1
|
Chen S, Sun S, Cai M, Zhou Z, Ma Y, Zhou Z, Wang F, Liu J, Song W, Liu Y, Huang K, Yang Q, Guo Y. A metabolome-wide Mendelian randomization study prioritizes causal circulating metabolites for reproductive disorders including primary ovarian insufficiency, polycystic ovary syndrome, and abnormal spermatozoa. J Ovarian Res 2024; 17:166. [PMID: 39143642 PMCID: PMC11325614 DOI: 10.1186/s13048-024-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Accumulating studies have highlighted the significant role of circulating metabolomics in the etiology of reproductive system disorders. However, the causal effects between genetically determined metabolites (GDMs) and reproductive diseases, including primary ovarian insufficiency (POI), polycystic ovary syndrome (PCOS), and abnormal spermatozoa (AS), still await thorough clarification. METHODS With the currently most comprehensive genome-wide association studies (GWAS) data of metabolomics, systematic two-sample Mendelian randomization (MR) analyses were conducted to disclose causal associations between 1,091 blood metabolites and 309 metabolite ratios with reproductive disorders. The inverse-variance weighted (IVW) method served as the primary analysis approach, and multiple effective MR methods were employed as complementary analyses including MR-Egger, weighted median, constrained maximum likelihood (cML-MA), contamination mixture method, robust adjusted profile score (MR-RAPS), and debiased inverse-variance weighted method. Heterogeneity and pleiotropy were assessed via MR-Egger intercept and Cochran's Q statistical analysis. Outliers were detected by Radial MR and MR-PRESSO methods. External replication and metabolic pathway analysis were also conducted. RESULTS Potential causal associations of 63 GDMs with POI were unearthed, and five metabolites with strong causal links to POI were emphasized. Two metabolic pathways related to the pathogenesis of POI were pinpointed. Suggestive causal effects of 70 GDMs on PCOS were detected, among which 7 metabolites stood out for strong causality with elevated PCOS risk. Four metabolic pathways associated with PCOS mechanisms were recognized. For AS, 64 GDMs as potential predictive biomarkers were identified, particularly highlighting two metabolites for their strong causal connections with AS. Three pathways underneath the AS mechanism were identified. Multiple assessments were conducted to further confirm the reliability and robustness of our causal inferences. CONCLUSION By extensively assessing the causal implications of circulating GDMs on reproductive system disorders, our study underscores the intricate and pivotal role of metabolomics in reproductive ill-health, laying a theoretical foundation for clinical strategies from metabolic insights.
Collapse
Affiliation(s)
- Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shihao Sun
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Mingshu Cai
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuan Ma
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zihan Zhou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fang Wang
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinhao Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenyan Song
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kai Huang
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qingling Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yihong Guo
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Scheunemann L, Lampin-Saint-Amaux A, Schor J, Preat T. A sperm peptide enhances long-term memory in female Drosophila. SCIENCE ADVANCES 2019; 5:eaax3432. [PMID: 31799390 PMCID: PMC6867886 DOI: 10.1126/sciadv.aax3432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Can mating influence cognitive functions such as learning and memory in a permanent way? We have addressed this question using a combined behavioral and in vivo imaging approach, finding that aversive long-term memory performance strongly increases in Drosophila females in response to sperm transfer following mating. A peptide in the male sperm, the sex peptide, is known to cause marked changes in female reproductive behavior, as well as other behaviors such as dietary preference. Here, we demonstrate that this sex peptide enhances memory by acting on a single pair of serotonergic brain neurons, in which activation of the sex peptide receptor stimulates the cyclic adenosine monophosphate/protein kinase A pathway. We thus reveal a strong effect of mating on memory via the neuromodulatory action of a sperm peptide on the female brain.
Collapse
|
3
|
D'Occhio MJ, Baruselli PS, Campanile G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 2019; 125:277-284. [DOI: 10.1016/j.theriogenology.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
|
4
|
Fischer EK, O'Connell LA. Modification of feeding circuits in the evolution of social behavior. ACTA ACUST UNITED AC 2017; 220:92-102. [PMID: 28057832 DOI: 10.1242/jeb.143859] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.
Collapse
Affiliation(s)
- Eva K Fischer
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren A O'Connell
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Fraley GS. ICV galanin-like peptide stimulates non-contact erections but not touch-based erections in adult, sexually experienced male rats. Neuropeptides 2017; 64:69-73. [PMID: 28168997 DOI: 10.1016/j.npep.2017.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/26/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide transcribed only within the arcuate nucleus of the hypothalamus and is thought to be a mediator between energetics and reproductive function. Intracerebroventricular (ICV) injection of GALP is known to have effects on feeding, and to significantly increase gonadotropin releasing hormone- (GnRH-) mediated luteinizing hormone (LH) secretion. Furthermore, ICV GALP is known to stimulate fos production in the medial pre-optic area (mPOA) and to a lesser extent, the paraventricular nucleus (PVN). ICV injection of 5.0nmol GALP profoundly stimulates male rat sexual behavior. It is not known if GALP's effects on sex behavior are due to an increase in appetitive or mechanical (erectile) aspects of male sexual behavior. To determine this, sexually experienced male rats were cannulated in the lateral ventricle and injected with 5.0nmol GALP or vehicle. Immediately after injections, male rats were placed in an arena connected to a second arena via a tube with a fan. The second arena contained a steroid-primed female and her bedding. The male rat had olfactory but not visual or tactile contact with the female. We analyzed the amount of time the male rats spent investigating the air intake and the number of non-contact erections (NCEs) in a 30minute test. ICV GALP significantly (p<0.05) increased both the amount of time of olfactory investigations and NCEs compared to vehicle. In a second set of animals, we tested if ICV GALP could stimulate touch-based erections. GALP had no significant effect on touch-based erections compared to vehicle. These data suggest that GALP's activation of fos within the mPOA is indicative of its action to stimulate the appetitive aspects of male sexual behavior.
Collapse
Affiliation(s)
- Gregory S Fraley
- Biology, Hope College, 35 East 12th St, SC3065, Holland, MI 49423, USA.
| |
Collapse
|
6
|
Leka-Emiri S, Chrousos GP, Kanaka-Gantenbein C. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP). J Endocrinol Invest 2017; 40:789-802. [PMID: 28251550 DOI: 10.1007/s40618-017-0627-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/04/2023]
Abstract
Puberty is a major developmental stage. Damaging mutations, considered as "mistakes of nature", have contributed to the unraveling of the networks implicated in the normal initiation of puberty. Genes involved in the abnormal hypothalamic-pituitary-gonadal (HPG) axis development, in the normosmic idiopathic hypogonadotropic hypogonadism (nIHH), in the X-linked or autosomal forms of Kallmann syndrome and in precocious puberty have been identified (GNRH1, GNRHR, KISS1, GPR54, FGFR1, FGF8, PROK2, PROKR2, TAC3, TACR3, KAL1, PROK2, PROKR2, CHD7, LEP, LEPR, PC1, DAX1, SF-1, HESX-1, LHX3, PROP-1). Most of them were found to play critical roles in HPG axis development and regulation, the embryonic GnRH neuronal migration and secretion, the regulation and action of the hypothalamic GnRH. However, the specific neural and molecular mechanisms triggering GnRH secretion remain one of the scientific enigmas. Although GnRH neurons are probably capable of autonomously generating oscillations, many gonadal steroid-dependent and -independent mechanisms have also been proposed. It is now well proven that the secretion of GnRH is regulated by kisspeptin as well as by permissive or opposing signals mediated by neurokinin B and dynorphin. These three supra-GnRH regulators compose the kisspeptin-neurokinin B-dynorphin neuronal (KNDy) system, a key player in pubertal onset and progression. Moreover, an ongoing increasing number of inhibitory, stimulatory and permissive networks acting upstream on GnRH neurons, such as GABA, NPY, LIN28B, MKRN3 and others integrate diverse hormonal and peripheral signals and have been proposed as the "gate-keepers" of puberty, while epigenetic modifications play also an important role in puberty initiation.
Collapse
Affiliation(s)
- Sofia Leka-Emiri
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Faculty of Medicine, National and Kapodistrian University of Athens, Medical School, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Faculty of Medicine, National and Kapodistrian University of Athens, Medical School, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Faculty of Medicine, National and Kapodistrian University of Athens, Medical School, "Aghia Sofia" Children's Hospital, Athens, Greece.
| |
Collapse
|
7
|
Sergeant L, Rodriguez-Dimitrescu C, Barney CC, Fraley GS. Injections of Galanin-Like Peptide directly into the nucleus of the tractus solitarius (NTS) reduces food intake and body weight but increases metabolic rate and plasma leptin. Neuropeptides 2017; 62:37-43. [PMID: 28043649 DOI: 10.1016/j.npep.2016.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/25/2016] [Accepted: 12/26/2016] [Indexed: 12/27/2022]
Abstract
Galanin-Like Peptide (GALP) is a hypothalamic neuromediator of metabolism and reproduction. GALP is known to stimulate reproduction and alter food intake and body weight in multiple species. The regulation of body weight involves control of both energy intake and energy expenditure. Since GALP is known to alter food intake - possibly via the autonomic nervous system - we first hypothesized that GALP would increase metabolic rate. First, male Sprague-Dawley rats were implanted with intracerebroventricular (ICV) cannulae and abdominal radiotelemetry temperature transmitters. Following ICV injection with either 5nmol GALP or vehicle, the oxygen consumption of each rat was monitored for 8h. Food intake, core temperature, and general motor activity were monitored for 24h. GALP significantly increased oxygen consumption, an indirect estimator of metabolic rate, without having any significant effect on motor activity. Compared to controls, GALP increased core body temperature during the photophase and reduced food intake over the 24h period following injection. ICV GALP also increased plasma levels of luteinizing hormone (LH). A second group of male Sprague-Dawley rats were implanted with abdominal transmitters and given injections of GALP directly into the nucleus of the tractus solitarius (NTS). These injections resulted in a significant reduction in food intake, and a significant increase in both oxygen consumption and core body temperature compared to vehicle injections. Direct injections of GALP into the NTS compared to vehicle also resulted in a significant increase in plasma leptin levels, but not LH levels. GALP appears to increase energy expenditure in addition to decreasing energy input by actions within the NTS and thus may play an important role in the hypothalamic regulation of body weight.
Collapse
Affiliation(s)
- Lindy Sergeant
- Department of Biology, Hope College, Holland, MI 49423, United States
| | | | | | - Gregory S Fraley
- Department of Biology, Hope College, Holland, MI 49423, United States.
| |
Collapse
|
8
|
Candlish M, Angelis RD, Götz V, Boehm U. Gene Targeting in Neuroendocrinology. Compr Physiol 2015; 5:1645-76. [DOI: 10.1002/cphy.c140079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240-9. [PMID: 26188174 DOI: 10.1016/j.peptides.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Biao He
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Guimei Kong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Xiaoyun Dong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
10
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
11
|
Aziz R, Beymer M, Negrón AL, Newshan A, Yu G, Rosati B, McKinnon D, Fukuda M, Lin RZ, Mayer C, Boehm U, Acosta-Martínez M. Galanin-like peptide (GALP) neurone-specific phosphoinositide 3-kinase signalling regulates GALP mRNA levels in the hypothalamus of males and luteinising hormone levels in both sexes. J Neuroendocrinol 2014; 26:426-38. [PMID: 24796383 PMCID: PMC4076824 DOI: 10.1111/jne.12163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 12/31/2022]
Abstract
Galanin-like peptide (GALP) neurones participate in the metabolic control of reproduction and are targets of insulin and leptin regulation. Phosphoinositide 3-kinase (PI3K) is common to the signalling pathways utilised by both insulin and leptin. Therefore, we investigated whether PI3K signalling in neurones expressing GALP plays a role in the transcriptional regulation of the GALP gene and in the metabolic control of luteinising hormone (LH) release. Accordingly, we deleted PI3K catalytic subunits p110α and p110β via conditional gene targeting (cKO) in mice (GALP-p110α/β cKO). To monitor PI3K signalling in GALP neurones, these animals were also crossed with Cre-dependent FoxO1GFP reporter mice. Compared to insulin-infused control animals, the PI3K-Akt-dependent FoxO1GFP nuclear exclusion in GALP neurones was abolished in GALP-p110α/β cKO mice. We next used food deprivation to investigate whether the GALP-neurone specific ablation of PI3K activity affected the susceptibility of the gonadotrophic axis to negative energy balance. Treatment did not affect LH levels in either sex. However, a significant genotype effect on LH levels was observed in females. By contrast, no genotype effect on LH levels was observed in males. A sex-specific genotype effect on hypothalamic GALP mRNA was observed, with fed and fasted GALP-p110α/β cKO males having lower GALP mRNA expression compared to wild-type fed males. Finally, the effects of gonadectomy and steroid hormone replacement on GALP mRNA levels were investigated. Compared to vehicle-treated mice, steroid hormone replacement reduced mediobasal hypothalamus GALP expression in wild-type and GALP-p110α/β cKO animals. In addition, within the castrated and vehicle-treated group and compared to wild-type mice, LH levels were lower in GALP-p110α/β cKO males. Double immunofluorescence using GALP-Cre/R26-YFP mice showed androgen and oestrogen receptor co-localisation within GALP neurones. Our data demonstrate that GALP neurones are direct targets of steroid hormones and that PI3K signalling regulates hypothalamic GALP mRNA expression and LH levels in a sex-specific fashion.
Collapse
Affiliation(s)
- R Aziz
- Department of Physiology and Biophysics, Medical Center, Stony Brook University, Stony Brook, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Qureshi IZ, Abbas Q. Modulation of testicular and whole blood trace element concentrations in conjunction with testosterone release following kisspeptin administration in male rabbits (Oryctolagus cuniculus). Biol Trace Elem Res 2013; 154:210-6. [PMID: 23812650 DOI: 10.1007/s12011-013-9720-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/29/2013] [Indexed: 01/23/2023]
Abstract
The present study investigated the role of kisspeptin-10 on reproductively significant trace elements in relation to testosterone release in male rabbits, Oryctolagus cuniculus. Groups of rabbits were exposed to single 1 μg kisspeptin dose (i.v., saphenous vein), while simultaneous groups were pretreated with a kisspeptin antagonist, peptide-234 (50 μg) 20 min before administering kisspeptin. Sequential blood sampling was done through marginal ear vein puncture at staggered time intervals: 0, 0.5, 1, 2, 4, and 24 h to determine serum testosterone. Testes and whole blood were collected at 4 and 24 h post dosage to determine trace element concentrations through atomic absorption spectrophotometry. In testes, zinc (Zn), manganese (Mn), and Fe concentrations showed significant increases at 24 h, while copper (Cu) concentration was found elevated at 4 and 24 h both (P < 0.001). In whole blood, Zn and Cu concentrations were significantly elevated at 4 and 24 h, while Mn and cobalt (Co) concentrations showed increases only at 24 h (P < 0.001). Blood iron concentration was not altered in the blood. In contrast, no change occurred in testicular Co, and chromium or nickel concentrations in either testes or blood. Compared to control and predose groups, serum testosterone levels increased gradually and peaked at 2 h (P < 0.001) post kisspeptin treatment but declined thereafter. Pretreatment with antagonist abolished all increases in trace elements and testosterone concentrations. The present study provides first evidence that reproduction- and fertility-related peptide "kisspeptin" modulates testicular and blood trace elements and that this action is likely GPR54-dependent.
Collapse
Affiliation(s)
- Irfan Zia Qureshi
- Laboratory of Animal and Human Physiology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | | |
Collapse
|
13
|
Mohr MA, Leathley E, Fraley GS. Hypothalamic galanin-like peptide rescues the onset of puberty in food-restricted weanling rats. J Neuroendocrinol 2012; 24:1412-22. [PMID: 22681480 DOI: 10.1111/j.1365-2826.2012.02351.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Galanin-like peptide (GALP) is a known mediator of metabolism and reproduction; however, the role that GALP plays in the onset of puberty is unknown. First, we tested the hypothesis that central GALP administration could rescue puberty in food-restricted weanling rats. GALP treatment in food-restricted rats of both sexes rescued the timing of the onset of puberty to that seen in ad lib. fed controls. Second, we tested whether GALP translation knocked-down in ad lib. fed, prepubertal rats would alter the timing of puberty. Knock-down females, but not males, showed a significant (P < 0.01) delay in the onset of puberty compared to controls. Third, we sought evidence that the role of GALP in pubertal onset is mediated by the kisspeptin system. In situ hybridisation analyses showed a significant (P < 0.01) reduction in Kiss1 mRNA within the hypothalamic arcuate nucleus in food-restricted rats compared to ad lib. fed controls and this reduction was prevented with i.c.v. GALP administration. Furthermore, analyses of Fos-immunoreactivity (-IR) after i.c.v. GALP treatment did not elicit Fos-IR within any kisspeptin neurones, nor are GALP and kisspeptin peptides or mRNA colocalised. These data demonstrate that hypothalamic GALP infusion maintained the onset of puberty in food-restricted weanling rats, although probably not via direct innervation of kisspeptin neurones.
Collapse
Affiliation(s)
- M A Mohr
- Biology Department and Neuroscience Program, Hope College, Holland, MI 49423, USA
| | | | | |
Collapse
|
14
|
Fang P, Yu M, Shi M, Zhang Z, Sui Y, Guo L, Bo P. Galanin peptide family as a modulating target for contribution to metabolic syndrome. Gen Comp Endocrinol 2012; 179:115-20. [PMID: 22909974 DOI: 10.1016/j.ygcen.2012.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) is defined as abdominal central obesity, atherogenic dyslipidemia, insulin resistance, glucose intolerance and hypertension. The rapid increasing prevalence of MetS and the consequent diseases, such as type 2 diabetes mellitus and cardiovascular disorder, are becoming a global epidemic health problem. Despite considerable research into the etiology of this complex disease, the precise mechanism underlying MetS and the association of this complex disease with the development of type 2 diabetes mellitus and increased cardiovascular disease remains elusive. Therefore, researchers continue to actively search for new MetS treatments. Recent animal studies have indicated that the galanin peptide family of peptides may increase food intake, glucose intolerance, fat preference and the risk for obesity and dyslipidemia while decreasing insulin resistance and blood pressure, which diminishes the probability of type 2 diabetes mellitus and hypertension. To date, however, few papers have summarized the role of the galanin peptide family in modulating MetS. Through a summary of available papers and our recent studies, this study reviews the updated evidences of the effect that the galanin peptide family has on the clustering of MetS components, including obesity, dyslipidemia, insulin resistance and hypertension. This line of research will further deepen our understanding of the relationship between the galanin peptide family and the mechanisms underlying MetS, which will help develop new therapeutic strategies for this complex disease.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Fang P, Yu M, Guo L, Bo P, Zhang Z, Shi M. Galanin and its receptors: a novel strategy for appetite control and obesity therapy. Peptides 2012; 36:331-9. [PMID: 22664322 DOI: 10.1016/j.peptides.2012.05.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 12/14/2022]
Abstract
The rapid increase in the prevalence of overweight and obesity is becoming an important health problem. Overweight and obesity may cause several metabolic complications, including type 2 diabetes mellitus, hyperlipidemia, high cholesterol, coronary artery disease as well as hypertension. Prevention and treatment of obesity will benefit the treatment of these related diseases. Current strategies for treatment of obesity are not adequately effective and are frequently companied with many side effects. Thus, new ways to treat obesity are urgently needed. Galanin is undoubtedly involved in the regulation of food intake and body weight. The aim of this review is to provide up-to-date knowledge concerning the roles of central and peripheral galanin as well as its receptors in the regulation of metabolism, obesity and appetite. We also highlight the mechanisms of galanin and its receptors in experimental obesity, trying to establish a novel anti-obesity strategy.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The immune system defends the organism against invading pathogens. In recent decades it became evident that elimination of such pathogens, termination of inflammation, and restoration of host homeostasis all depend on bidirectional crosstalk between the immune system and the neuroendocrine system. This crosstalk is mediated by a complex network of interacting molecules that modulates inflammation and cell growth. Among these mediators are neuropeptides released from neuronal and non-neuronal components of the central and peripheral nervous systems, endocrine tissues, and cells of the immune system. Neuropeptide circuitry controls tissue inflammation and maintenance, and an imbalance of pro- and anti-inflammatory neuropeptides results in loss of host homeostasis and triggers inflammatory diseases. The galanin peptide family is undoubtedly involved in the regulation of inflammatory processes, and the aim of this review is to provide up-to-date knowledge from the literature concerning the regulation of galanin and its receptors in the nervous system and peripheral tissues in experimental models of inflammation. We also highlight the effects of galanin and other members of the galanin peptide family on experimentally induced inflammation and discuss these data in light of an anti-inflammatory role for this family of peptides.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology, Paracelsus Medical University Salzburg, Muellner-Hauptstrasse 48, A-5020 Salzburg, Austria
| | | |
Collapse
|
17
|
Boughton CK, Patterson M, Bewick GA, Tadross JA, Gardiner JV, Beale KEL, Chaudery F, Hunter G, Busbridge M, Leavy EM, Ghatei MA, Bloom SR, Murphy KG. Alarin stimulates food intake and gonadotrophin release in male rats. Br J Pharmacol 2011; 161:601-13. [PMID: 20880399 DOI: 10.1111/j.1476-5381.2010.00893.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Alarin is a recently discovered member of the galanin peptide family encoded by a splice variant of galanin-like peptide (GALP) mRNA. Galanin and GALP regulate energy homeostasis and reproduction. We therefore investigated the effects of alarin on food intake and gonadotrophin release. EXPERIMENTAL APPROACH Alarin was administered into the third cerebral ventricle (i.c.v.) of rats, and food intake or circulating hormone levels were measured. The effect of alarin on the hypothalamo-pituitary-gonadal axis was investigated in vitro using hypothalamic and anterior pituitary explants, and immortalized cell lines. Receptor binding assays were used to determine whether alarin binds to galanin receptors. KEY RESULTS The i.c.v. administration of alarin (30 nmol) to ad libitum fed male rats significantly increased acute food intake to 500%, and plasma luteinizing hormone (LH) levels to 170% of responses to saline. In vitro, 100 nM alarin stimulated neuropeptide Y (NPY) and gonadotrophin-releasing hormone (GnRH) release from hypothalamic explants from male rats, and 1000 nM alarin increased GnRH release from GT1-7 cells. In vivo, pretreatment with the GnRH receptor antagonist cetrorelix prevented the increase in plasma LH levels observed following i.c.v. alarin administration. Receptor binding studies confirmed alarin did not bind to any known galanin receptor, or compete with radiolabelled galanin for hypothalamic binding sites. CONCLUSIONS AND IMPLICATIONS These results suggest alarin is a novel orexigenic peptide, and that it increases circulating LH levels via hypothalamic GnRH. Further work is required to identify the receptor(s) mediating the biological effects of alarin.
Collapse
Affiliation(s)
- C K Boughton
- Department of Investigative Medicine, Imperial College London, Commonwealth Building, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shioda S, Kageyama H, Takenoya F, Shiba K. Galanin-like peptide: a key player in the homeostatic regulation of feeding and energy metabolism? Int J Obes (Lond) 2010; 35:619-28. [PMID: 20938442 DOI: 10.1038/ijo.2010.202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hypothalamus has a critical role in the regulation of feeding behavior, energy metabolism and reproduction. Galanin-like peptide (GALP), a novel 60 amino-acid peptide with a nonamidated C-terminus, was first discovered in porcine hypothalamus. GALP is mainly produced in the hypothalamic arcuate nucleus and is involved in the regulation of feeding behavior and energy metabolism, with GALP-containing neurons forming networks with several feeding-regulating peptide-containing neurons. The effects of GALP on food intake and body weight are complex. In rats, the central effect of GALP is to first stimulate and then reduce food intake, whereas in mice, GALP has an anorectic function. Furthermore, GALP regulates plasma luteinizing hormone levels through activation of gonadotropin-releasing hormone-producing neurons, suggesting that it is also involved in the reproductive system. This review summarizes the research on these topics and discusses current evidence regarding the function of GALP, particularly in relation to feeding and energy metabolism. We also discuss the effects of GALP activity on food intake, body weight and locomotor activity after intranasal infusion, a clinically viable mode of delivery.
Collapse
Affiliation(s)
- S Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
19
|
Silveira LG, Tusset C, Latronico AC. Impact of mutations in kisspeptin and neurokinin B signaling pathways on human reproduction. Brain Res 2010; 1364:72-80. [PMID: 20816945 DOI: 10.1016/j.brainres.2010.08.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
Abstract
The involvement of kisspeptin and neurokinin in B pathways in the reproductive axis was first suspected by linkage analysis in consanguineous families with isolated hypogonadotropic hypogonadism (IHH). Since then, several loss-of-function mutations affecting the kisspeptin receptor and neurokinin B and its receptor were associated with sporadic and familial IHH without olfactory abnormalities or other associated developmental alterations. Clinical manifestations were indistinguishable in individuals with mutations affecting these pathways. Micropenis and cryptorchidism were common findings among male patients. Response to acute GnRH stimulation varied from blunted to normal, and many affected males and females were successfully treated for infertility with either exogenous gonadotropins or long term pulsatile GnRH infusion. More recently, rare activating mutations of the kisspeptin and its receptor were identified in children with idiopathic central precocious puberty, supporting the crucial role of this system in the human pubertal onset. Kisspeptin is a potent excitatory regulator of the GnRH secretion, whereas the role of neurokinin B in the neuroendocrine control of the reproductive axis is still poorly understood. Interestingly, kisspeptin and neurokinin B are coexpressed in the arcuate nucleus in the mammalian hypothalamus, suggesting that these systems are closely related and potential partners of the regulation of the reproductive axis.
Collapse
Affiliation(s)
- Leticia Gontijo Silveira
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular, Hospital das Clínicas, Faculdade de medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | | | | |
Collapse
|
20
|
Silveira LFG, Trarbach EB, Latronico AC. Genetics basis for GnRH-dependent pubertal disorders in humans. Mol Cell Endocrinol 2010; 324:30-8. [PMID: 20188792 DOI: 10.1016/j.mce.2010.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 12/20/2022]
Abstract
Human puberty is triggered by the reemergence of GnRH pulsatile secretion, with progressive activation of gonadal function. Several mutations have been identified in an increasing number of genes that influence the onset of puberty. Mutations in GNRH1, KISS1R and GNRHR genes cause normosmic IHH, interfering with the normal synthesis, secretion or action of GnRH. More recently, mutations in TAC3 and TACR3 genes, which encode neurokinin B and its receptor, have been implicated in normosmic IHH, although their precise functions in reproduction remain unclear. Mutations in KAL1, FGFR1, FGF8, PROK2 and PROKR2 are related to disruption of the development and migration of GnRH neurons, thereby resulting in Kallmann syndrome, a complex genetic condition characterized by isolated hypogonadotropic hypogonadism (IHH) and olfactory abnormalities. Furthermore, mutations in CHD7 gene, a major gene involved in the etiology of CHARGE syndrome, were also described in some patients with Kallmann syndrome and normosmic IHH. Notably, the evidence of association of some of the genes implicated with GnRH neurons development and migration with both Kallmann syndrome and normosmic IHH, blurring the simplest clinical distinction between ontogenic and purely functional defects in the axis. Digenic or oligogenic inheritance of IHH has also been described, illustrating the extraordinary genetic heterogeneity of IHH. Interestingly, rare gain-of-function mutations of the genes encoding the kisspeptin and its receptor were recently associated with central precocious puberty phenotype, indicating that the premature activation of the reproductive axis may be also caused by genetic mutations. These discoveries have yielded significant insights into the current knowledge of this important life transition.
Collapse
Affiliation(s)
- Leticia Ferreira Gontijo Silveira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 da Disciplina de Endocrinologia do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
21
|
Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A 2009; 106:17217-22. [PMID: 19805188 DOI: 10.1073/pnas.0908200106] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.
Collapse
|
22
|
Barrett P, van den Top M, Wilson D, Mercer JG, Song CK, Bartness TJ, Morgan PJ, Spanswick D. Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian hamster. Endocrinology 2009; 150:3655-63. [PMID: 19372203 PMCID: PMC5393275 DOI: 10.1210/en.2008-1620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nonhibernating seasonal mammals have adapted to temporal changes in food availability through behavioral and physiological mechanisms to store food and energy during times of predictable plenty and conserve energy during predicted shortage. Little is known, however, of the hypothalamic neuronal events that lead to a change in behavior or physiology. Here we show for the first time that a shift from long summer-like to short winter-like photoperiod, which induces physiological adaptation to winter in the Siberian hamster, including a body weight decrease of up to 30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC) assessed by electrophysiological patch-clamping recording. Increased neuronal activity in short days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, clobenproprit. Short-day activation of dmpARC neurons results in increased c-Fos expression. Tract tracing with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation of the histamine H3 receptor, contributes to the physiological adaptation of body weight regulation in seasonal photoperiod.
Collapse
Affiliation(s)
- P Barrett
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lawrence CB. Galanin-like peptide modulates energy balance by affecting inflammatory mediators? Physiol Behav 2009; 97:515-9. [DOI: 10.1016/j.physbeh.2009.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 12/25/2022]
|
24
|
Abstract
PURPOSE OF REVIEW Puberty is the developmental process that culminates in reproductive capability. It is initiated by the release of gonadotropin-releasing hormone from specialized neurons of the hypothalamus to stimulate hormonal cascades and gonadal activation. The age of pubertal onset in girls may be younger than in previous decades, emphasizing the gaps in knowledge about pubertal onset and factors that modulate it. This review describes the state of the debate on the age of pubertal initiation, recent insights into the physiology of female puberty and its relationship to childhood obesity, and the regulation of gonadotropin-releasing hormone neurons at puberty. RECENT FINDINGS Recent studies suggest that the average age of pubertal onset is decreasing in American girls, sparking controversy in defining the age at which puberty is considered precocious. Obese girls have hyperinsulinemia and hyperandrogenemia prepubertally, but it is unclear whether these factors play a role in the early onset of puberty in obese girls. The kisspeptin/G protein-coupled receptor 54 pathway is important for pubertal initiation; an activating mutation in the pathway has been associated with precocious puberty. SUMMARY The recent trend toward obesity has been proposed to play a role in the cause of early puberty in girls. The molecular mechanisms that initiate puberty are slowly being elucidated, with the discovery of kisspeptin prompting a novel direction in reproductive research.
Collapse
Affiliation(s)
- Sara A DiVall
- Division of Pediatric Endocrinology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
25
|
Fernandes ES, Schmidhuber SM, Brain SD. Sensory-nerve-derived neuropeptides: possible therapeutic targets. Handb Exp Pharmacol 2009:393-416. [PMID: 19655113 DOI: 10.1007/978-3-540-79090-7_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review examines our developing understanding of the families and activities of some of the best known sensory-nerve-derived inflammatory neuropeptides, namely substance P, calcitonin gene-related peptide and galanin. Evidence to date shows involvement of these transmitters in a wide range of systems that includes roles as inflammatory modulators. There is an increasing understanding of the mechanisms involved in the release of the peptides from sensory nerves and these are key in understanding the potential of neuropeptides in modulating inflammatory responses and may also provide novel targets for anti-inflammatory therapy. The neuropeptides released act via specific G protein coupled receptors, most of which have now been cloned. There is knowledge of selective agonists and antagonists for many subtypes within these families. The study of neuropeptides in animal models has additionally revealed pathophysiological roles that in turn have led to the development of new drugs, based on selective receptor antagonism.
Collapse
Affiliation(s)
- Elizabeth S Fernandes
- Cardiovascular Division, King's College London, Franklin-Wilkins Building, Waterloo Campus, London SE1 9NH, UK
| | | | | |
Collapse
|
26
|
Abstract
Puberty is the developmental process that culminates in reproductive capability and is the result of a complex series of molecular and physiological events. The release of gonadotropin-releasing hormone from specialized neurons of the hypothalamus begins the hormonal cascade that causes gonadal activation and the physical changes of puberty. Several factors have been proposed to influence the activation of the hypothalamus to trigger puberty, but the involved pathways have not been fully elucidated. The recent observations that the age of pubertal onset may be lowering in American girls calls attention to the lack of knowledge of modulating factors that affect the pubertal process. Genes necessary for puberty have been found by studying persons who do not achieve puberty; such studies have provided insights into the pathways necessary for pubertal development. A multidisciplinary focus is required to elucidate the complex mechanisms involved in the initiation and progression of puberty.
Collapse
Affiliation(s)
- Sara A DiVall
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
27
|
Dungan Lemko HM, Clifton DK, Steiner RA, Fraley GS. Altered response to metabolic challenges in mice with genetically targeted deletions of galanin-like peptide. Am J Physiol Endocrinol Metab 2008; 295:E605-12. [PMID: 18775887 PMCID: PMC2536739 DOI: 10.1152/ajpendo.90425.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Galanin-like peptide (GALP) is expressed in the arcuate nucleus and is implicated in the neuroendocrine regulation of metabolism and reproduction. To investigate the physiological significance of GALP, we generated and characterized a strain of mice with a genetically targeted deletion in the GALP gene [GALP knockout (KO) mice]. We report that GALP KO mice have a subtle, but notable, metabolic phenotype that becomes apparent during adaptation to changes in nutrition. GALP KO mice are indistinguishable from wild-type (WT) controls in virtually all aspects of growth, sexual development, body weight, food and water consumption, and motor behaviors, when they are allowed unlimited access to standard rodent chow. However, GALP KO mice have an altered response to changes in diet. 1) Male GALP KO mice consumed less food during refeeding after a fast than WT controls (P < 0.01). 2) GALP KO mice of both sexes gained less weight on a high-fat diet than WT controls (P < 0.01), despite both genotypes having consumed equal amounts of food. We conclude that although GALP signaling may not be essential for the maintenance of energy homeostasis under steady-state nutritional conditions, GALP may play a role in readjusting energy balance under changing nutritional circumstances.
Collapse
|
28
|
Martin B, Golden E, Carlson OD, Egan JM, Mattson MP, Maudsley S. Caloric restriction: impact upon pituitary function and reproduction. Ageing Res Rev 2008; 7:209-24. [PMID: 18329344 DOI: 10.1016/j.arr.2008.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 01/05/2023]
Abstract
Reduced energy intake, or caloric restriction (CR), is known to extend life span and to retard age-related health decline in a number of different species, including worms, flies, fish, mice and rats. CR has been shown to reduce oxidative stress, improve insulin sensitivity, and alter neuroendocrine responses and central nervous system (CNS) function in animals. CR has particularly profound and complex actions upon reproductive health. At the reductionist level the most crucial physiological function of any organism is its capacity to reproduce. For a successful species to thrive, the balance between available energy (food) and the energy expenditure required for reproduction must be tightly linked. An ability to coordinate energy balance and fecundity involves complex interactions of hormones from both the periphery and the CNS and primarily centers upon the master endocrine gland, the anterior pituitary. In this review article we review the effects of CR on pituitary gonadotrope function and on the male and female reproductive axes. A better understanding of how dietary energy intake affects reproductive axis function and endocrine pulsatility could provide novel strategies for the prevention and management of reproductive dysfunction and its associated comorbidities.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Man PS, Lawrence CB. Galanin-like peptide: a role in the homeostatic regulation of energy balance? Neuropharmacology 2008; 55:1-7. [PMID: 18538801 DOI: 10.1016/j.neuropharm.2008.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/07/2008] [Accepted: 04/09/2008] [Indexed: 11/23/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide that has been proposed to play a role in the regulation of food intake behaviour and body weight. However, the actions of GALP on energy balance are complex. In rats, it appears to impel both appetite stimulating and suppressing effects, whereas in mice, the only effect is a reduction in food intake. Thus, it is currently unclear whether GALP is important in the homeostatic regulation of energy balance, or if it produces effects on appetite and body weight by non-specific actions. This review discusses current evidence of the role of GALP with respect to energy balance, and the mechanisms involved in its regulation. We describe recent evidence that suggests that GALP may elicit differential effects in different rodent species. Furthermore, we provide an insight into a potential novel role for GALP in inflammation, and discuss how this may relate to the non-homeostatic regulation of energy balance.
Collapse
Affiliation(s)
- Pui-Sin Man
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
30
|
Qi Y, Iqbal J, Oldfield BJ, Clarke IJ. Neural connectivity in the mediobasal hypothalamus of the sheep brain. Neuroendocrinology 2008; 87:91-112. [PMID: 17938564 DOI: 10.1159/000109944] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/21/2007] [Indexed: 11/19/2022]
Abstract
The ventromedial nucleus of the hypothalamus (VMN) and the arcuate nucleus (ARC) are two centres regulating energy balance and food intake, but inter-connectivity of these nuclei is not well defined in non-rodent species. In this study, we performed retrograde tracing and immunohistochemistry in the ovine brain with ewes receiving FluoroGold (FG) injections into either ARC or VMN for the mapping of retrogradely labelled cells. Strong reciprocal connections were found between the two regions. The distribution of the FG labelled neurons in other regions of the hypothalamus and brain stem was also mapped. Some of the cells projecting from ARC to VMN were immunopositive for neuropeptide Y, galanin, adrenocorticotropin (marker of pro-opiomelanocortin cells) or tyrosine hydroxylase (marker of dopaminergic cells). Melanin-concentrating hormone and orexin neurons in the lateral hypothalamic area were also found to provide input to the VMN and ARC. This observed interconnectivity between regions important for metabolic regulation and other neuroendocrine functions presumably allows coordinated functions. Input to both the ARC and VMN from other brain regions, such as brain stem cell groups, provides a further level of regulation. These data provide a substrate upon which further understanding of appetite regulation and neuroendocrine function can be derived in this species.
Collapse
Affiliation(s)
- Y Qi
- Department of Physiology, Monash University, Monash, Australia
| | | | | | | |
Collapse
|
31
|
Kawagoe R, Yamamoto Y, Kubo K, Dobashi K, Asayama K, Ueta Y, Shirahata A. Postnatal development of galanin-like peptide mRNA expression in rat hypothalamus. ACTA ACUST UNITED AC 2007; 145:133-40. [PMID: 17950941 DOI: 10.1016/j.regpep.2007.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the developmental change of GALP mRNA in male and female rat hypothalamus during postnatal day 1 to 60, using in situ hybridization histochemistry. Neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA in the hypothalamus were also examined because they are important in the regulation of food intake. GALP mRNA was first detected in the arcuate nucleus (ARC) on day 8. GALP mRNA was gradually increased between day 8 and 14 and markedly increased between day 14 and 40, which is the weaning and pubertal period in rats. After day 40, there were no significant differences in GALP mRNA. In contrast to GALP, NPY and POMC mRNAs were detected in the ARC from day 1 and lasted to day 60. There was no sexual dimorphism in GALP, NPY and POMC mRNAs during postnatal development. Next, we examined the effect of the milk deprivation for 24 h on GALP, NPY and POMC mRNA in pups. GALP mRNA did not change by milk deprivation on day 9 and 15, while milk deprivation had a significant effect on NPY and POMC mRNA on day 15. These results suggest that the development of GALP may be associated with developmental changes such as weaning, feeding and maturation of reproductive functions. The regulatory mechanism of GALP mRNA is different from that of the NPY and POMC genes during postnatal development.
Collapse
Affiliation(s)
- Rinko Kawagoe
- Department of Pediatrics, University of Occupational and Environmental Health, Japan, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Rich N, Reyes P, Reap L, Goswami R, Fraley GS. Sex differences in the effect of prepubertal GALP infusion on growth, metabolism and LH secretion. Physiol Behav 2007; 92:814-23. [PMID: 17632189 PMCID: PMC2692297 DOI: 10.1016/j.physbeh.2007.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 05/13/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamic neuropeptide, galanin-like peptide (GALP), is known to have an effect on energy expenditure and reproduction in adult male rats, but little work has been done on prepubertal rats. We hypothesized that hypothalamic GALP is involved in physiological changes associated with the onset of puberty. To test this hypothesis, we first determined the postnatal ontogeny of GALP gene expression via in situ hybridization of developing male and female rat pups through adulthood. GALP gene expression was not observed in either male or female rat pups until after postnatal day (PND) 10 and did not reach adult-like levels until after weaning (PND25). To determine if exogenous GALP could induce the onset of puberty, PND25 male and female rats were implanted with lateral ventricular cannulas connected to an osmotic minipump that delivered either GALP or vehicle. GALP infusion significantly (p<0.05) increased body weight, food intake, and metabolic rate in male but not female rats compared to control infusion. After 2 weeks, GALP infusion had no significant effect on the onset of puberty, percent body fat, nor plasma levels of insulin, FSH or gonadal steroids in either sex; however, GALP did significantly (p<0.05) increase plasma levels of LH and leptin in male but not female rats and increased plasma growth hormone (GH) in both sexes. Our observations further demonstrate a sex difference in GALP responsiveness in prepubertal rats. These data suggest that GALP may be involved with the prepubertal increase in circulating leptin, LH, and GH resulting in an increase in metabolic rate and lean growth associated with puberty.
Collapse
Affiliation(s)
- N Rich
- Biology Department, Hope College, 35 East 12th Street, Schaap Science Center 3065, Holland, MI 49423, United States
| | | | | | | | | |
Collapse
|
33
|
Santic R, Schmidhuber SM, Lang R, Rauch I, Voglas E, Eberhard N, Bauer JW, Brain SD, Kofler B. Alarin is a vasoactive peptide. Proc Natl Acad Sci U S A 2007; 104:10217-22. [PMID: 17535903 PMCID: PMC1891251 DOI: 10.1073/pnas.0608585104] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galanin-like peptide (GALP) is a hypothalamic neuropeptide belonging to the galanin family of peptides. The GALP gene is characterized by extensive differential splicing in a variety of murine tissues. One splice variant excludes exon 3 and results in a frame shift leading to a novel peptide sequence and a stop codon after 49 aa. In this peptide, which we termed alarin, the signal sequence of the GALP precursor peptide and the first 5 aa of the mature GALP are followed by 20 aa without homology to any other murine protein. Alarin mRNA was detected in murine brain, thymus, and skin. In accordance with its vascular localization, the peptide exhibited potent and dose-dependent vasoconstrictor and anti-edema activity in the cutaneous microvasculature, as was also observed with other members of the galanin peptide family. However, in contrast to galanin peptides in general, the physiological effects of alarin do not appear to be mediated via the known galanin receptors. Alarin adds another facet to the surprisingly high-functional redundancy of the galanin family of peptides.
Collapse
Affiliation(s)
| | | | - Roland Lang
- Dermatology, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria; and
| | | | | | | | - Johann W. Bauer
- Dermatology, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria; and
| | - Susan D. Brain
- Cardiovascular Division, King's College London, Franklin Wilkins Building, Waterloo Campus, London SE1 9NH, United Kingdom
| | - Barbara Kofler
- Departments of *Pediatrics and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Vigo E, Roa J, López M, Castellano JM, Fernandez-Fernandez R, Navarro VM, Pineda R, Aguilar E, Diéguez C, Pinilla L, Tena-Sempere M. Neuromedin s as novel putative regulator of luteinizing hormone secretion. Endocrinology 2007; 148:813-23. [PMID: 17110433 DOI: 10.1210/en.2006-0636] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuromedin S (NMS), a 36 amino acid peptide structurally related to neuromedin U, was recently identified in rat brain as ligand for the G protein-coupled receptor FM4/TGR-1, also termed neuromedin U receptor type-2 (NMU2R). Central expression of NMS appears restricted to the suprachiasmatic nucleus, and NMS has been involved in the regulation of dark-light rhythms and suppression of food intake. Reproduction is known to be tightly regulated by metabolic and photoperiodic cues. Yet the potential contribution of NMS to the control of reproductive axis remains unexplored. We report herein analyses of hypothalamic expression of NMS and NMU2R genes, as well as LH responses to NMS, in different developmental and functional states of the female rat. Expression of NMS and NMU2R genes was detected at the hypothalamus along postnatal development, with significant fluctuations of their relative levels (maximum at prepubertal stage and adulthood). In adult females, hypothalamic expression of NMS (which was confined to suprachiasmatic nucleus) and NMU2R significantly varied during the estrous cycle (maximum at proestrus) and was lowered after ovariectomy and enhanced after progesterone supplementation. Central administration of NMS evoked modest LH secretory responses in pubertal and cyclic females at diestrus, whereas exaggerated LH secretory bursts were elicited by NMS at estrus and after short-term fasting. Conversely, NMS significantly decreased elevated LH concentrations of ovariectomized rats. In summary, we provide herein novel evidence for the ability of NMS to modulate LH secretion in the female rat. Moreover, hypothalamic expression of NMS and NMU2R genes appeared dependent on the functional state of the female reproductive axis. Our data are the first to disclose the potential implication of NMS in the regulation of gonadotropic axis, a function that may contribute to the integration of circadian rhythms, energy balance, and reproduction.
Collapse
Affiliation(s)
- E Vigo
- Physiology Section, Department of Cell Biology, Physiology, and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Crown A, Clifton DK, Steiner RA. Neuropeptide signaling in the integration of metabolism and reproduction. Neuroendocrinology 2007; 86:175-82. [PMID: 17898535 DOI: 10.1159/000109095] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/11/2007] [Indexed: 12/27/2022]
Abstract
Fertility is gated by nutrition and the availability of stored energy reserves, but the cellular and molecular mechanisms that link energy stores and reproduction are not well understood. Neuropeptides including galanin-like peptide (GALP), neuropeptide Y (NPY), products of the proopiomelanocortin (POMC; e.g., alpha-MSH and beta-endorphin), and kisspeptin are thought to be involved in this process for several reasons. First, the neurons that express these neuropeptides all reside in the hypothalamic arcuate nucleus, a critical site for the regulation of both metabolism and reproduction. Second, these neuropeptides are all targets for regulation by metabolic hormones, such as leptin and insulin. And third, these neuropeptides have either direct or indirect effects on feeding and metabolism, as well as on the secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). As the target for the action of metabolic hormones and sex steroids, these neuropeptides serve as molecular motifs integrating the control of metabolism and reproduction.
Collapse
Affiliation(s)
- Angelena Crown
- Undergraduate Program in Neurobiology, University of Washington, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
36
|
Johnson MA, Tsutsui K, Fraley GS. Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm Behav 2007; 51:171-80. [PMID: 17113584 PMCID: PMC1831848 DOI: 10.1016/j.yhbeh.2006.09.009] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 11/30/2022]
Abstract
A recently described avian neuropeptide, gonadotropin inhibitory hormone (GnIH), has been shown to have seasonal regulatory effects on the hypothalamic-pituitary-gonadotropin axis (HPG) in several avian species. In the bird, GnIH expression is increased during the photorefractory period and has inhibitory effects on the HPG. A recently described mammalian neuropeptide, RF-amide-related peptide-3 (RFRP-3), may be genetically related and functionally similar to this avian neuropeptide. The purposes of this study were to first see if rat RFRP-3 is expressed in the male rat brain and second to determine if ICV injections of RFRP-3 will have effects on feeding and sex behaviors, as well as hormone release from the anterior pituitary. Results confirm other studies in that immunoreactive cell bodies and fibers are observable in areas of the male rat brain known to control the HPG and feeding and sex behaviors. RFRP-3 fibers are also observed in close proximity to GnRH immunoreactive cell bodies. Behavioral tests indicate that high but not low ICV RFRP-3 (500 vs. 100 ng, respectively) significantly (p<0.05) suppressed all facets of male sex behavior while not having any observable effects on their ability to ambulate. Sex behavior was later exhibited when those same male rats received the ICV vehicle. While suppressing sex behavior, ICV RFRP-3 significantly (p<0.05) increased food intake compared to controls. ICV RFRP-3 also significantly reduced plasma levels of luteinizing hormone but increased growth hormone regardless of the time of day; however, at no time did RFRP-3 alter plasma levels of FSH, thyroid hormone, or cortisol. These results indicate that although RFRP-3 has similar effects on LH as observed with GnIH in avian species, in the rat RFRP-3 has additional roles in regulating feeding and growth.
Collapse
|
37
|
Castellano JM, Navarro VM, Fernández-Fernández R, Roa J, Vigo E, Pineda R, Steiner RA, Aguilar E, Pinilla L, Tena-Sempere M. Effects of galanin-like peptide on luteinizing hormone secretion in the rat: sexually dimorphic responses and enhanced sensitivity at male puberty. Am J Physiol Endocrinol Metab 2006; 291:E1281-9. [PMID: 16849629 DOI: 10.1152/ajpendo.00130.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive function is exquisitely sensitive to adequacy of nutrition and fuel reserves, through mechanisms that are yet to be completely elucidated. Galanin-like peptide (GALP) has recently emerged as another neuropeptide link that couples reproduction and metabolism. However, although the effects of GALP on luteinizing hormone (LH) secretion have been studied, no systematic investigation on how these responses might differ along sexual maturation and between sexes has been reported. Moreover, the influence of metabolic status and potential interplay with other relevant neurotransmitters controlling LH secretion remain ill defined. These facets of GALP physiology were addressed herein. Intracerebral injection of GALP to male rats induced a dose-dependent increase in serum LH levels, the magnitude of which was significantly greater in pubertal than in adult males. In contrast, negligible LH responses to GALP were detected in pubertal or adult female rats at diestrus. Neonatal androgen treatment to females failed to "masculinize" the pattern of LH response to GALP. In addition, metabolic stress by short-term fasting did not prevent but rather amplified LH responses to GALP in pubertal males, whereas these responses were abrogated by pharmacological inhibition of nitric oxide synthesis. We conclude that the ability of GALP to evoke LH secretion is sexually differentiated, with maximal responses at male puberty, a phenomenon which was not reverted by manipulation of sex steroid milieu during the critical neonatal period and was sensitive to metabolic stress. This state of LH hyperresponsiveness may prove relevant for the mechanisms relaying metabolic status to the reproductive axis in male puberty.
Collapse
Affiliation(s)
- J M Castellano
- Dept. of Cell Biology, Physiology, and Immunology, University of Córdoba, Avda. Menéndez Pidal, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Takenoya F, Guan JL, Kato M, Sakuma Y, Kintaka Y, Kitamura Y, Kitamura S, Okuda H, Takeuchi M, Kageyama H, Shioda S. Neural interaction between galanin-like peptide (GALP)- and luteinizing hormone-releasing hormone (LHRH)-containing neurons. Peptides 2006; 27:2885-93. [PMID: 16793173 DOI: 10.1016/j.peptides.2006.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Galanin-like peptide (GALP), commonly known as an appetite-regulating peptide, has been shown to increase plasma luteinizing hormone (LH) through luteinizing hormone-releasing hormone (LHRH). This led us to investigate, using both light and electron microscopy, whether GALP-containing neurons in the rat brain make direct inputs to LHRH-containing neurons. As LHRH-containing neurons are very difficult to demonstrate immunohistochemically with LHRH antiserum without colchicine treatment, we used a transgenic rat in which LHRH tagged with enhanced green fluorescence protein facilitated the precise detection of LHRH-producing neuronal cell bodies and processes. This is the first study to report on synaptic inputs to LHRH-containing neurons at the ultrastructural level using this transgenic model. We also used immunohistochemistry to investigate the neuronal interaction between GALP- and LHRH-containing neurons. The experiments revealed that GALP-containing nerve terminals lie in close apposition with LHRH-containing cell bodies and processes in the medial preoptic area and the bed nucleus of the stria terminalis. At the ultrastructural level, the GALP-positive nerve terminals were found to make axo-somatic and axo-dendritic synaptic contacts with the EGFP-positive neurons in these areas. These results strongly suggest that GALP-containing neurons provide direct input to LHRH-containing neurons and that GALP plays a crucial role in the regulation of LH secretion via LHRH.
Collapse
Affiliation(s)
- Fumiko Takenoya
- Department of Anatomy I, Showa University School of Medicine, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schmidhuber SM, Santic R, Tam CW, Bauer JW, Kofler B, Brain SD. Galanin-like peptides exert potent vasoactive functions in vivo. J Invest Dermatol 2006; 127:716-21. [PMID: 17024098 DOI: 10.1038/sj.jid.5700569] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cutaneous vasculature plays a key role in the pathophysiology of inflammatory skin diseases. The vascular activity is under the control of the peripheral nervous system that includes locally released neuropeptides. Recently, we detected receptors for the neuropeptide galanin in association with dermal blood vessels, suggesting a role of the galanin-peptide-family in the regulation of the cutaneous microvasculature. Therefore, we have investigated galanin and galanin-like peptide (GALP), a neuropeptide previously only considered to be involved in metabolism and reproduction in the central nervous system, for vaso-modulatory activity in the murine skin in vivo. Picomole amounts of intradermally injected galanin and GALP decreased cutaneous blood flow and inhibited inflammatory edema formation. Both the full-length GALP (1-60) and the putative smaller proteolytic fragment GALP (3-32) showed similar effects. These activities are most likely mediated by galanin receptors galanin receptor subtype 2 (GalR2) and/or galanin receptor subtype 3 (GalR3), because reverse transcription-PCR analysis of murine skin revealed messenger RNA (mRNA) expression of GalR2 and GalR3 but not of galanin receptor subtype 1. The lack of galanin receptor mRNAs in endothelial and smooth muscle cells indicates a neuronal localization of these receptors around the vessels. These results indicate functional activity of GALP in the periphery in vivo and suggest a potential role as an inflammatory modulator.
Collapse
Affiliation(s)
- Sabine M Schmidhuber
- Department of Pediatrics, Paracelsus Private Medical University Salzburg, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Patterson M, Murphy KG, Thompson EL, Smith KL, Meeran K, Ghatei MA, Bloom SR. Microinjection of galanin-like peptide into the medial preoptic area stimulates food intake in adult male rats. J Neuroendocrinol 2006; 18:742-7. [PMID: 16965292 DOI: 10.1111/j.1365-2826.2006.01473.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide implicated in the regulation of feeding behaviour, metabolism and reproduction. GALP is an endogenous ligand of the galanin receptors, which are widely expressed in the hypothalamus. GALP is predominantly expressed in arcuate nucleus (ARC) neurones, which project to the paraventricular nucleus (PVN) and medial preoptic area (mPOA). Intracerebroventricular or intraparaventricular (iPVN) injection of GALP acutely increases food intake in rats. The effect of GALP injection into the mPOA on feeding behaviour has not previously been studied. In the present study, intra-mPOA (imPOA) injection of GALP potently increased 0-1-h food intake in rats. The dose-response effect of imPOA GALP administration on food intake was similar to that previously observed following iPVN administration. The effects of GALP (1 nmol) or galanin (1 nmol) on food intake were then compared following injection into the PVN, mPOA, ARC, dorsal medial nucleus (DMN), lateral hypothalamus and rostral preoptic area (rPOA). GALP (1 nmol) increased food intake to a similar degree when injected into the imPOA or iPVN, but produced no significant effect when injected into the ARC, DMN, lateral hypothalamus or rPOA. Similarly, galanin (1 nmol) significantly increased food intake following injection imPOA and iPVN. However, the effect was significantly smaller than that following administration of GALP (1 nmol). Galanin also had no significant effect on food intake when administered into the ARC, DMN, lateral hypothalamus and rPOA. These data suggest that the mPOA and the PVN may have specific roles in mediating the orexigenic effect of GALP and galanin.
Collapse
Affiliation(s)
- M Patterson
- Department of Metabolic Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Castellano JM, Navarro VM, Fernández-Fernández R, Roa J, Vigo E, Pineda R, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes 2006; 55:2602-10. [PMID: 16936210 DOI: 10.2337/db05-1584] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypogonadotropism is a common feature of uncontrolled diabetes, for which the ultimate mechanism remains to be elucidated. Kisspeptins, ligands of G protein-coupled receptor 54 (GPR54) encoded by the KiSS-1 gene, have recently emerged as major gatekeepers of the gonadotropic axis. Alteration in the hypothalamic KiSS-1 system has been reported in adverse metabolic conditions linked to suppressed gonadotropins, such as undernutrition. However, its potential contribution to defective gonadotropin secretion in diabetes has not been evaluated. We report herein analyses of luteinizing hormone (LH) responses to kisspeptin and hypothalamic expression of the KiSS-1 gene in streptozotocin (STZ)-induced diabetic male rats. In addition, functional studies involving kisspeptin replacement or continuous administration of leptin and insulin to diabetic male rats are presented. Kisspeptin administration evoked robust LH and testosterone bursts and enhanced postgonadectomy LH concentrations, despite prevailing attenuation of gonadotropic axis in diabetic animals. In addition, hypothalamic KiSS-1 mRNA levels were unambiguously decreased in diabetic male rats, and the postorchidectomy rise in KiSS-1 mRNA was severely blunted. Repeated administration of kisspeptin to diabetic rats evoked persistent LH and testosterone responses and partially rescued prostate and testis weights. In addition, central infusion of leptin, but not insulin, was sufficient to normalize hypothalamic KiSS-1 mRNA levels, as well as LH and testosterone concentrations. In summary, we provide evidence for altered expression of the hypothalamic KiSS-1 system in a model of uncontrolled diabetes. This observation, together with the ability of exogenous kisspeptin to rescue defective LH responses in diabetic rats, unravel the physiopathological implication, and potential therapeutic intervention, of the KiSS-1 system in altered gonadotropin secretion of type 1 diabetes.
Collapse
Affiliation(s)
- Juan M Castellano
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fernandez-Fernandez R, Martini AC, Navarro VM, Castellano JM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 2006; 254-255:127-32. [PMID: 16759792 DOI: 10.1016/j.mce.2006.04.026] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the close link between body weight and fertility has been known for eons, only recently have the peripheral signals and neuroendocrine networks responsible for such a phenomenon begun to be identified. A key event in this field was the cloning of the adipocyte-derived hormone leptin, which has been demonstrated as a pivotal regulator for the integration of energy homeostasis and reproduction. In addition, other metabolic hormones, such as insulin, contribute to this physiological integration. Moreover, compelling experimental evidence implicates hormonal products of the gastrointestinal tract as adjuncts in the complex coordination and regulation of body weight and reproduction. Here, we review recent studies evaluating the reproductive effects and sites of action of ghrelin and PYY3-36, two hormonal signals of gastrointestinal origin involved in the control food intake and energy balance. In addition, we summarize the potential contribution of kisspeptin, the recently characterized gatekeeper of the GnRH system encoded by Kiss1 gene, to integrating reproductive function and energy status. Evidence suggests that besides having direct gonadal effects, ghrelin may participate in the regulation of gonadotropin secretion and it may influence the timing of puberty. Likewise, PYY3-36 modulates GnRH and gonadotropin release. In addition, the hypothalamic KiSS-1 system is sensitive to nutritional status, and its diminished expression during states of negative energy balance might contribute to the suppression of reproductive function in such conditions. We propose that the peripheral hormones, ghrelin and PYY3-36, and the central neuropeptide, kisspeptin, are 'novel' players in the neuroendocrine networks that integrate energy balance and reproduction.
Collapse
Affiliation(s)
- R Fernandez-Fernandez
- Physiology Section, Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fraley GS. Immunolesions of glucoresponsive projections to the arcuate nucleus alter glucoprivic-induced alterations in food intake, luteinizing hormone secretion, and GALP mRNA, but not sex behavior in adult male rats. Neuroendocrinology 2006; 83:97-105. [PMID: 16825797 DOI: 10.1159/000094375] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
Metabolic signals such as insulin, leptin and glucose are known to alter hypothalamic function. Although insulin and leptin are known to directly alter hypothalamic areas that regulate reproduction, the mechanisms by which glucose alters reproductive function are not as clear. Catecholaminergic neurons in the A1/C1 region in the hindbrain are glucose-responsive and project to the arcuate nucleus. To determine if this pathway is involved in the regulation of sex behavior and luteinizing hormone (LH) secretion, this catecholaminergic pathway was lesioned with injections of saporin conjugated with anti-dopamine-beta-hydroxylase (DSAP) or unconjugated saporin (SAP) in adult male rats. Rats were given glucoprivic challenges and feeding and sex behavior was observed. As was expected, the DSAP-treated rats showed decreased feeding during glucoprivation (250 mg/kg 2-deoxy-D-glucose, 2DG) compared to SAP controls. Glucoprivation caused a significant reduction in sex behavior in both SAP and DSAP animals equally, compared to saline treatments (p < 0.05). At the end of the experiment, animals were given a final challenge with 2DG or saline, euthanized by decapitation and trunk blood was assayed for plasma LH levels. In situ hybridization analysis revealed that 2DG treatment caused a significant reduction in GALP mRNA in SAP controls compared to saline treatment. This reduction in GALP mRNA was prevented with DSAP treatment. In SAP animals, 2DG elicited a significant decrease in plasma LH levels (p < 0.05); this reduction in plasma LH was absent in the DSAP-treated male rats. These data indicate that the A1/C1 efferents to the ventromedial hypothalamus are involved in the glucostatic regulation of GALP mRNA, feeding behavior and LH secretion, but not sex behavior in the adult male rat.
Collapse
|
44
|
van den Top M, Spanswick D. Integration of metabolic stimuli in the hypothalamic arcuate nucleus. PROGRESS IN BRAIN RESEARCH 2006; 153:141-54. [PMID: 16876573 DOI: 10.1016/s0079-6123(06)53008-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integration of peripheral and central anabolic and catabolic inputs within the hypothalamic arcuate nucleus (ARC) is believed to be central to the maintenance of energy balance. In order to perform this complex task, neurons in the ARC express receptors for all major humoral and central transmitters involved in the maintenance of energy homeostasis. The integration of these inputs occurs at the cellular and circuit level and the resulting electrical output forms the origins for the activation of feeding and energy balance-related networks. Here, we discuss the role that active intrinsic membrane conductances, K(ATP) channels and intracellular second messenger systems play in the integration of metabolic stimuli at the cellular level in the ARC. We conclude that the research into the integration of hunger and satiety signals in the ARC has made substantial progress in the last decade, but we are far from unraveling the complex neuronal networks involved in the maintenance of energy homeostasis. The diverse range of inputs, neuronal integrative properties, targets, output signals and how these signals relate to the physiological output provides us with a colossal challenge for years to come. However, to battle the current obesity epidemic, target-specific drugs need to be developed for which the knowledge of neuronal pathways involved in the maintenance of energy homeostasis will be crucial.
Collapse
Affiliation(s)
- M van den Top
- Division of Clinical Sciences, Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
45
|
Abstract
The various menstrual disorders in athletes may reflect different degrees of exposure to a disrupting factor or differences in the susceptibility of various women to disruption. The incidences of these disorders are not well documented, but they appear to be highest in aesthetic, endurance and weight-class sports, and at younger ages, higher training volumes and lower bodyweights. The morbid effects of these disorders include infertility, low bone mass, impaired endothelium-dependent vasodilation, and impaired skeletal muscle oxidative metabolism. The high incidences of menstrual disorders in athletes may derive in part from the self-selection of extraneously affected women into athletics, but many women acquire their menstrual disorders in athletics by failing to adequately increase dietary energy intake in compensation for exercise energy expenditure. Applied research is needed to develop effective dietary interventions that are acceptable to athletes.
Collapse
|
46
|
de Jong TR, Pattij T, Veening JG, Dederen PJWC, Waldinger MD, Cools AR, Olivier B. Effects of chronic paroxetine pretreatment on (+/-)-8-hydroxy-2-(di-n-propyl-amino)tetralin induced c-fos expression following sexual behavior. Neuroscience 2005; 134:1351-61. [PMID: 16019152 DOI: 10.1016/j.neuroscience.2005.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 11/20/2022]
Abstract
Chronic treatment with the selective serotonin reuptake inhibitor paroxetine impairs the functioning of 5-HT(1A) receptors involved in ejaculation. This could underlie the development of delayed ejaculation often reported by men treated with paroxetine. The neurobiological substrate linking the effects of selective serotonin reuptake inhibitor-treatment and 5-HT(1A) receptor activation with ejaculation was investigated. Male Wistar rats that were pretreated with paroxetine (20 mg/kg/day p.o.) or vehicle for 22 days and had received an additional injection with the 5-HT(1A) receptor agonist 8-OH-DPAT ((+/-)-8-hydroxy-2-(di-n-propyl-amino)tetralin; 0.4 mg/kg s.c.) or saline on day 22, 30 min prior to a sexual behavior test, were perfused 1 h after the sexual behavior test. Brains were processed for Fos-, and oxytocin immunohistochemistry. The drug treatments markedly changed both sexual behavior and the pattern and number of Fos-immunoreactive cells in the brain. Chronic pretreatment with paroxetine caused delayed ejaculation. Acute injection with 8-OH-DPAT facilitated ejaculation in vehicle-pretreated rats, notably evident in a strongly reduced intromission frequency, whereas 8-OH-DPAT had no effects in paroxetine-pretreated rats. Chronic treatment with paroxetine reduced Fos-immunoreactivity in the locus coeruleus, and prevented the increase in Fos-immunoreactive neurons induced by 8-OH-DPAT in the oxytocinergic magnocellular part of the paraventricular nucleus as well as in the locus coeruleus. Since oxytocin and noradrenalin facilitate ejaculation, the alterations in Fos-IR in these areas could connect selective serotonin reuptake inhibitor treatment and 5-HT(1A) receptor activation to ejaculation. Chronic paroxetine treatment and 8-OH-DPAT changed c-fos expression in a number of other brain areas, indicating that Fos-immunohistochemistry is a useful tool to find locations where selective serotonin reuptake inhibitors and 8-OH-DPAT exert their effects.
Collapse
Affiliation(s)
- T R de Jong
- Department of Anatomy, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Trevaskis JL, Butler AA. Double leptin and melanocortin-4 receptor gene mutations have an additive effect on fat mass and are associated with reduced effects of leptin on weight loss and food intake. Endocrinology 2005; 146:4257-65. [PMID: 15994342 DOI: 10.1210/en.2005-0492] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanocortin-4 receptors (MC4Rs) are involved in the regulation of food intake, sympathetic nervous activity, and adrenal and thyroid function by leptin. The role of MC4Rs in regulating energy balance by leptin was investigated using double heterozygote or homozygous leptin (Lep(ob)) and Mc4r gene mutant mice. Double heterozygous or homozygous mutants were generated by crossing MC4R knockout (Mc4r-/-) mice, backcrossed onto C57BL/6J, with B6.V-Lep(ob) mice. Energy expenditure was measured using indirect calorimetry. The effect of leptin on food intake, weight loss, insulin, and corticosterone was compared for Lep(ob)/Lep(ob)Mc4r-/- mice and Lep(ob)/Lep(ob) mice. Double heterozygous and homozygous mutants exhibited an additive effect on fat mass. The 2-fold increase in body weight associated with severe obesity of Lep(ob)/Lep(ob) mice was associated with a significantly higher 24 h total and resting energy expenditure. The effect of obesity on energy expenditure was attenuated by 50% in Lep(ob)/Lep(ob) Mc4r+/- and Lep(ob)/Lep(ob) Mc4r-/- mice. Loss of MC4Rs did not affect basal food intake of Lep(ob)/Lep(ob) mice but was associated with partial leptin resistance in terms of food intake and weight loss. Leptin suppression of insulin and corticosterone in Lep(ob)/Lep(ob) mice were not significantly affected by Mc4r genotype. These results suggest a complex interaction between the Lep and Mc4r genes in energy homeostasis and suggest that MC4Rs retain significant anti-obesity function in the obese leptin-deficient state. Increased adiposity with double mutations may involve a reduction in energy expenditure. MC4Rs might have a modest role in the regulation of energy balance by exogenously administered leptin, primarily effecting food intake.
Collapse
Affiliation(s)
- James L Trevaskis
- Neuropeptides Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA
| | | |
Collapse
|
48
|
Abstract
Disorders of pubertal timing are common and challenging problems for pediatric endocrinologists. Early or late puberty can have immediate effects on a child's psychosocial well-being and may have long-term effects on adult stature. Much is known about the regulation of the hypothalamic-pituitary-gonadal axis, but the triggers of pubertal onset in the general population remain elusive. This article reviews recent data suggesting a possible shift in the age of pubertal onset; current knowledge regarding factors that regulate the onset of puberty; and the etiologies, diagnosis, and treatment of precocious and delayed puberty.
Collapse
Affiliation(s)
- Brandon M Nathan
- Division of Pediatric Endocrinology and Metabolism, Rainbow Babies and Children's Hospital, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | |
Collapse
|
49
|
Stoyanovitch AG, Johnson MA, Clifton DK, Steiner RA, Fraley GS. Galanin-like peptide rescues reproductive function in the diabetic rat. Diabetes 2005; 54:2471-6. [PMID: 16046316 DOI: 10.2337/diabetes.54.8.2471] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Galanin-like peptide (GALP) is expressed in the hypothalamic arcuate nucleus and is regulated by leptin and insulin. Centrally administered GALP stimulates gonadotropin secretion and sexual behavior in the rat. Type 1 diabetes is associated with reduced expression of GALP, as well as an overall decline in reproductive function. We postulated that tonic activity of GALP in the brain is required to sustain normal reproductive activity. To test this hypothesis, we examined whether central (intracerebroventricular) immunoblockade of GALP would reduce sexual behaviors and serum levels of luteinizing hormone (LH) in normal adult male rats. We found that GALP antibody reversibly reduced serum levels of LH and abolished male sexual behaviors (P < 0.05 and 0.001, respectively). Second, we tested whether intracerebroventricular GALP could restore normal plasma LH levels and sexual behavior in diabetic animals. We compared groups of diabetic rats that received intracerebroventricular GALP or vehicle and found that GALP increased serum levels of LH and sexual behavior. Third, we examined whether intracerebroventricular administration of affinity-purified GALP antibody could block the effect of insulin and leptin in reversing the effects of diabetes on LH and sexual behavior. We found that treatment of diabetic animals with insulin and leptin nearly normalized LH levels and sexual behaviors; however, this effect was attenuated by intracerebroventricular administration of GALP antibody (P < 0.05). These observations demonstrate that endogenous GALP provides trophic support to the neuroendocrine reproductive axis, including sexual behavior.
Collapse
Affiliation(s)
- Angela G Stoyanovitch
- Biology Department, 35 E. 12th St., PSC 3065, Box 9000, Biology Dept., Hope College, Holland, MI 49423, USA
| | | | | | | | | |
Collapse
|
50
|
Kauffman AS, Buenzle J, Fraley GS, Rissman EF. Effects of galanin-like peptide (GALP) on locomotion, reproduction, and body weight in female and male mice. Horm Behav 2005; 48:141-51. [PMID: 16042964 DOI: 10.1016/j.yhbeh.2005.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/30/2005] [Accepted: 01/31/2005] [Indexed: 11/17/2022]
Abstract
Galanin-like peptide (GALP) has been implicated in the neuroendocrine regulation of both feeding and reproduction. In male rodents and primates, intracerebroventricular (icv) infusions of GALP stimulate luteinizing hormone (LH) release, induce Fos expression in brain areas implicated in feeding and reproduction, and affect food intake and body weight in rodents. In gonad-intact and castrated male rats, icv administration of GALP also stimulates male sexual behavior. While the effects of GALP on male physiology and behavior are well documented, no studies have addressed such a role of GALP in females. We tested the effects of icv GALP infusions on LH release, locomotor activity, motor control, and body weight regulation in adult ovariectomized female mice hormonally primed with estradiol benzoate and progesterone. In addition, sexually-experienced male and female mice were treated with GALP and tested for sexual behavior. In females, GALP reduced open-field locomotor activity, the ability to maintain grip on an accelerating rotarod, and 24-h body weight in a dose-dependent manner. GALP also increased LH secretion in female mice, an effect that was blocked by pre-treatment with Antide, a gonadotropin-releasing hormone (GnRH) type-1 receptor antagonist. GALP infusions slightly decreased the occurrence of lordosis behavior in female mice and significantly increased the latencies with which females displayed receptivity. Unlike previous reports in male rats, GALP inhibited male sexual behavior in mice. Our data indicate that in female mice, GALP stimulates LH release via GnRH, and decreases body weight, motor control, and locomotor activity via GnRH-independent pathways. Furthermore, our sexual behavior and locomotor findings suggest species-specific differences in the mechanism and/or location of GALP action in the brains of rats and mice.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of Biochemistry and Molecular Genetics, University of Virginia, 1229 Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|