1
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
2
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Britto-Júnior J, Medeiros-Teixeira LR, Lima AT, Dassow LC, Lopes-Martins RÁB, Campos R, Moraes MO, Moraes MEA, Antunes E, De Nucci G. 6-Nitrodopamine Is the Most Potent Endogenous Positive Inotropic Agent in the Isolated Rat Heart. Life (Basel) 2023; 13:2012. [PMID: 37895394 PMCID: PMC10607994 DOI: 10.3390/life13102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND 6-nitrodopamine released from rat isolated atria exerts positive chronotropic action, being more potent than noradrenaline, adrenaline, and dopamine. Here, we determined whether 6-nitrodopamine is released from rat isolated ventricles (RIV) and modulates heart inotropism. METHODS Catecholamines released from RIV were quantified by LC-MS/MS and their effects on heart inotropism were evaluated by measuring left ventricular developed pressure (LVDP) in Langendorff's preparation. RESULTS 6-nitrodopamine was the major released catecholamine from RIV. Incubation with L-NAME (100 µM), but not with tetrodotoxin (1 µM), caused a significant reduction in 6-nitrodopamine basal release. 6-nitrodopamine release was significantly reduced in ventricles obtained from L-NAME chronically treated animals. 6-nitrodopamine (0.01 pmol) caused significant increases in LVDP and dP/dtmax, whereas dopamine and noradrenaline required 10 pmol, and adrenaline required 100 pmol, to induce similar increases in LVDP and dP/dtmax. The infusion of atenolol (10 nM) reduced basal LVDP and blocked the increases in LVDP induced by 6-ND (0.01 pmol), without affecting the increases in LVDP induced by 10 nmol of dopamine and noradrenaline and that induced by adrenaline (100 nmol). CONCLUSIONS 6-nitrodopamine is the major catecholamine released from rat isolated ventricles. It is 1000 times more potent than dopamine and noradrenaline and is selectively blocked by atenolol, indicating that 6-ND is a main regulator of heart inotropism.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Lincoln Rangel Medeiros-Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Letícia Costa Dassow
- Laboratory of Biophotonics and Experimental Therapeutics, University Evangélica of Goiás (UniEVANGÉLICA), Anápolis 75083-515, Brazil; (L.C.D.); (R.Á.B.L.-M.)
| | - Rodrigo Álvaro Brandão Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, University Evangélica of Goiás (UniEVANGÉLICA), Anápolis 75083-515, Brazil; (L.C.D.); (R.Á.B.L.-M.)
| | - Rafael Campos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
| | - Manoel Odorico Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
| | - Maria Elisabete A. Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
- Laboratory of Biophotonics and Experimental Therapeutics, University Evangélica of Goiás (UniEVANGÉLICA), Anápolis 75083-515, Brazil; (L.C.D.); (R.Á.B.L.-M.)
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Sāo Paulo 05508-220, Brazil
| |
Collapse
|
4
|
Britto-Júnior J, Lima AT, Fuguhara V, Monica FZ, Antunes E, De Nucci G. Investigation on the positive chronotropic action of 6-nitrodopamine in the rat isolated atria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1279-1290. [PMID: 36719453 DOI: 10.1007/s00210-023-02394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
6-Nitrodopamine (6-ND) is released from rat isolated atria being 100 times more potent than noradrenaline and adrenaline, and 10,000 times more potent than dopamine as a positive chronotropic agent. The present study aimed to investigate the interactions of 6-ND with the classical catecholamines, phosphodiesterase (PDE)-3 and PDE4, and the protein kinase A in rat isolated atria. Atrial incubation with 1 pM of dopamine, noradrenaline, or adrenaline had no effect on atrial frequency. Similar results were observed when the atria were incubated with 0.01 pM of 6-ND. However, co-incubation of 6-ND (0.01 pM) with dopamine, noradrenaline, or adrenaline (1 pM each) resulted in significant increases in atrial rate, which persisted over 30 min after washout of the agonists. The increased atrial frequency induced by co-incubation of 6-ND with the catecholamines was significantly reduced by the voltage-gated sodium channel blocker tetrodotoxin (1 µM, 30 min), indicating that the positive chronotropic effect of 6-ND is due in part to activation of nerve terminals. Pre-treatment of the animals with reserpine had no effect on the positive chronotropic effect induced by dopamine, noradrenaline, or adrenaline; however, reserpine markedly reduced the 6-ND (1 pM)-induced positive chronotropic effect. Incubation of the rat isolated atria with the protein kinase A inhibitor H-89 (1 µM, 30 min) abolished the increased atrial frequency induced by dopamine, noradrenaline, and adrenaline, but only attenuated the increases induced by 6-ND. 6-ND induces catecholamine release from adrenergic terminals and increases atrial frequency independently of PKA activation.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil.
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Vivian Fuguhara
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Fabiola Z Monica
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária, 13083-887, Campinas, São Paulo, Brazil
- Department of Pharmacology, Faculty of Medicine, São Leopoldo Mandic, Campinas, SP, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
Li B, Liang Y, Bao H, Li D, Zhang Y, Dun X, Xu Z, Ji A, Zhang Z, Li Y, Zhang R, Chen W, Zheng Y, Cui L. Real-ambient particulate matter exposure-induced FGFR1 methylation contributes to cardiac dysfunction via lipid metabolism disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161903. [PMID: 36731555 DOI: 10.1016/j.scitotenv.2023.161903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter (PM)-induced cardiometabolic disorder contributes to the progression of cardiac diseases, but its epigenetic mechanisms are largely unknown. This study used bioinformatic analysis, in vivo and in vitro multiple models to investigate the role of PM-induced cardiac fibroblast growth factor 1 (FGFR1) methylation and its impact on cardiomyocyte lipid metabolic disruption. Bioinformatic analysis revealed that FGFR1 was associated with cardiac pathologies, mitochondrial function and metabolism, supporting the possibility that FGFR1 may play regulatory roles in PM-induced cardiac functional impairment and lipid metabolism disorders. Individually ventilated cage (IVC)-based real-ambient PM exposure system mouse models were used to expose C57/BL6 mice for six and fifteen weeks. The results showed that PM induced cardiac lipid metabolism disorder, DNA nucleotide methyltransferases (DNMTs) alterations and FGFR1 expression declines in mouse heart. Lipidomics analysis revealed that carnitines, phosphoglycerides and lysophosphoglycerides were most significantly affected by PM exposure. At the cellular level, AC16 cells treated with FGFR1 inhibitor (PD173074) led to impaired mitochondrial and metabolic functions in cardiomyocytes. Inhibition of DNA methylation in cells by 5-AZA partially restored the FGFR1 expression, ameliorated cardiomyocyte injury and mitochondrial functions. These changes involved alterations in AMP-activated protein kinase (AMPK)-peroxisome proliferator activated receptors gamma, coactivator 1 alpha (PGC1α) pathways. Bisulfite sequencing PCR (BSP) and DNA methylation specific PCR (MSP) confirmed that PM exposure induced FGFR1 gene promoter region methylation. These results suggested that, by inducing FGFR1 methylation, PM exposure would affect cardiac injury and deranged lipid metabolism. Overexpression of FGFR1 in mouse heart using adeno-associated virus 9 (AAV9) effectively alleviated PM-induced cardiac impairment and metabolic disorder. Our findings identified that FGFR1 methylation might be one of the potential indicators for PM-induced cardiac mitochondrial and metabolic dysfunction, providing novel insights into underlying PM-related cardiotoxic mechanisms.
Collapse
Affiliation(s)
- Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yanan Liang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zijian Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Andong Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yahui Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Li X, Abdel-Moneim AME, Hu Z, Mesalam NM, Yang B. Effects of chronic hypoxia on the gene expression profile in the embryonic heart in three Chinese indigenous chicken breeds (Gallus gallus). Front Vet Sci 2022; 9:942159. [PMID: 35990266 PMCID: PMC9390884 DOI: 10.3389/fvets.2022.942159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia exposure (HE) has adverse impacts on the embryonic development of chicken, whereas the mechanism underlying the response of the heart to HE during embryo development in birds is still unclear. Therefore, our study was designed to reveal the hub genes and the signaling pathways linked to chronic hypoxia stress. Thus, the gene expression microarray GSE12675, downloaded from the GEO database, included 12 embryonic heart samples in hypoxia and normoxia of three Chinese indigenous chicken breeds [Shouguang (SG), Tibetan (TB), and Dwarf Recessive White (DRW) chickens]. A total of 653 to 714 breed-specific differentially expressed genes (DEGs) were detected in each pairwise comparison. Gene ontology (GO) showed that the DEGs were mainly involved in biological processes, including vasoconstriction, cell differentiation, and the positive regulation of vasoconstriction. KEGG enrichment revealed that the DEGs were mainly enriched in MAPK, PPAR, insulin, adrenergic signaling in cardiomyocytes, etc. Moreover, 48 genes (e.g., SGCD, DHRS9, HELQ, MCMDC2, and ESCO2) might contribute to the response of the heart to HE. Taken together, the current study provides important clues for understanding the molecular mechanism of the heart's response to HE during the embryonic period of chicken.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | | | - Zhongze Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Noura M. Mesalam
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
- *Correspondence: Bing Yang
| |
Collapse
|
7
|
Yang X, Chen Y, Wang H, Fu X, Kural KC, Cao H, Li Y. Schizophrenia Plays a Negative Role in the Pathological Development of Myocardial Infarction at Multiple Biological Levels. Front Genet 2021; 12:607690. [PMID: 34149793 PMCID: PMC8211423 DOI: 10.3389/fgene.2021.607690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
It has shown that schizophrenia (SCZ) is associated with a higher chance of myocardial infarction (MI) and increased mortality. However, the underlying mechanism is largely unknown. Here, we first constructed a literature-based genetic pathway linking SCZ and MI, and then we tested the expression levels of the genes involved in the pathway by a meta-analysis using nine gene expression datasets of MI. In addition, a literature-based data mining process was conducted to explore the connection between SCZ at different levels: small molecules, complex molecules, and functional classes. The genetic pathway revealed nine genes connecting SCZ and MI. Specifically, SCZ activates two promoters of MI (IL6 and CRP) and deactivates seven inhibitors of MI (ADIPOQ, SOD2, TXN, NGF, ADORA1, NOS1, and CTNNB1), suggesting that no protective role of SCZ in MI was detected. Meta-analysis showed that one promoter of MI (CRP) presented no significant increase, and six out of seven genetic inhibitors of MI demonstrated minor to moderately increased expression. Therefore, the elevation of CRP and inhibition of the six inhibitors of MI by SCZ could be critical pathways to promote MI. Nine other regulators of MI were influenced by SCZ, including two gene families (inflammatory cytokine and IL1 family), five small molecules (lipid peroxide, superoxide, ATP, ascorbic acid, melatonin, arachidonic acid), and two complexes (CaM kinase 2 and IL23). Our results suggested that SCZ promotes the development and progression of MI at different levels, including genes, small molecules, complex molecules, and functional classes.
Collapse
Affiliation(s)
- Xiaorong Yang
- Department of Outpatient, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Outpatient, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Huiyao Wang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Xia Fu
- Department of Outpatient, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Kamil Can Kural
- School of Systems Biology, George Mason University (GMU), Fairfax, VA, United States
| | - Hongbao Cao
- School of Systems Biology, George Mason University (GMU), Fairfax, VA, United States.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Ying Li
- The Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
9
|
Zhang Y, Wang WE, Zhang X, Li Y, Chen B, Liu C, Ai X, Zhang X, Tian Y, Zhang C, Tang M, Szeto C, Hua X, Xie M, Zeng C, Wu Y, Zhou L, Zhu W, Yu D, Houser SR, Chen X. Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiac β-Adrenergic Response Without Adverse Effects on the Heart. Circ Res 2019; 124:1760-1777. [PMID: 30982412 DOI: 10.1161/circresaha.118.313417] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE PKA (Protein Kinase A) is a major mediator of β-AR (β-adrenergic) regulation of cardiac function, but other mediators have also been suggested. Reduced PKA basal activity and activation are linked to cardiac diseases. However, how complete loss of PKA activity impacts on cardiac physiology and if it causes cardiac dysfunction have never been determined. OBJECTIVES We set to determine how the heart adapts to the loss of cardiomyocyte PKA activity and if it elicits cardiac abnormalities. METHODS AND RESULTS (1) Cardiac PKA activity was almost completely inhibited by expressing a PKA inhibitor peptide in cardiomyocytes (cPKAi) in mice; (2) cPKAi reduced basal phosphorylation of 2 myofilament proteins (TnI [troponin I] and cardiac myosin binding protein C), and one longitudinal SR (sarcoplasmic reticulum) protein (PLB [phospholamban]) but not of the sarcolemmal proteins (Cav1.2 α1c and PLM [phospholemman]), dyadic protein RyR2, and nuclear protein CREB (cAMP response element binding protein) at their PKA phosphorylation sites; (3) cPKAi increased the expression of CaMKII (Ca2+/calmodulin-dependent kinase II), the Cav1.2 β subunits and current, but decreased CaMKII phosphorylation and CaMKII-mediated phosphorylation of PLB and RyR2; (4) These changes resulted in significantly enhanced myofilament Ca2+ sensitivity, prolonged contraction, slowed relaxation but increased myocyte Ca2+ transient and contraction amplitudes; (5) Isoproterenol-induced PKA and CaMKII activation and their phosphorylation of proteins were prevented by cPKAi; (6) cPKAi abolished the increases of heart rate, and cardiac and myocyte contractility by a β-AR agonist (isoproterenol), showing an important role of PKA and a minimal role of PKA-independent β-AR signaling in acute cardiac regulation; (7) cPKAi mice have partial exercise capability probably by enhancing vascular constriction and ventricular filling during β-AR stimulation; and (8) cPKAi mice did not show any cardiac functional or structural abnormalities during the 1-year study period. CONCLUSIONS PKA activity suppression induces a unique Ca2+ handling phenotype, eliminates β-AR regulation of heart rates and cardiac contractility but does not cause cardiac abnormalities.
Collapse
Affiliation(s)
- Ying Zhang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University (Y.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Wei Eric Wang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Ying Li
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- The General Hospital of The PLA Rocket Force, Beijing, China (Y.L.)
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine (B.C.)
| | - Chong Liu
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- Pharmacology, Second Military Medical University, Shanghai (C.L.)
| | - Xiaojie Ai
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University (X.A.)
| | - Xiaoxiao Zhang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan (X.Z., M.X.)
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine (Y.T., W.Z.), Temple University School of Medicine, Philadelphia, PA
| | - Chen Zhang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Mingxin Tang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Christopher Szeto
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiang Hua
- Fox Chase Cancer Center, Philadelphia, PA (X.H.)
| | - Mingxin Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan (X.Z., M.X.)
| | | | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Liaoning (Y.W.)
| | - Lin Zhou
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
| | - Weizhong Zhu
- Department of Pharmacology, Center for Translational Medicine (Y.T., W.Z.), Temple University School of Medicine, Philadelphia, PA
- Pharmacology, School of Pharmacy, Nantong University, Jiangsu (W.Z.)
| | - Daohai Yu
- Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (D.Y.)
| | - Steven R Houser
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
10
|
Eldabah N, Nembo EN, Penner M, Semmler J, Swelem R, Hassab A, Molcanyi M, Hescheler J, Nguemo F. Altered Functional Expression of β-Adrenergic Receptors in Rhesus Monkey Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2018; 27:336-346. [PMID: 29233068 DOI: 10.1089/scd.2017.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells have demonstrated the potential to generate large numbers of functional cardiomyocytes (CMs) from different cell sources. Besides Wnt signaling, additional pathways are involved in early cardiac development and function. To date however, no study exists showing the effects of perturbing the canonical Wnt pathway using nonhuman primate embryonic stem (ES) cells. In this study, we investigated the effect of canonical Wnt inhibition during differentiation of nonhuman primate ES cell-derived CMs under defined, growth factor conditions. Rhesus monkey ES (rES) cells were differentiated into spontaneously beating CMs in the absence (control) or presence (treated) of Wnt inhibitor Dickkopf1 (DKK1), vascular endothelial growth factor, and basic fibroblast growth factor combined or added in a sequential manner during differentiation. Quantification and functional characterization of CMs were assessed by molecular and electrophysiological techniques. Analysis revealed no difference in average ratio of spontaneously beating clusters in both control and treated groups. However, the percentage of CMs was significantly reduced and the expressions of specific cardiac markers tested were also decreased in the treated group. Interestingly, we found that in CMs obtained from treated group, β-adrenergic receptors (β-ARs) were less expressed, their function was altered and electrophysiological studies revealed differences in action potential responsiveness to β-AR stimulation. We demonstrated that the Wnt/β-catenin pathway inhibitor, DKK1 associated with other growth factors repressed functional expression of β-ARs in rES cell-derived CMs. Thus, control of this pathway in each cell line and source is important for proper basic research and further cell therapy applications.
Collapse
Affiliation(s)
- Nermeen Eldabah
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany .,2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | | | - Marina Penner
- 3 Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne, Germany
| | - Judith Semmler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Rania Swelem
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Amina Hassab
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Marek Molcanyi
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Jürgen Hescheler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Filomain Nguemo
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| |
Collapse
|
11
|
Machuki J, Zhang H, Harding S, Sun H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol (Oxf) 2018; 222. [PMID: 28994249 PMCID: PMC5813217 DOI: 10.1111/apha.12978] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Oestrogen receptors (ERs) and β-adrenergic receptors (βARs) play important roles in the cardiovascular system. Moreover, these receptors are expressed in cardiac myocytes and vascular tissues. Numerous experimental observations support the hypothesis that similarities and interactions exist between the signalling pathways of ERs (ERα, ERβ and GPR30) and βARs (β1 AR, β2 AR and β3 AR). The recently discovered oestrogen receptor GPR30 shares structural features with the βARs, and this forms the basis for the interactions and functional overlap. GPR30 possesses protein kinase A (PKA) phosphorylation sites and PDZ binding motifs and interacts with A-kinase anchoring protein 5 (AKAP5), all of which enable its interaction with the βAR pathways. The interactions between ERs and βARs occur downstream of the G-protein-coupled receptor, through the Gαs and Gαi proteins. This review presents an up-to-date description of ERs and βARs and demonstrates functional synergism and interactions among these receptors in cardiac cells. We explore their signalling cascades and the mechanisms that orchestrate their interactions and propose new perspectives on the signalling patterns for the GPR30 based on its structural resemblance to the βARs. In addition, we explore the relevance of these interactions to cell physiology, drugs (especially β-blockers and calcium channel blockers) and cardioprotection. Furthermore, a receptor-independent mechanism for oestrogen and its influence on the expression of βARs and calcium-handling proteins are discussed. Finally, we highlight promising therapeutic avenues that can be derived from the shared pathways, especially the phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway.
Collapse
Affiliation(s)
- J.O. Machuki
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - H.Y. Zhang
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - S.E. Harding
- National Heart and Lung Institute; Imperial College; London UK
| | - H. Sun
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
12
|
Zhang CL, Chen ZJ, Feng H, Zhao Q, Cao YP, Li L, Wang JY, Zhang Y, Wu LL. C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity. Cell Calcium 2017; 66:90-97. [PMID: 28807153 DOI: 10.1016/j.ceca.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 01/24/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500-600ms (-0.163 vs. -0.279), 500-700ms (-0.159 vs. -0.248), and 500-800ms (-0.148 vs. -0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.
Collapse
Affiliation(s)
- Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zheng-Ju Chen
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yang-Po Cao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
13
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Gresham KS, Stelzer JE. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function. J Physiol 2016; 594:669-86. [PMID: 26635197 DOI: 10.1113/jp270959] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS β-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo haemodynamic function before and after infusion of the β-agonist dobutamine. Mice expressing phospho-ablated MyBP-C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor-ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine. Our data demonstrate that MyBP-C phosphorylation is the principal mediator of the contractile response to increased β-agonist stimulation in vivo. These results help us understand why MyBP-C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. β-adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein-C (MyBP-C), are phosphorylated following β-adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP-C phosphorylation in β-adrenergic-mediated enhancement of cardiac function, transgenic (TG) mice expressing non-phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnI(PKA-)) were bred with mice expressing non-phosphorylatable MyBP-C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPC(PKA-)) to generate a novel mouse model expressing non-phosphorylatable PKA residues in TnI and MyBP-C (DBL(PKA-)). MyBP-C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPC(PKA-) and DBL(PKA-) mice, and in vivo echocardiography and pressure-volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild-type and TnI(PKA-) mice. Infusion of the β-agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPC(PKA-) and DBL(PKA-) mice displayed a blunted contractile response compared to wild-type and TnI(PKA-) mice. Furthermore, unanaesthesized MyBPC(PKA-) and DBL(PKA-) mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP-C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced β-adrenergic stimulation, and reduced MyBP-C phosphorylation may underlie depressed adrenergic reserve in heart failure.
Collapse
Affiliation(s)
- Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
15
|
Barbagallo F, Xu B, Reddy GR, West T, Wang Q, Fu Q, Li M, Shi Q, Ginsburg KS, Ferrier W, Isidori AM, Naro F, Patel HH, Bossuyt J, Bers D, Xiang YK. Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circ Res 2016; 119:931-43. [PMID: 27576469 DOI: 10.1161/circresaha.116.308964] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
RATIONALE In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. OBJECTIVE This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. METHODS AND RESULTS We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced β2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of β2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. CONCLUSIONS In hypertrophic rabbit myocytes, selectively enhanced β2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine β2 adrenergic receptor signaling and restore myocyte contractility in response to β adrenergic stimulation.
Collapse
Affiliation(s)
- Federica Barbagallo
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Bing Xu
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Gopireddy R Reddy
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Toni West
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Qingtong Wang
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Qin Fu
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Minghui Li
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Qian Shi
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Kenneth S Ginsburg
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - William Ferrier
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Andrea M Isidori
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Fabio Naro
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Hemal H Patel
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Julie Bossuyt
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Donald Bers
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Yang K Xiang
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.).
| |
Collapse
|
16
|
Moon C, Zhang W, Sundaram N, Yarlagadda S, Reddy VS, Arora K, Helmrath MA, Naren AP. Drug-induced secretory diarrhea: A role for CFTR. Pharmacol Res 2015; 102:107-112. [PMID: 26429773 DOI: 10.1016/j.phrs.2015.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022]
Abstract
Many medications induce diarrhea as a side effect, which can be a major obstacle to therapeutic efficacy and also a life-threatening condition. Secretory diarrhea can be caused by excessive fluid secretion in the intestine under pathological conditions. The cAMP/cGMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) is the primary chloride channel at the apical membrane of intestinal epithelial cells and plays a major role in intestinal fluid secretion and homeostasis. CFTR forms macromolecular complexes at discreet microdomains at the plasma membrane, and its chloride channel function is regulated spatiotemporally through protein-protein interactions and cAMP/cGMP-mediated signaling. Drugs that perturb CFTR-containing macromolecular complexes in the intestinal epithelium and upregulate intracellular cAMP and/or cGMP levels can hyperactivate the CFTR channel, causing excessive fluid secretion and secretory diarrhea. Inhibition of CFTR chloride-channel activity may represent a novel approach to the management of drug-induced secretory diarrhea.
Collapse
Affiliation(s)
- Changsuk Moon
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Weiqiang Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nambirajan Sundaram
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sunitha Yarlagadda
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vadde Sudhakar Reddy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kavisha Arora
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of General Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Anjaparavanda P Naren
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Foster SR, Roura E, Molenaar P, Thomas WG. G protein-coupled receptors in cardiac biology: old and new receptors. Biophys Rev 2015; 7:77-89. [PMID: 28509979 DOI: 10.1007/s12551-014-0154-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven-transmembrane-spanning proteins that mediate cellular and physiological responses. They are critical for cardiovascular function and are targeted for the treatment of hypertension and heart failure. Nevertheless, current therapies only target a small fraction of the cardiac GPCR repertoire, indicating that there are many opportunities to investigate unappreciated aspects of heart biology. Here, we offer an update on the contemporary view of GPCRs and the complexities of their signalling, and review the roles of the 'classical' GPCRs in cardiovascular physiology and disease. We then provide insights into other GPCRs that have been less extensively studied in the heart, including orphan, odorant and taste receptors. We contend that these novel cardiac GPCRs contribute to heart function in health and disease and thereby offer exciting opportunities to therapeutically modulate heart function.
Collapse
Affiliation(s)
- Simon R Foster
- School of Biomedical Sciences, University of Queensland, St Lucia Campus, 4072, Brisbane, Australia
| | - Eugeni Roura
- School of Biomedical Sciences, University of Queensland, St Lucia Campus, 4072, Brisbane, Australia.,Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia Campus, Brisbane, Australia
| | - Peter Molenaar
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, St Lucia Campus, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia Campus, Brisbane, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland, St Lucia Campus, 4072, Brisbane, Australia.
| |
Collapse
|
18
|
Laukova M, Tillinger A, Novakova M, Krizanova O, Kvetnansky R, Myslivecek J. Repeated immobilization stress increases expression of β3 -adrenoceptor in the left ventricle and atrium of the rat heart. Stress Health 2014; 30:301-9. [PMID: 23878066 DOI: 10.1002/smi.2515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/24/2013] [Accepted: 06/21/2013] [Indexed: 11/12/2022]
Abstract
Stress is a contributor of many cardiovascular diseases. Positive inotropic and chronotropic effects of catecholamines are regulated via β-adrenergic receptors (ARs). Many reports exist concerning changes of cardiac β1 - and β2 -ARs in stress, but only a few deal with modulation of cardiac β3 -AR. Our aim was to analyze the expression and binding sites of β1 -, β2 - and β3 -ARs and adenylyl cyclase activity in the left ventricle, and β3 -AR expression and binding in the left atrium of rats exposed to acute and chronic immobilization stress (IMO). The concentration of noradrenaline in the ventricle decreased, while adrenaline increased, especially after repeated IMO. The mRNA and protein levels, and binding sites of β3 -subtype significantly rose following chronic IMO, while all parameters for β2 -AR dropped after single and repeated exposure. Similarly, the mRNA levels and binding sites for β3 -subtype increased in the left atrium as a consequence of chronic IMO. The rise in β3 -subtypes and a drop in β2 -subtypes resulted in inhibition of adenylyl cyclase activity within the left ventricle. Taken together, among other factors, up-regulation of β3 -AR could represent an adaptation mechanism, which might be related to altered physiological function of the left ventricle and atrium during prolonged emotional stress and might serve cardioprotective function during catecholamine overload.
Collapse
Affiliation(s)
- Marcela Laukova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA; Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
19
|
Tilley DG, Zhu W, Myers VD, Barr LA, Gao E, Li X, Song J, Carter RL, Makarewich CA, Yu D, Troupes CD, Grisanti LA, Coleman RC, Koch WJ, Houser SR, Cheung JY, Feldman AM. β-adrenergic receptor-mediated cardiac contractility is inhibited via vasopressin type 1A-receptor-dependent signaling. Circulation 2014; 130:1800-11. [PMID: 25205804 DOI: 10.1161/circulationaha.114.010434] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Enhanced arginine vasopressin levels are associated with increased mortality during end-stage human heart failure, and cardiac arginine vasopressin type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased β-adrenergic receptor (βAR) responsiveness. This led us to hypothesize that V1AR signaling regulates βAR responsiveness and in doing so contributes to development of heart failure. METHODS AND RESULTS Transaortic constriction resulted in decreased cardiac function and βAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased βAR ligand affinity, as well as βAR-induced Ca(2+) mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of βAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/G protein receptor kinase-dependent manner. CONCLUSIONS This newly discovered relationship between cardiac V1AR and βAR may be informative for the treatment of patients with acute decompensated heart failure and elevated arginine vasopressin.
Collapse
Affiliation(s)
- Douglas G Tilley
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.).
| | - Weizhong Zhu
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Valerie D Myers
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Larry A Barr
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Erhe Gao
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Xue Li
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Jianliang Song
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Rhonda L Carter
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Catherine A Makarewich
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Daohai Yu
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Constantine D Troupes
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Laurel A Grisanti
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Ryan C Coleman
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Walter J Koch
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Steven R Houser
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Joseph Y Cheung
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| | - Arthur M Feldman
- From the Center for Translational Medicine (D.G.T., E.G., J.S, R.L.C., L.A.G., W.J.K., J.Y.C.), Department of Pharmacology (D.G.T., W.J.K.), Cardiovascular Research Center (W.Z., V.D.M., L.A.B., C.A.M., C.D.T., R.C.C., S.R.H.), Department of Physiology (L.A.B., C.A.M., S.R.H., A.M.F.), Department of Clinical Sciences (D.Y.), and Department of Medicine (J.Y.C., A.M.F.), Temple University School of Medicine, Philadelphia, PA; and the Division of Cardiology, Fourth Military Medical University, Xian, People's Republic of China (X.L.)
| |
Collapse
|
20
|
Mahdian D, Shafiee-Nick R, Mousavi SH. Different effects of adenylyl cyclase activators and phosphodiesterases inhibitors on cervical cancer (HeLa) and breast cancer (MCF-7) cells proliferation. Toxicol Mech Methods 2014; 24:307-14. [DOI: 10.3109/15376516.2014.898354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Carter RL, Grisanti LA, Yu JE, Repas AA, Woodall M, Ibetti J, Koch WJ, Jacobson MA, Tilley DG. Dynamic mass redistribution analysis of endogenous β-adrenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharmacol Res Perspect 2014; 2. [PMID: 24683488 PMCID: PMC3968527 DOI: 10.1002/prp2.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Label-free systems for the agnostic assessment of cellular responses to receptor stimulation have been shown to provide a sensitive method to dissect receptor signaling. β-adenergic receptors (βAR) are important regulators of normal and pathologic cardiac function and are expressed in cardiomyocytes as well as cardiac fibroblasts, where relatively fewer studies have explored their signaling responses. Using label-free whole cell dynamic mass redistribution (DMR) assays we investigated the response patterns to stimulation of endogenous βAR in primary neonatal rat cardiac fibroblasts (NRCF). The EPIC-BT by Corning was used to measure DMR responses in primary isolated NRCF treated with various βAR and EGFR ligands. Additional molecular assays for cAMP generation and receptor internalization responses were used to correlate the DMR findings with established βAR signaling pathways. Catecholamine stimulation of NRCF induced a concentration-dependent negative DMR deflection that was competitively blocked by βAR blockade and non-competitively blocked by irreversible uncoupling of Gs proteins. Subtype-selective βAR ligand profiling revealed a dominant role for β2AR in mediating the DMR responses, consistent with the relative expression levels of β2AR and β1AR in NRCF. βAR-mediated cAMP generation profiles revealed similar kinetics to DMR responses, each of which were enhanced via inhibition of cAMP degradation, as well as dynamin-mediated receptor internalization. Finally, G protein-independent βAR signaling through epidermal growth factor receptor (EGFR) was assessed, revealing a smaller but significant contribution of this pathway to the DMR response to βAR stimulation. Measurement of DMR responses in primary cardiac fibroblasts provides a sensitive readout for investigating endogenous βAR signaling via both G protein-dependent and –independent pathways.
Collapse
Affiliation(s)
- Rhonda L Carter
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Laurel A Grisanti
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Justine E Yu
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Ashley A Repas
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Meryl Woodall
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Marlene A Jacobson
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| | - Douglas G Tilley
- Center for Translational Medicine (R.L.C., L.A.G., J.E.Y., A.A.R., M.W., J.I., W.J.K. and D.G.T.) and Department of Pharmacology (W.J.K. and D.G.T.), Temple University School of Medicine, and Moulder Center for Drug Discovery Research and Temple University School of Pharmacy (M.A.J.), Philadelphia, PA 19140, USA
| |
Collapse
|
22
|
PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling. J Mol Cell Cardiol 2013; 66:83-93. [PMID: 24225179 DOI: 10.1016/j.yjmcc.2013.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/14/2013] [Accepted: 11/02/2013] [Indexed: 01/08/2023]
Abstract
β-Adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca(2+) handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50=10.6±0.7 min; EC50=89.0 nmol/L) than in the cytosol (t50=3.71±0.25 min; EC50=1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca(2+) and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50=1.84 nmol/L) over cell hypertrophy (EC50=85.9 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses.
Collapse
|