhl2 enhances the expression of RBM25 through transcription and forms a positive feedback regulation in the progression of PE. These findings suggest that upregulation of RBM25 induces dysregulation of trophoblast EMT by enhancing positive feedback regulation of Grhl2 and RBM25, leading to defects in cell migration and invasion. Targeting this newly identified regulatory axis may provide benefits in the prevention and treatment of PE.
Collapse
Affiliation(s)
- Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Wen-qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing 100026, China
| | - Zhao-xi Wang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Dong-lan Sun
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Yuan-yuan Peng
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Mei Yu
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Shao-xiong Wang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang 050011, China
| |
Collapse
|
7
|
Kang GJ, Xie A, Kim E, Dudley SC. miR-448 regulates potassium voltage-gated channel subfamily A member 4 (KCNA4) in ischemia and heart failure. Heart Rhythm 2023; 20:730-736. [PMID: 36693615 PMCID: PMC10149585 DOI: 10.1016/j.hrthm.2023.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND MicroRNA miR-448 mediates some of the effects of ischemia on arrhythmic risk. Potassium voltage-gated channel subfamily A member 4 (KCNA4) encodes a Kv1.4 current that opens in response to membrane depolarization and is essential for regulating the action potential duration in heart. KCNA4 has a miR-448 binding site. OBJECTIVE We investigated whether miR-448 was involved in the regulation of KCNA4 messenger RNA expression in ischemia. METHODS Quantitative real-time reverse-transcriptase polymerase chain reaction was used to investigate the expression of KCNA4 and miR-448. Pull-down assays were used to examine the interaction between miR-448 and KCNA4. miR-448 decoy and binding site mutation were used to examine the specificity of the effect for KCNA4. RESULTS The expression of KCNA4 is diminished in ischemia and human heart failure tissues with ventricular tachycardia. Previously, we have shown that miR-448 is upregulated in ischemia and inhibition can prevent arrhythmic risk after myocardial infarction. The 3'-untranslated region of KCNA4 has a conserved miR-448 binding site. miR-448 bound to this site directly and reduced KCNA4 expression and the transient outward potassium current. Inhibition of miR-448 restored KCNA4. CONCLUSION These findings showed a link between Kv1.4 downregulation and miR-448-mediated upregulation in ischemia, suggesting a new mechanism for the antiarrhythmic effect of miR-448 inhibition.
Collapse
Affiliation(s)
- Gyeoung-Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - An Xie
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Eunji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Samuel C Dudley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
8
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
9
|
Ubiquitination-activating enzymes UBE1 and UBA6 regulate ubiquitination and expression of cardiac sodium channel Nav1.5. Biochem J 2020; 477:1683-1700. [PMID: 32315024 DOI: 10.1042/bcj20200138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
Cardiac sodium channel Nav1.5 is associated with cardiac arrhythmias and heart failure. Protein ubiquitination is catalyzed by an E1-E2-E3 cascade of enzymes. However, the E1 enzyme catalyzing Nav1.5 ubiquitination is unknown. Here, we show that UBE1 and UBA6 are two E1 enzymes regulating Nav1.5 ubiquitination and expression. Western blot analysis and patch-clamping recordings showed that overexpression of UBE1 or UBA6 increased the ubiquitination of Nav1.5 and significantly reduced Nav1.5 expression and sodium current density, and knockdown of UBE1 or UBA6 expression significantly increased Nav1.5 expression and sodium current density in HEK293/Nav1.5 cells. Similar results were obtained in neonatal cardiomyocytes. Bioinformatic analysis predicted two ubiquitination sites at K590 and K591. Mutations of K590 and K591 to K590A and K591A abolished the effects of overexpression or knockdown of UBE1 or UBA6 on Nav1.5 expression and sodium current density. Western blot analysis showed that the effects of UBE1 or UBA6 overexpression on the ubiquitination and expression of Nav1.5 were abolished by knockdown of UBC9, a putative E2 enzyme reported for Nav1.5 ubiquitination by us. Interestingly, real-time RT-PCR analysis showed that the expression level of UBE1, but not UBA6, was significantly up-regulated in ventricular tissues from heart failure patients. These data establish UBE1 and UBA6 as the E1 enzymes involved in Nav1.5 ubiquitination, and suggest that UBE1 and UBA6 regulate ubiquitination of Nav1.5 through UBC9. Our study is the first to reveal the regulatory role of the UBE1 or UBA6 E1 enzyme in the ubiquitination of an ion channel and links UBE1 up-regulation to heart failure.
Collapse
|
10
|
Kang GJ, Xie A, Liu H, Dudley SC. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel. JCI Insight 2020; 5:140759. [PMID: 33108349 PMCID: PMC7714400 DOI: 10.1172/jci.insight.140759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiac ischemia is associated with arrhythmias; however, effective therapies are currently limited. The cardiac voltage-gated sodium channel α subunit (SCN5A), encoding the Nav1.5 current, plays a key role in the cardiac electrical conduction and arrhythmic risk. Here, we show that hypoxia reduces Nav1.5 through effects on a miR, miR-448. miR-448 expression is increased in ischemic cardiomyopathy. miR-448 has a conserved binding site in 3′-UTR of SCN5A. miR-448 binding to this site suppressed SCN5A expression and sodium currents. Hypoxia-induced HIF-1α and NF-κB were major transcriptional regulators for MIR448. Moreover, hypoxia relieved MIR448 transcriptional suppression by RE1 silencing transcription factor. Therefore, miR-448 inhibition reduced arrhythmic risk after myocardial infarction. Here, we show that ischemia drove miR-448 expression, reduced Nav1.5 current, and increased arrhythmic risk. Arrhythmic risk was improved by preventing Nav1.5 downregulation, suggesting a new approach to antiarrhythmic therapy. Ischemic induction of miR-448 negatively regulates the cardiac sodium channel Nav1.5, and inhibiting miR-448 raises Nav1.5 and reduces arrhythmic risk after myocardial infarction in mice.
Collapse
|
11
|
Sun S, Li Y, Liu B, Zhang B, Han S, Li X. Establishment of stable cell lines in which the HBV genome replicates episomally for evaluation of antivirals. Arch Med Sci 2020; 16:407-413. [PMID: 32190152 PMCID: PMC7069427 DOI: 10.5114/aoms.2018.79712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Due to the increasing resistance to nucleot(s)ide analogs in patients with chronic hepatitis B, development of new antiviral drugs to eradicate hepatitis B virus is still urgently needed. MATERIAL AND METHODS To date, most studies on evaluating anti-HBV drugs have been performed using cell lines where the HBV genomic DNA is chromosomally integrated, e.g. Hep2.2.15 in HBV-infected livers of the viral episomal genome replicates in the nucleus and covalently closed circular DNA (cccDNA) serves as a transcriptional template. Another option involves the use of HBV-infected cells of HepaRG or NTCP-overexpressing cells. However, the development of the infection system is expensive and laborious, and its HBV expression level remained low. RESULTS Compared to HuH7 cells, the established stable cell lines based on episomal-type pEB-Multi vectors can been expressed HBV wild-type by qRT-PCR and immunoblotting (p < 0.05). These two vectors are also sensitive to Entecavir and against nucleoside analog Lamivudine in mutants cellines. CONCLUSIONS It is worth demonstrating how useful the established cell system is for evaluating antiviral agents and their mechanisms of action.
Collapse
Affiliation(s)
- Suofeng Sun
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yuan Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Bowei Liu
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Stoehr A, Kennedy L, Yang Y, Patel S, Lin Y, Linask KL, Fergusson M, Zhu J, Gucek M, Zou J, Murphy E. The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. JCI Insight 2019; 5:128496. [PMID: 31112528 DOI: 10.1172/jci.insight.128496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms regulating translation and splicing are not well understood. We provide insight into a new regulator of translation, OGFOD1 (2-oxoglutarate and iron dependent oxygenase domain-containing protein 1), which is a prolyl-hydroxylase that catalyzes the posttranslational hydroxylation of Pro-62 in the small ribosomal protein S23. We show that deletion of OGFOD1 in an in vitro model of human cardiomyocytes decreases translation of specific proteins (e.g., RNA-binding proteins) and alters splicing. RNA sequencing showed poor correlation between changes in mRNA and protein synthesis, suggesting that posttranscriptional regulation was the primary cause for the observed differences. We found that loss of OGFOD1 and the resultant alterations in protein translation modulates the cardiac proteome, shifting it towards higher protein amounts of sarcomeric proteins such as cardiac troponins, titin and cardiac myosin binding protein C. Furthermore, we found a decrease of OGFOD1 during cardiomyocyte differentiation. These results suggest that loss of OGFOD1 modulates protein translation and splicing, thereby leading to alterations in the cardiac proteome and highlight the role of altered translation and splicing in regulating the proteome..
Collapse
Affiliation(s)
| | | | | | | | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kaari L Linask
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Jun Zhu
- DNA Sequencing and Genomics Core
| | | | - Jizhong Zou
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
13
|
Ge Y, Schuster MB, Pundhir S, Rapin N, Bagger FO, Sidiropoulos N, Hashem N, Porse BT. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nat Commun 2019; 10:172. [PMID: 30635567 PMCID: PMC6329799 DOI: 10.1038/s41467-018-08076-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
Cancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in acute myeloid leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that "non-mutated" splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This has led to the identification of the splicing regulator RBM25 as a novel tumor suppressor. In multiple human leukemic cell lines, knockdown of RBM25 promotes proliferation and decreases apoptosis. Mechanistically, we show that RBM25 controls the splicing of key genes, including those encoding the apoptotic regulator BCL-X and the MYC inhibitor BIN1. This mechanism is also operative in human AML patients where low RBM25 levels are associated with high MYC activity and poor outcome. Thus, we demonstrate that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels.
Collapse
Affiliation(s)
- Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Frederik Otzen Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nikos Sidiropoulos
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nadia Hashem
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
14
|
Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 2018; 559:419-422. [PMID: 29995849 PMCID: PMC6141012 DOI: 10.1038/s41586-018-0323-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
Abstract
The spliceosome catalyzes the excision of introns from pre-mRNA in two steps, branching
and exon ligation, and is assembled from five small nuclear ribonucleoprotein
particles (snRNPs; U1, U2, U4, U5, U6) and numerous non-snRNP factors1. For branching, the intron
5'-splice site (5'SS) and the branch point (BP) sequence are
selected and brought into the prespliceosome by the U1 and U2 snRNPs1, which is a focal point for the regulation
by alternative splicing factors2. The
U4/U6.U5 tri-snRNP subsequently joins the prespliceosome to form the complete
pre-catalytic spliceosome. Recent studies have revealed the structural basis of
the branching and exon-ligation reactions3. However, the structural basis of early spliceosome assembly events
remains poorly understood4. Here we report
the cryo-electron microscopy structure of the yeast Saccharomyces
cerevisiae prespliceosome at near-atomic resolution. The structure
reveals an induced stabilization of the 5'SS in the U1 snRNP, and
provides structural insights into the functions of the human alternative
splicing factors LUC7-like (yeast Luc7) and TIA-1 (yeast Nam8) that are linked
to human disease5,6. In the prespliceosome, the U1 snRNP associates with the
U2 snRNP through a stable contact with the U2 3' domain and a transient
yeast-specific contact with the U2 SF3b-containing 5' region, leaving its
tri-snRNP-binding interface fully exposed. The results suggest mechanisms for
5'SS transfer to the U6 ACAGAGA region within the assembled spliceosome
and for its subsequent conversion to the activation-competent B complex
spliceosome7,8. Taken together, the data provide a working model to
investigate the early steps of spliceosome assembly.
Collapse
|
15
|
Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, Engelhardt BE, Battle A. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 2017; 27:1843-1858. [PMID: 29021288 PMCID: PMC5668942 DOI: 10.1101/gr.216721.116] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/22/2017] [Indexed: 11/24/2022]
Abstract
Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues.
Collapse
|
16
|
Abnormal sodium channel mRNA splicing in hypertrophic cardiomyopathy. Int J Cardiol 2017; 249:282-286. [PMID: 28916354 DOI: 10.1016/j.ijcard.2017.08.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/03/2017] [Accepted: 08/29/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Our previous studies showed that in ischemic and nonischemic heart failure (HF), the voltage-gated cardiac Na+ channel α subunit (SCN5A) mRNA is abnormally spliced to produce two truncated transcript variants (E28C and D) that activate the unfolded protein response (UPR). We tested whether SCN5A post-transcriptional regulation was abnormal in hypertrophic cardiomyopathy (HCM). MATERIAL AND METHODS Human heart tissue was obtained from HCM patients. The changes in relative abundances of SCN5A, its variants, splicing factors RBM25 and LUC7A, and PERK, a major effector of the UPR, were analyzed by real time RT-PCR and the expression changes were confirmed by Western Blot. RESULTS We found reduced full-length transcript, increased SCN5A truncation variants and activation of UPR in HCM when compared to control hearts. In these patients, real time RT-PCR revealed that HCM patients had decreased SCN5A mRNA to 27.8±4.07% of control (P<0.01) and an increased abundance of E28C and E28D (3.4±0.3 and 2.8±0.3-fold, respectively, P<0.05). PERK mRNA increased 8.2±3.1 fold (P<0.01) in HCM patients. Western blot confirmed a significant increase of PERK. CONCLUSIONS These data suggested that the full-length SCN5A was reduced in patients with HCM. This reduction was accompanied by abnormal SCN5A pre-mRNA splicing and UPR activation. These changes may contribute to the arrhythmic risk in HCM.
Collapse
|
17
|
Li Y, Ito M, Sun S, Chida T, Nakashima K, Suzuki T. LUC7L3/CROP inhibits replication of hepatitis B virus via suppressing enhancer II/basal core promoter activity. Sci Rep 2016; 6:36741. [PMID: 27857158 PMCID: PMC5114668 DOI: 10.1038/srep36741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/20/2016] [Indexed: 02/08/2023] Open
Abstract
The core promoter of hepatitis B virus (HBV) genome is a critical region for transcriptional initiation of 3.5 kb, pregenome and precore RNAs and for the viral replication. Although a number of host-cell factors that potentially regulate the viral promoter activities have been identified, the molecular mechanisms of the viral gene expression, in particular, regulatory mechanisms of the transcriptional repression remain elusive. In this study, we identified LUC7 like 3 pre-mRNA splicing factor (LUC7L3, also known as hLuc7A or CROP) as a novel interacting partner of HBV enhancer II and basal core promoter (ENII/BCP), key elements within the core promoter, through the proteomic screening and found that LUC7L3 functions as a negative regulator of ENII/BCP. Gene silencing of LUC7L3 significantly increased expression of the viral genes and antigens as well as the activities of ENII/BCP and core promoter. In contrast, overexpression of LUC7L3 inhibited their activities and HBV replication. In addition, LUC7L3 possibly contributes to promotion of the splicing of 3.5 kb RNA, which may also be involved in negative regulation of the pregenome RNA level. This is the first to demonstrate the involvement of LUC7L3 in regulation of gene transcription and in viral replication.
Collapse
Affiliation(s)
- Yuan Li
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Suofeng Sun
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Takeshi Chida
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Kenji Nakashima
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| |
Collapse
|
18
|
Mohammad DK, Ali RH, Turunen JJ, Nore BF, Smith CIE. B Cell Receptor Activation Predominantly Regulates AKT-mTORC1/2 Substrates Functionally Related to RNA Processing. PLoS One 2016; 11:e0160255. [PMID: 27487157 PMCID: PMC4972398 DOI: 10.1371/journal.pone.0160255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/16/2016] [Indexed: 12/19/2022] Open
Abstract
Protein kinase B (AKT) phosphorylates numerous substrates on the consensus motif RXRXXpS/T, a docking site for 14-3-3 interactions. To identify novel AKT-induced phosphorylation events following B cell receptor (BCR) activation, we performed proteomics, biochemical and bioinformatics analyses. Phosphorylated consensus motif-specific antibody enrichment, followed by tandem mass spectrometry, identified 446 proteins, containing 186 novel phosphorylation events. Moreover, we found 85 proteins with up regulated phosphorylation, while in 277 it was down regulated following stimulation. Up regulation was mainly in proteins involved in ribosomal and translational regulation, DNA binding and transcription regulation. Conversely, down regulation was preferentially in RNA binding, mRNA splicing and mRNP export proteins. Immunoblotting of two identified RNA regulatory proteins, RBM25 and MEF-2D, confirmed the proteomics data. Consistent with these findings, the AKT-inhibitor (MK-2206) dramatically reduced, while the mTORC-inhibitor PP242 totally blocked phosphorylation on the RXRXXpS/T motif. This demonstrates that this motif, previously suggested as an AKT target sequence, also is a substrate for mTORC1/2. Proteins with PDZ, PH and/or SH3 domains contained the consensus motif, whereas in those with an HMG-box, H15 domains and/or NF-X1-zinc-fingers, the motif was absent. Proteins carrying the consensus motif were found in all eukaryotic clades indicating that they regulate a phylogenetically conserved set of proteins.
Collapse
Affiliation(s)
- Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge-Stockholm, Sweden
- Department of Biology, College of Science, University of Salahaddin, 44002 Erbil, Kurdistan Region-Iraq
- * E-mail: ; (DKM); (CIES)
| | - Raja H. Ali
- KTH Royal Institute of Technology, Swedish e-Science Research Center, Science for Life Laboratory, School of Computer Science and Communication, SE-171 77 Solna, Sweden
| | - Janne J. Turunen
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge-Stockholm, Sweden
| | - Beston F. Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge-Stockholm, Sweden
- Department of Biochemistry, School of Medicine, University of Sulaimani, Sulaimaniyah, Kurdistan Region-Iraq
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska Hospital Huddinge, SE-141 86 Huddinge-Stockholm, Sweden
- * E-mail: ; (DKM); (CIES)
| |
Collapse
|
19
|
Stoehr A, Yang Y, Patel S, Evangelista AM, Aponte A, Wang G, Liu P, Boylston J, Kloner PH, Lin Y, Gucek M, Zhu J, Murphy E. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2016; 110:346-58. [PMID: 27095734 DOI: 10.1093/cvr/cvw081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. METHODS AND RESULTS We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. CONCLUSIONS This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing.
Collapse
Affiliation(s)
- Andrea Stoehr
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sajni Patel
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia M Evangelista
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Boylston
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip H Kloner
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Loussouarn G, Sternberg D, Nicole S, Marionneau C, Le Bouffant F, Toumaniantz G, Barc J, Malak OA, Fressart V, Péréon Y, Baró I, Charpentier F. Physiological and Pathophysiological Insights of Nav1.4 and Nav1.5 Comparison. Front Pharmacol 2016; 6:314. [PMID: 26834636 PMCID: PMC4712308 DOI: 10.3389/fphar.2015.00314] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Mutations in Nav1.4 and Nav1.5 α-subunits have been associated with muscular and cardiac channelopathies, respectively. Despite intense research on the structure and function of these channels, a lot of information is still missing to delineate the various physiological and pathophysiological processes underlying their activity at the molecular level. Nav1.4 and Nav1.5 sequences are similar, suggesting structural and functional homologies between the two orthologous channels. This also suggests that any characteristics described for one channel subunit may shed light on the properties of the counterpart channel subunit. In this review article, after a brief clinical description of the muscular and cardiac channelopathies related to Nav1.4 and Nav1.5 mutations, respectively, we compare the knowledge accumulated in different aspects of the expression and function of Nav1.4 and Nav1.5 α-subunits: the regulation of the two encoding genes (SCN4A and SCN5A), the associated/regulatory proteins and at last, the functional effect of the same missense mutations detected in Nav1.4 and Nav1.5. First, it appears that more is known on Nav1.5 expression and accessory proteins. Because of the high homologies of Nav1.5 binding sites and equivalent Nav1.4 sites, Nav1.5-related results may guide future investigations on Nav1.4. Second, the analysis of the same missense mutations in Nav1.4 and Nav1.5 revealed intriguing similarities regarding their effects on membrane excitability and alteration in channel biophysics. We believe that such comparison may bring new cues to the physiopathology of cardiac and muscular diseases.
Collapse
Affiliation(s)
- Gildas Loussouarn
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Damien Sternberg
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France; Sorbonne Universités, Université Pierre-et-Marie-Curie, UMR S1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225Paris, France; Institut du Cerveau et de la Moelle Épinière, ICMParis, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-EstParis, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital de la Pitié Salpêtrière, Service de Biochimie Métabolique, Unité de Cardiogénétique et MyogénétiqueParis, France
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France; Sorbonne Universités, Université Pierre-et-Marie-Curie, UMR S1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225Paris, France; Institut du Cerveau et de la Moelle Épinière, ICMParis, France
| | - Céline Marionneau
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Francoise Le Bouffant
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Gilles Toumaniantz
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Julien Barc
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Olfat A Malak
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Véronique Fressart
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital de la Pitié Salpêtrière, Service de Biochimie Métabolique, Unité de Cardiogénétique et Myogénétique Paris, France
| | - Yann Péréon
- Centre Hospitalier Universitaire de Nantes, Centre de Référence Maladies Neuromusculaires Nantes-AngersNantes, France; Atlantic Gene Therapies - Biotherapy Institute for Rare DiseasesNantes, France
| | - Isabelle Baró
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Flavien Charpentier
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France; Centre Hospitalier Universitaire de Nantes, l'Institut du ThoraxNantes, France
| |
Collapse
|
21
|
Cowles CL, Wu YY, Barnett SD, Lee MT, Burkin HR, Buxton ILO. Alternatively Spliced Human TREK-1 Variants Alter TREK-1 Channel Function and Localization. Biol Reprod 2015; 93:122. [PMID: 26400398 DOI: 10.1095/biolreprod.115.129791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 11/01/2022] Open
Abstract
TREK-1, an outward-rectifying potassium channel activated by stretch, is found in the myometrium of pregnant women. Decreased expression of TREK-1 near term suggests that TREK-1 may contribute to uterine quiescence during gestation. Five alternatively spliced TREK-1 variants were identified in the myometrium of mothers who delivered spontaneously preterm (<37 wk), leading to the hypothesis that these TREK-1 variants could interfere with TREK-1 function or expression. To investigate a potential role for these variants, immunofluorescence, cell surface assays, Western blots, and patch clamp were employed to study TREK-1 and TREK-1 variants expressed in HEK293T cells. The results of this study demonstrate that coexpression of TREK-1 with TREK-1 variants alters TREK-1 expression and suppresses channel function. Each variant affected TREK-1 in a disparate manner. In HEK293T cells coexpressing TREK-1 and each variant, TREK-1 membrane expression was diminished with compartmentalization inside the cell. When expressed alone, individual variants displayed channel properties that were significantly decreased compared to full-length TREK-1. In coexpression studies using patch clamp, basal TREK-1 currents were reduced by ∼64% (4.3 vs. 12.0 pA/pF) on average at 0 mV when coexpressed with each variant. TREK-1 currents that were activated by intracellular acidosis were reduced an average of ∼77% (21.4 vs. 94.5 pA/pF) at 0 mV when cells were transfected with TREK-1 and any one of the splice variants. These data correlate the presence of TREK-1 variants to reduced TREK-1 activity, suggesting a pathological role for TREK-1 variants in preterm labor.
Collapse
Affiliation(s)
- Chad L Cowles
- Myometrial Function Laboratory, Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| | - Yi-Ying Wu
- Myometrial Function Laboratory, Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| | - Scott D Barnett
- Myometrial Function Laboratory, Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| | - Michael T Lee
- Myometrial Function Laboratory, Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| | - Heather R Burkin
- Myometrial Function Laboratory, Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| | - Iain L O Buxton
- Myometrial Function Laboratory, Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
22
|
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| | - Yibin Wang
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| |
Collapse
|