1
|
Thanasupawat T, Mejia YP, Anandhan SS, Guo Y, Tiwana J, Fernando A, Glogowska A, Shafai T, daSilva S, Kaur N, Begum F, Zahedi R, Hombach-Klonisch S, Klonisch T. Proteomic and cytokine profiling of a CTRP8-RXFP1 glioma mouse model. Biochem Pharmacol 2024; 232:116722. [PMID: 39709036 DOI: 10.1016/j.bcp.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Glioblastoma (GB) is the most prevalent and aggressive primary brain tumor with fatal outcome due to a lack of effective treatments. We previously identified C1q-tumor necrosis factor-related protein 8 (CTRP8), a new member of the adiponectin family, as a novel agonist of the relaxin family peptide receptor 1 (RXFP1) and showed that the CTRP8-RXFP1 ligand-receptor system facilitates increased invasiveness and chemoresistance in GB cells. In the present study, we have investigated the role of the CTRP8-RXFP1 signaling axis in glioma progression using an orthotopic mouse model xenografted with human U251 glioma cells stably expressing CTRP8 and RXFP1. Our results demonstrate that this in-vivo U251-CTRP8/RXFP1 glioma model promoted the formation of aggressive, highly proliferative glioma that resulted in significantly shorter survival times of xenografted mice. CTRP8/RXFP1 xenografts showed strongly elevated mitotic activity, increased expression of cathepsin B at the migrating front and promoted a pro-inflammatory tumor microenvironment characterized by a strong upregulation of cytokines, among them eotaxin-2 and-3, interleukin (IL)-6, IL-18 and others. Proteomic analysis of xenografted mouse brain identified both human and mouse proteome signatures unique to CTRP8/RXFP1 xenografts compared to U251 xenografts. In conclusion, our results suggest that co-expression of CTRP8 and RXFP1 promotes signaling pathways that generate unique tissue proteomic and inflammatory cytokine signatures which promote glioma aggressiveness. The CTRP-RXFP1 signaling pathway may represent an effective therapeutic target for the treatment of fast-progressing and currently untreatable GB.
Collapse
Affiliation(s)
| | | | | | - Yaxiong Guo
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathophysiology, Basic Medical College, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Jasneet Tiwana
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Adline Fernando
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | | | - Talia Shafai
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Simone daSilva
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Nimrat Kaur
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Farhana Begum
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada
| | - Rene Zahedi
- Manitoba Centre for Proteomics and Systems Biology (MCPSB), Winnipeg, MB, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Winnipeg, MB, Canada; Department of Pathology, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB, Canada; CancerCare Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Wu D, Li S, Chen M, Zhang S, Wang Q. C1q/tumor necrosis factor-related protein-6 suppresses the angiotensin II-induced differentiation of cardiac fibroblasts to myofibroblasts via activation of the AMPK pathway. Tissue Cell 2024; 91:102627. [PMID: 39581070 DOI: 10.1016/j.tice.2024.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
C1q/tumor necrosis factor-related protein-6 (CTRP6) has multiple protective effects against cardiovascular diseases. Myofibroblast differentiation plays a critical role in cardiac fibrosis under various cardiac pathological conditions. The aim of the present study was to determine the effects of CTRP6 on cardiac fibrosis, and to identify the possible mechanisms of action. Toward this end, we measured the expression of fibrotic markers, including collagen I, collagen III, CTGF, and TGFβ1, and assessed the effects of CTRP6 on cardiac fibroblast differentiation into myofibroblasts. CTRP6 inhibited the expression of the angiotensin II (Ang II)-induced myofibroblast markers α-SMA and SM22, and of profibrotic molecules, including collagen I, collagen III, CTGF, TGFβ1, MMP2, MMP9, and TIMP1. Furthermore, CTRP6 significantly attenuated the proliferation and migration of cardiac fibroblasts incubated with Ang II and activated the phosphorylation of AMP-activated protein kinase (AMPK). Incubation with an AMPK inhibitor reversed the subsequent inhibitory effects of CTRP6 on Ang II-induced myofibroblast differentiation. Therefore, CTRP6 suppresses cardiac fibrosis by inhibition of myofibroblast differentiation via AMPK pathway activation, suggesting CTRP6 as a target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Dan Wu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Shuyu Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Meng Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shujing Zhang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Qian Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| |
Collapse
|
3
|
Zhu Z, Niu Q, Tang S, Jiang Y. Association between circulating CTRP9 levels and coronary artery disease: a systematic review and meta-analysis. PeerJ 2024; 12:e18488. [PMID: 39575169 PMCID: PMC11580665 DOI: 10.7717/peerj.18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Background C1q tumor necrosis factor (TNF) related proteins 9 (CTRP9) is a novel adipocytokine that has been shown to have a cardioprotective effect in coronary artery disease (CAD). However, there are conflicting results on circulating levels of CTRP9 in patients with and without CAD. This meta-analysis was conducted to investigate the association between circulating CTRP9 levels and CAD. Objective The aim of this meta-analysis was to re-examine the relationship between circulating CTRP9 levels and CAD. Methods We searched PubMed, Web of Science, Embase, Cochrane Library, CNKI, VIP, Wanfang Data, and CBM for relevant studies up to October 2023, and 193 articles were identified. After reading the title, abstract and full text, a total of 25 articles were included in this meta-analysis. A prespecified protocol registered at INPLASY was followed (INPLASY202450066). Due to the high heterogeneity, we performed subgroup analyses and meta-regression based on patient characteristics, complications, clinical biochemical indicators, coronary artery lesion, and CAD classification. Publication bias was assessed using Egger's linear regression tests, Begg's rank correlation tests, and funnel plots. Results The results showed that the patient with CAD had significantly lower circulating CTRP9 levels than the control group (Z = 3.26, P = 0.001). Subgroup analysis and meta-regression findings demonstrated that observed heterogeneity could be attributed to population distribution. Patient characteristics (year of publication, patients' age, and BMI), complications (diabetes and type 2 diabetes mellitus (T2DM)), clinical biochemical indicators, coronary artery lesion (stability of coronary atherosclerotic plaque, and the number of diseased coronary vessels), and classification of CAD were not identified as source of heterogeneity. Conclusions The meta-analysis confirmed that circulating CTRP9 levels in CAD patients are significantly lower than those in patients without CAD. The association may be modified by the population distribution.
Collapse
Affiliation(s)
- Ziyi Zhu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qingsheng Niu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Emergency Medicine, Disaster Medical Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Emergency Medicine, Disaster Medical Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yaowen Jiang
- Department of Emergency Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Emergency Medicine, Disaster Medical Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Arreza L, Thanasupawat T, Krishnan SN, Kraljevic M, Klonisch T, Hombach-Klonisch S. C1QTNF Related protein 8 (CTRP8) is a marker of myeloid derived innate immune cell populations in the human breast cancer microenvironment. Biochem Pharmacol 2024; 230:116624. [PMID: 39542181 DOI: 10.1016/j.bcp.2024.116624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Innate immune cells in the tumor microenvironment (TME) play an important role in breast cancer (BC) metastatic spread and influence patient survival. Macrophages differentiate along a proinflammatory M1 to protumorigenic M2 phenotype spectrum which affects distinct functions, like angiogenesis and cytokine production, and modulates BC aggressiveness and affects patient survival. Mast cells (MCs) are myeloid derived cells that serve as the first line of innate immune defense but their role in the TME of BC is not well understood. In this study, we have identified a subpopulation of innate immune cells that shows strong immunopositivity for the least studied adipokine CTRP8. Using a new and highly specific polyclonal antiserum on patient BC tissues, we identify a subset of tryptase + MCs and CD68 + macrophages co-expressing immunoreactive CTRP8. In M1 polarized THP-1 myeloid cells, this adipokine stimulated increased secretion of pro-inflammatory cytokines and elevated expression of the relaxin/ CTRP8 receptor RXFP1. Comparative analysis of secreted cytokine profiles in THP-1 M1 macrophages exposed to either CTRP8, relaxin-2 (RLN2), or the small molecule RXFP1 agonist ML-290 revealed ligand-specific cytokine signatures. Our study identified novel subsets of CTRP8 + myeloid derived innate immune cells and links this adipokine to pro-inflammatory events in the TME of BC.
Collapse
Affiliation(s)
- Leanne Arreza
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thatchawan Thanasupawat
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sai Nivedita Krishnan
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Matthew Kraljevic
- Children's Hospital Research Institute of Manitoba (CHRIM), Research Institute CancerCare Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Departments of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Departments of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Research Institute CancerCare Manitoba, Winnipeg, Canada; Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Departments of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Departments of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Research Institute CancerCare Manitoba, Winnipeg, Canada.
| |
Collapse
|
5
|
Li C, Li Q, Wu X, Zhang Z, Li J, Jiang R, Li G, Liu X, Kang X, Li Z, Li D, Tian Y. Localization and expression of C1QTNF6 in chicken follicles and its regulatory effect on follicular granulosa cells. Poult Sci 2024; 104:104538. [PMID: 39566174 PMCID: PMC11617251 DOI: 10.1016/j.psj.2024.104538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
C1q/tumor necrosis factor-related protein 6 (C1QTNF6) is a newly discovered adiponectin analog that plays a significant role in female reproduction. However, its expression and function in chickens remain unclear. In this study, the full-length coding sequence (CDS) of chicken C1QTNF6 was cloned from adult chicken ovary. We demonstrated that the putative C1QTNF6 protein shares a highly conserved amino acid sequence with known bird homologs. Using quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH), we observed that C1QTNF6 is widely expressed in adult chicken follicle tissues, predominantly in granulosa cells (GCs). In vitro, stimulation with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) significantly increased the expression of C1QTNF6 in chicken preovulatory granulosa cells (PoGCs) and prehierarchical granulosa cells (PhGCs), respectively. Overexpression and knockdown experiments in granulosa cells revealed that C1QTNF6 affects the proliferation and apoptosis of granulosa cells, reducing the expression of steroid hormone synthesis-related genes (STAR, Cyp11a1, Cyp19a1, and 3B-HSD) and hormones (progesterone and estrogen). In granulosa cells (GCs), co-treatment with C1QTNF6 and AdipoRon (an activator of adiponectin receptors) showed that AdipoRon promotes progesterone secretion, while C1QTNF6 inhibits AdipoR1 (adiponectin receptor 1) expression. There was no synergistic effect between C1QTNF6 and AdipoRon in steroid hormone production. Collectively, these findings suggest that C1QTNF6 may be a candidate gene for regulating follicular development and reproductive performance in chickens.
Collapse
Affiliation(s)
- Chong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Qi Li
- Department of Animal Science, Henan zhumadian Agricultural School, 463000, Zhumadian, PR China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, PR China
- Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, PR China
| |
Collapse
|
6
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
7
|
Yan S, Ding J, Wang Z, Zhang Y, Xu Y, Jia Y, Yang J, Qiu H. CTRP6 alleviates endometrial fibrosis by regulating Smad3 pathway in intrauterine adhesion†. Biol Reprod 2024; 111:322-331. [PMID: 38984926 DOI: 10.1093/biolre/ioae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/30/2023] [Accepted: 01/18/2024] [Indexed: 07/11/2024] Open
Abstract
Intrauterine adhesion (IUA) is manifestations of endometrial fibrosis and excessive extracellular matrix deposition. C1q/tumor necrosis factor-related protein-6 (CTRP6) is a newly identified adiponectin paralog which has been reported to modulate the fibrosis process of several diseases; however, the endometrial fibrosis function of CTRP6 remains unknown. Our study aimed to assess the role of CTRP6 in endometrial fibrosis and further explore the underlying mechanism. Here, we found that the expression of CTRP6 was downregulated in the endometrial tissues of IUA. In vitro experiments demonstrated the reduced level of CTRP6 in facilitated transforming growth factor-β1 (TGF-β1)-induced human endometrial stromal cells (HESCs). In addition, CTRP6 inhibited the expression of α-smooth muscle actin (α-SMA) and collagen I in TGF-β1-treated HESCs. Mechanistically, CTRP6 activated the AMP-activated protein kinase (AMPK) and protein kinase B (AKT) pathway in HESCs, and AMPK inhibitor (AraA) or PI3K inhibitor (LY294002) pretreatment abolished the protective effect of CTRP6 on TGF-β1-induced fibrosis. CTRP6 markedly decreased TGF-β1-induced Smad3 phosphorylation and nuclear translocation, and AMPK or AKT inhibition reversed these effects. Notably, CTRP6-overexpressing treatment alleviated the fibrosis of endometrium in vivo. Therefore, CTRP6 ameliorates endometrial fibrosis, among which AMPK and AKT are essential for the anti-fibrotic effect of CTRP6 via the Smad3 pathway. Taken together, CTRP6 may be a potential therapeutic target for the treatment of intrauterine adhesion.
Collapse
Affiliation(s)
- Sisi Yan
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yong Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Hui Qiu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Ni H, Zhang Y, Li Y, Xiao Q, Zhao P, Hong X, Zhang Z, Zhan K, Xia Z, Sun H, Cui B, Yang Y. Potential regulator of meat quality in geese: C1QTNF1 implications on cell proliferation and muscle growth. Poult Sci 2024; 103:103927. [PMID: 38917607 PMCID: PMC11255896 DOI: 10.1016/j.psj.2024.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Goose creates important economic value depending on their enrich nutrients of meat. Our previous study investigates potential candidate genes associated with variations in meat quality between Xianghai Flying (XHF) Goose and Zi Goose through genomic and transcriptome integrated analysis. Screening of 5 differential expression candidate genes related to muscle development identified by the FST, XP-EHH and RNA-seq in breast muscle from various geese. Among them, C1QTNF1 (C1q and TNF related protein 1), a gene of unknown function in goose, which observed mutations in coding sequence regions in sequencing data. Its function was explored after overexpression and knockdown which designed depending on the genetic sequence of the goose, respectively. Results showed that over-expression of C1QTNF1 significantly enhances cell proliferation and viability. In addition, the expression levels of the fusion marker gene Myomaker and the differentiation marker gene MyoD are significantly upregulated in cells. Knock-down C1QTNF1 leads to down regulated Myomaker and MyoD which involved muscle formation. But, the expression level of muscle atrophy marker MuRF is not significantly changed among different transfection groups. Since protein structures and interactions are closely related to their functions, we further analyzed the C1QTNF1 for physicochemical properties, structural predictions, protein interactions and homology. It can be reasonably inferred that C1QTNF1 has a similar effect to collagen, which may affect muscle development. In summary, we first speculate that C1QTNF1 may play an important regulatory role in muscle growth and development and thereby contributes to the further understanding of the genetic mechanisms that underlie meat quality traits of goose.
Collapse
Affiliation(s)
- Hongyu Ni
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Qingxing Xiao
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Puze Zhao
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Xiaoqing Hong
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Ziyi Zhang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Kun Zhan
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Zhuxuan Xia
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Benhai Cui
- Jiuzhou Flying Goose Husbandry & Technology Co., Ltd. of Jilin Province, Baicheng 137299, PR China
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
9
|
Tetterton-Kellner J, Jensen BC, Nguyen J. Navigating cancer therapy induced cardiotoxicity: From pathophysiology to treatment innovations. Adv Drug Deliv Rev 2024; 211:115361. [PMID: 38901637 PMCID: PMC11534294 DOI: 10.1016/j.addr.2024.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Every year, more than a million people in the United States undergo chemotherapy or radiation therapy for cancer, as estimated by the CDC. While chemotherapy has been an instrumental tool for treating cancer, it also causes severe adverse effects. The more commonly acknowledged adverse effects include hair loss, fatigue, and nausea, but a more severe and longer lasting side effect is cardiotoxicity. Cardiotoxicity, or heart damage, is a common complication of cancer treatments. It can range from mild to severe, and it can affect some patients temporarily or others permanently, even after they are cured of cancer. Dexrazoxane is the only FDA-approved drug for treating anthracycline induced cardiotoxicity, but it also has drawbacks and adverse effects. There is no other type of chemotherapy induced cardiotoxicity that has an approved treatment option. In this review, we discuss the pathophysiology of chemotherapeutic-induced cardiotoxicity, methods and guidelines of diagnosis, methods of treatment and mitigation, and current drug delivery approaches in therapeutic development.
Collapse
Affiliation(s)
- Jessica Tetterton-Kellner
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Medicine, Division of Cardiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Lujan E, Zhang I, Garon AC, Liu F. The Interactions of the Complement System with Human Cytomegalovirus. Viruses 2024; 16:1171. [PMID: 39066333 PMCID: PMC11281448 DOI: 10.3390/v16071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The complement system is an evolutionarily ancient component of innate immunity that serves as an important first line of defense against pathogens, including viruses. In response to infection, the complement system can be activated by three distinct yet converging pathways (classical, lectin, and alternative) capable of engaging multiple antiviral host responses to confront acute, chronic, and recurrent viral infections. Complement can exert profound antiviral effects via multiple mechanisms including the induction of inflammation and chemotaxis to sites of infection, neutralization/opsonization of viruses and virally infected cells, and it can even shape adaptive immune responses. With millions of years of co-evolution and the ability to establish life-long infections, herpesviruses have evolved unique mechanisms to counter complement-mediated antiviral defenses, thus enabling their survival and replication within humans. This review aims to comprehensively summarize how human herpesviruses engage with the complement system and highlight our understanding of the role of complement in human cytomegalovirus (HCMV) infection, immunity, and viral replication. Herein we describe the novel and unorthodox roles of complement proteins beyond their roles in innate immunity and discuss gaps in knowledge and future directions of complement and HCMV research.
Collapse
Affiliation(s)
- Eduardo Lujan
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Andrea Canto Garon
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Tabatabaei SA, Fadaei R, Moradi N, Farrokhi V, Vatannejad A, Afrisham R, Falahat A, malekshahi F, Mirahmad M, Abbasi A. Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) in coronary artery disease and its correlation with inflammatory markers. J Diabetes Metab Disord 2024; 23:1233-1241. [PMID: 38932850 PMCID: PMC11196518 DOI: 10.1007/s40200-024-01415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/26/2024] [Indexed: 06/28/2024]
Abstract
Introduction Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) is an adipokine that is involved in regulation of glucose and lipid metabolism, inflammation, and insulin sensitivity. However, the exact role of CTRP6 in metabolic processes remains unclear due to conflicting findings. To address current gap, we aimed to investigate the serum levels of CTRP6 in patients with coronary artery disease (CAD) and its association with inflammatory cytokines. Method In this case-control study, the serum levels of CTRP6, interlukin-6 (IL-6), tumor necrosis factor- α (TNF-α), adiponectin, and fasting insulin were measured using enzyme-linked immunosorbent assay (ELISA) kits in a total of 176 participants, consisting of 88 CAD patients and 88 control subjects. Additionally, various anthropometric and biochemical measurements were measured and compared between cases and controls. Results The present study found that serum levels of CTRP6 were significantly higher in the CAD group (561.3 ± 15.14) compared to the control group (429.3 ± 12.85, p < 0.001). After adjusting for age, sex, and body mass index (BMI), CTRP6 levels were found to be positively associated with the risk of CAD (p < 0.001). Correlation analysis in CAD subjects revealed a positive correlation between CTRP6 levels and BMI, systolic blood pressure (SBP), malondialdehyde (MDA), TNF-α, and IL-6, as well as a negative correlation with creatinine and total anti-oxidant capacity. Conclusion The findings of this study provide novel evidence that elevated serum levels of CTRP6 are significantly associated with an increased risk of developing CAD. Moreover, our results indicate a correlation between CTRP6 and various risk factors for atherosclerosis. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01415-5.
Collapse
Affiliation(s)
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Falahat
- Department of Cardiology, Dr Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Frood malekshahi
- Department of Cardiology, Dr Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Abbasi
- Department of Cardiology, Dr Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Li M, Zhou S, Feng Z, Zhang C. Role of C1q/TNF-Related Protein 6 for the Evaluation of Coronary Heart Disease Associated with Type 2 Diabetes. Ther Clin Risk Manag 2024; 20:289-296. [PMID: 38799512 PMCID: PMC11127693 DOI: 10.2147/tcrm.s464007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Coronary artery disease (CAD) and type 2 diabetes (T2DM) are closely associated with increased rate of death. C1q/TNF-related protein 6 (CTRP6) is a novel adipocytokine which plays an important role in glucose and lipid metabolism. Little is known about the function of CTRP6 in CAD and T2DM patients. Herein, we aimed to study the association of CTRP6 level with CAD and T2DM. Methods This study included 51 CAD, 44 CAD+T2DM and 65 non-CAD+T2DM patients from Affiliated Aoyang Hospital of Jiangsu University. Serum CTRP6 concentrations were detected by ELISA. Multiple logistic regression was used to analyze the association of serum CTRP6 with CAD and T2DM. Results Serum CTRP6 concentrations were significantly lower in CAD patients than controls. However, there is no significant statistical difference between CAD+T2DM patients and non-CAD+T2DM patients. Serum CTRP6 was negatively correlated with low-density lipoprotein cholesterol (LDL-C) (ρ=-0.2769, p=0.028) in controls. Serum CTRP6 was positively correlated with age (ρ=0.4121, p=0.0027), systolic blood pressure (SBP) (ρ=0.4012, p=0.0035), Creatinine (ρ=0.3295, p=0.0194), uric acid (UA) (ρ=0.3386, p=0.0162), and left ventricular end diastolic diameter (LVD) (ρ=0.4277, p=0.0042) and negatively correlated with ejection fraction (EF) (ρ=-0.3237, p=0.0342) in CAD patients. Serum CTRP6 was negatively correlated with high-density lipoprotein cholesterol (HDL-C) (ρ=-0.3164, p=0.0387) in CAD+T2DM patients. Multiple logistic regression showed that the decrease of CTRP6 was significantly related to the increased prevalence of CAD. What is more, CTRP6 increased prevalence of T2DM in CAD patients. Conclusion Lower serum CTRP6 could be a risk factor of CAD. However, higher circulating CTRP6 associated with the increased prevalence of T2DM in CAD patients.
Collapse
Affiliation(s)
- Mianxian Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Shuru Zhou
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, Jiangsu, People’s Republic of China
| | - Zexiong Feng
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
13
|
Gao J, Rouzi MRY, Zhang H, Cai X, Xu B, Lu J, Lei T. Association of serum CTRP4 levels with vascular endothelial function in patients with type 2 diabetes mellitus: CTRP4 ameliorating inflammation, proliferation and migration in human umbilical vein endothelial cells. Acta Diabetol 2024; 61:565-575. [PMID: 38286878 PMCID: PMC11055794 DOI: 10.1007/s00592-023-02228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
OBJECTIVE We investigated the correlation between serum C1q/TNF-related protein 4 (CTRP4) level and flow-mediated dilation (FMD) in patients with type 2 diabetes mellitus (T2DM), and evaluated the biological effects of CTRP4 on human umbilical vein endothelial cells (HUVECs). METHODS A group of 165 patients diagnosed with T2DM were included in this study. Endothelial function was measured with the examination of brachial artery FMD. ELISA kit was used to measure the levels of CTRP4 in serum. HUVECs were stimulated with recombinant CTRP4 protein to assess its biological functions. RESULTS The levels of CTRP4 showed a significant variation among three groups based on FMD tertiles (p = 0.001). What's more, FMD had a significant difference among three CTRP4 tertile groups (p < 0.05) and was negatively related to serum CTRP4 levels (r = -0.270, p < 0.001). In T2DM patients, logistic regression analysis demonstrated that CTRP4 was the primary influence factor of low FMD (p < 0.01). In receiver operating characteristic curve analysis, the area under the curve of CTRP4 for predicting low FMD was 0.66 (95%CI 0.58-0.75). When stimulated HUVECs with recombinant CTRP4 protein, we found that CTRP4 could concentration-dependently ameliorate proliferation and migration of HUVECs in wounding healing and transwell assay. This protein could also decrease the expression of IL-6 and TNF-α and promote the release of NO in HUVEC supernatants, with suppression of NF-κB and STAT3 phosphorylation. CONCLUSIONS Serum CTRP4 concentrations were negatively associated with FMD. CTRP4 alleviated proliferation, migration and inflammation in HUVECs through the suppression of NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Mai Re YanMu Rouzi
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huihui Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinghua Cai
- Shanghai Putuo Center School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Bilin Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| |
Collapse
|
14
|
Mińko A, Turoń-Skrzypińska A, Rył A, Mańkowska K, Cymbaluk-Płoska A, Rotter I. The Significance of Selected Myokines in Predicting the Length of Rehabilitation of Patients after COVID-19 Infection. Biomedicines 2024; 12:836. [PMID: 38672190 PMCID: PMC11047941 DOI: 10.3390/biomedicines12040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
In the context of the global COVID-19 pandemic, understanding the intricate mechanisms of the body's response to infection and inflammation has become a priority for the medical and research communities. It has been proven that during COVID-19 infection, molecules are secreted-namely organokines, which may directly or indirectly play a role in the pathophysiology of COVID-19. The objective of this study was to scrutinize the potential correlation between the levels of selected myokines (myostatin, agrin, irisin, and myonectin) and the duration of rehabilitation in post-COVID-19 patients. Additionally, the study aimed to investigate whether there is a correlation between the levels of these myokines and the length of hospitalization during COVID-19 treatment. The study was conducted at the Rehabilitation Hospital in Szczecin (Poland). Patients in the study participated in a comprehensive rehabilitation program following COVID-19 treatment. In order to assess the effectiveness of rehabilitation, the following tests were performed: a 6 min walk test with an assessment of exercise tolerance (Borg scale), an assessment of dyspnea severity (mMRC scale), a spirometric assessment of respiratory function, a measurement of arm strength, and an assessment of fatigue using the Fatigue Assessment Scale (FAS). Myokine levels were measured using commercially available enzyme-linked immunosorbent assays (ELISA) according to the manufacturer's instructions. Statistical analysis was performed using Statistica 13.1 software. Lower concentrations of irisin and myonectin and higher concentrations of myostatin correlated with longer rehabilitation time. Baseline levels of specific myokines in post-COVID-19 patients could play a crucial role in anticipating the duration of rehabilitation. The duration of hospitalization for the infection may influence myokine levels in patients recovering from COVID-19.
Collapse
Affiliation(s)
- Alicja Mińko
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| | - Agnieszka Turoń-Skrzypińska
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| | - Katarzyna Mańkowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University, 71-210 Szczecin, Poland; (A.T.-S.); (A.R.); (I.R.)
| |
Collapse
|
15
|
Yu L, Liu X, Wei X, Ren J, Wang X, Wu S, Lan K. C1QTNF5 is a novel attachment factor that facilitates the entry of influenza A virus. Virol Sin 2024; 39:277-289. [PMID: 38246238 PMCID: PMC11074642 DOI: 10.1016/j.virs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinjin Liu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wei
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junrui Ren
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueyun Wang
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ke Lan
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
16
|
Kobori T, Iwabu M, Okada-Iwabu M, Ohuchi N, Kikuchi A, Yamauchi N, Kadowaki T, Yamauchi T, Kasuga M. Decreased AdipoR1 signaling and its implications for obesity-induced male infertility. Sci Rep 2024; 14:5701. [PMID: 38459078 PMCID: PMC10923778 DOI: 10.1038/s41598-024-56290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Obesity is among the risk factors for male infertility. Although several mechanisms underlying obesity-induced male subfertility have been reported, the entire mechanism of obesity-induced male infertility still remains unclear. Here, we show that sperm count, sperm motility and sperm fertilizing ability were decreased in male mice fed a high-fat diet and that the expression of the AdipoR1 gene and protein was decreased, and the expression of pro-apoptotic genes and protein increased, in the testis from mice fed a high-fat diet. Moreover, we demonstrate that testes weight, sperm count, sperm motility and sperm fertilizing ability were significantly decreased in AdipoR1 knockout mice compared to those in wild-type mice; furthermore, the phosphorylation of AMPK was decreased, and the expression of pro-apoptotic genes and proteins, caspase-6 activity and pathologically apoptotic seminiferous tubules were increased, in the testis from AdipoR1 knockout mice. Furthermore, study findings show that orally administrated AdipoRon decreased caspase-6 activity and apoptotic seminiferous tubules in the testis, thus ameliorating sperm motility in male mice fed a high-fat diet. This was the first study to demonstrate that decreased AdipoR1/AMPK signaling led to increased caspase-6 activity/increased apoptosis in the testis thus likely accounting for male infertility.
Collapse
Affiliation(s)
- Toshiko Kobori
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Masato Iwabu
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Bunkyo-Ku, Tokyo, 113-8603, Japan.
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nozomi Ohuchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Akiko Kikuchi
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| | - Naoko Yamauchi
- Digital Pathology Center, Asahi General Hospital, Asahi-Shi, Chiba, 289-2511, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Toranomon Hospital, Minato-Ku, Tokyo, 105-8470, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Masato Kasuga
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Chuo-Ku, Tokyo, 103-0002, Japan
| |
Collapse
|
17
|
Batista S, Madar VS, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, Chitre AS, Palmer AA, Moore JH. Interaction models matter: an efficient, flexible computational framework for model-specific investigation of epistasis. BioData Min 2024; 17:7. [PMID: 38419006 PMCID: PMC10900690 DOI: 10.1186/s13040-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Epistasis, the interaction between two or more genes, is integral to the study of genetics and is present throughout nature. Yet, it is seldom fully explored as most approaches primarily focus on single-locus effects, partly because analyzing all pairwise and higher-order interactions requires significant computational resources. Furthermore, existing methods for epistasis detection only consider a Cartesian (multiplicative) model for interaction terms. This is likely limiting as epistatic interactions can evolve to produce varied relationships between genetic loci, some complex and not linearly separable. METHODS We present new algorithms for the interaction coefficients for standard regression models for epistasis that permit many varied models for the interaction terms for loci and efficient memory usage. The algorithms are given for two-way and three-way epistasis and may be generalized to higher order epistasis. Statistical tests for the interaction coefficients are also provided. We also present an efficient matrix based algorithm for permutation testing for two-way epistasis. We offer a proof and experimental evidence that methods that look for epistasis only at loci that have main effects may not be justified. Given the computational efficiency of the algorithm, we applied the method to a rat data set and mouse data set, with at least 10,000 loci and 1,000 samples each, using the standard Cartesian model and the XOR model to explore body mass index. RESULTS This study reveals that although many of the loci found to exhibit significant statistical epistasis overlap between models in rats, the pairs are mostly distinct. Further, the XOR model found greater evidence for statistical epistasis in many more pairs of loci in both data sets with almost all significant epistasis in mice identified using XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched for biologically relevant pathways. CONCLUSION Our results in both species show that many biologically relevant epistatic relationships would have been undetected if only one interaction model was applied, providing evidence that varied interaction models should be implemented to explore epistatic interactions that occur in living systems.
Collapse
Affiliation(s)
- Sandra Batista
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| | | | - Philip J Freda
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Attri Ghosh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Nicholas Matsumoto
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
- Institute for Genomic Medicine, University of California, San Diego, 9500 Gilman Dr., Mailcode: 0667, La Jolla, CA, 92093-0667, USA
| | - Jason H Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, 700 N San Vicente Blvd., Pacific Design Center, Guite G540, West Hollywood, CA, 90069, USA.
| |
Collapse
|
18
|
Zhang M, Zhang Z, Li H, Xia Y, Xing M, Xiao C, Cai W, Bu L, Li Y, Park TE, Tang Y, Ye X, Lin WJ. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer's disease. Transl Neurodegener 2024; 13:1. [PMID: 38173017 PMCID: PMC10763201 DOI: 10.1186/s40035-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the predominant type of dementia worldwide. It is characterized by the progressive and irreversible decline of cognitive functions. In addition to the pathological beta-amyloid (Aβ) deposition, glial activation, and neuronal injury in the postmortem brains of AD patients, increasing evidence suggests that the often overlooked vascular dysfunction is an important early event in AD pathophysiology. Vascular endothelial growth factor (VEGF) plays a critical role in regulating physiological functions and pathological changes in blood vessels, but whether VEGF is involved in the early stage of vascular pathology in AD remains unclear. METHODS We used an antiangiogenic agent for clinical cancer treatment, the humanized monoclonal anti-VEGF antibody bevacizumab, to block VEGF binding to its receptors in the 5×FAD mouse model at an early age. After treatment, memory performance was evaluated by a novel object recognition test, and cerebral vascular permeability and perfusion were examined by an Evans blue assay and blood flow scanning imaging analysis. Immunofluorescence staining was used to measure glial activation and Aβ deposits. VEGF and its receptors were analyzed by enzyme-linked immunosorbent assay and immunoblotting. RNA sequencing was performed to elucidate bevacizumab-associated transcriptional signatures in the hippocampus of 5×FAD mice. RESULTS Bevacizumab treatment administered from 4 months of age dramatically improved cerebrovascular functions, reduced glial activation, and restored long-term memory in both sexes of 5×FAD mice. Notably, a sex-specific change in different VEGF receptors was identified in the cortex and hippocampus of 5×FAD mice. Soluble VEGFR1 was decreased in female mice, while full-length VEGFR2 was increased in male mice. Bevacizumab treatment reversed the altered expression of receptors to be comparable to the level in the wild-type mice. Gene Set Enrichment Analysis of transcriptomic changes revealed that bevacizumab effectively reversed the changes in the gene sets associated with blood-brain barrier integrity and vascular smooth muscle contraction in 5×FAD mice. CONCLUSIONS Our study demonstrated the mechanistic roles of VEGF at the early stage of amyloidopathy and the protective effects of bevacizumab on cerebrovascular function and memory performance in 5×FAD mice. These findings also suggest the therapeutic potential of bevacizumab for the early intervention of AD.
Collapse
Affiliation(s)
- Min Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Honghong Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuting Xia
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Mengdan Xing
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lulu Bu
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yamei Tang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
19
|
Mast JF, Leach EAE, Thompson TB. Characterization of erythroferrone oligomerization and its impact on BMP antagonism. J Biol Chem 2024; 300:105452. [PMID: 37949218 PMCID: PMC10772735 DOI: 10.1016/j.jbc.2023.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF-related protein family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE and that larger species are dispensable for BMP inhibition. Additionally, we used an in silico approach to identify a helix, termed the ligand-binding domain, that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the ligand-binding domain is crucial for activity through luciferase assays and surface plasmon resonance analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.
Collapse
Affiliation(s)
- Jacob F Mast
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Edmund A E Leach
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
20
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Li Y, Wang W, Liu C, Zeng M, Xu L, Du R, Wang C. Adiponectin C1q/Tumor Necrosis Factor-Related Protein 13 (CTRP13) Protects against Renal Inflammation and Fibrosis in Obstructive Nephropathy. Biomedicines 2023; 12:51. [PMID: 38255158 PMCID: PMC10812933 DOI: 10.3390/biomedicines12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Renal inflammation and fibrosis are the important pathological phenomena associated with obstructive nephropathy. However, the underlying mechanism associated with this disease has yet to be fully elucidated. The present study, therefore, aimed to investigate the effects mediated by C1q/tumor necrosis factor-related protein 13 (CTRP13) on renal inflammation and fibrosis in addition to elucidating the underlying mechanism. To meet this aim, a mouse unilateral ureteral obstruction (UUO)-mediated renal dysfunction model was established. In addition, hematoxylin-eosin staining (H&E) staining and immunofluorescence experiments as well as Western blotting and reverse transcription quantitative (RT q) PCR analyses were performed. Recombinant CTRP13 was used to investigate the role of CTRP13 in chronic renal inflammation and fibrosis. A decreased expression level of CTRP13 was identified in the plasma of patients with renal fibrosis and in UUO-model mice. The renal histopathological and functional analyses revealed that CTRP13 could both reverse UUO mediated renal dysfunction and ameliorate the conditions of tubulointerstitial fibrosis and tubular injury. Additionally, CTRP13 was found to inhibit the expression levels of extracellular matrix proteins and proinflammatory mediators. In terms of the underlying mechanism, the protective effects on inflammation and fibrosis of the kidneys of CTRP13-treated mice undergoing UUO were found to be associated with the inactivation of the TGF β/Smad and NF κB p65 signaling pathways. Taken together, these findings have suggested that CTRP13 fulfills a vital role in the progression of obstructive nephropathy, thereby uncovering brand new insights into possible leads for the therapeutic treatment of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Yongxia Li
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Wenzhe Wang
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Changxuan Liu
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Min Zeng
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Li Xu
- Department of Nephrology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430022, China (C.L.)
| | - Rong Du
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Cheng Wang
- Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
22
|
Latifi-Navid H, Barzegar Behrooz A, Jamehdor S, Davari M, Latifinavid M, Zolfaghari N, Piroozmand S, Taghizadeh S, Bourbour M, Shemshaki G, Latifi-Navid S, Arab SS, Soheili ZS, Ahmadieh H, Sheibani N. Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals (Basel) 2023; 16:1555. [PMID: 38004422 PMCID: PMC10674956 DOI: 10.3390/ph16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3T 2N2, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Masoud Latifinavid
- Department of Mechatronic Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey;
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Golnaz Shemshaki
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570005, India;
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Seyed Shahriar Arab
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 1666673111, Iran;
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
23
|
Yan S, Ding J, Wang Z, Zhang F, Li J, Zhang Y, Wu S, Yang L, Pang X, Zhang Y, Yang J. CTRP6 regulates M1 macrophage polarization via the PPAR-γ/NF-κB pathway and reprogramming glycolysis in recurrent spontaneous abortion. Int Immunopharmacol 2023; 124:110840. [PMID: 37696144 DOI: 10.1016/j.intimp.2023.110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
Aberrant polarization and functions of decidual macrophages are closely related to recurrent spontaneous abortion (RSA). C1q/tumor necrosis factor-related protein 6 (CTRP6) is a member of the adiponectin paralog family, and plays indispensable roles in inflammation, glucose uptake and tumor metastasis. However, the regulatory effect of CTRP6 on macrophage polarization and glycolysis in RSA and the underlying mechanisms have not been fully elucidated. In the present study, we first found that CTRP6 expression was positively correlated with the M1 macrophage marker (CD86) in decidual tissues by dual immunofluorescence analysis. In vitro experiments indicated that CTRP6 could facilitate M1 macrophage activation through the PPAR-γ/NF-κB pathway and manipulate the glycolysis of macrophages. Notably, in addition to silencing CTRP6, treatment with a PPAR-γ agonist (GW1929) inhibited M1 macrophage polarization and rescued embryo absorption in vivo. Taken together, these results identify previously unrevealed functions of CTRP6 in macrophage transformation during RSA.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Feng Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Jianan Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Lian Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Xiangli Pang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, WuHan, HuBei, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, China.
| |
Collapse
|
24
|
Liu L, Wang W, Si Y, Li X. Genetic insights into the risk of metabolic syndrome and its components on psoriasis: A bidirectional Mendelian randomization. J Dermatol 2023; 50:1392-1400. [PMID: 37528547 DOI: 10.1111/1346-8138.16910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/03/2023]
Abstract
The role of metabolic syndrome (MetS) on psoriasis has been explored only in observational studies. We conducted this bidirectional Mendelian randomization (MR) to clarify the causal relationship between MetS and its components and psoriasis. The genetic instruments of MetS and its five components (waist circumference [WC], hypertension, fasting blood glucose [FBG], triglycerides [TG], and high-density lipoprotein cholesterol [HDL-C]) were obtained from public genome-wide association studies (GWAS). Outcome datasets for psoriasis were collected from the FinnGen Biobank Analysis Consortium. The main method was inverse variance weighting, complemented by sensitivity approaches to rectify potential pleiotropy. MetS, WC, and hypertension increase the risk of psoriasis (MetS, odd ratios [OR] = 1.17, 95% confidence interval [CI] 1.08-1.27, p = 1.23e-04; WC, OR = 1.65, 95% CI 1.42-1.93, p = 1.06e-10; hypertension, OR = 2.02, 95% CI 1.33-3.07, p = 0.0009). In the reverse analysis, no causal association between psoriasis and MetS and its five components was identified. We provide novel genetic evidence that MetS, WC, and hypertension are risk factors for the development of psoriasis. Early management of MetS and its components may be an effective strategy to decrease the risk of psoriasis.
Collapse
Affiliation(s)
- Liming Liu
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| | - Yongjie Si
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| | - Xianhe Li
- Department of Plastic Surgery, Modern Hospital of Sichuan, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
26
|
Mast JF, Leach EAE, Thompson TB. Characterization of erythroferrone oligomerization and its impact on BMP antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555965. [PMID: 37693455 PMCID: PMC10491252 DOI: 10.1101/2023.09.01.555965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF related protein (CTRP) family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE, and that larger species are dispensable for BMP inhibition. Additionally, we used an in-silico approach to identify a helix, termed the ligand binding domain (LBD), that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the LBD is crucial for activity through luciferase assays and surface plasmon resonance (SPR) analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.
Collapse
Affiliation(s)
- Jacob F Mast
- Department of Molecular and Cellular Biosciences, University of Cincinnati
| | - Edmund A E Leach
- Department of Molecular and Cellular Biosciences, University of Cincinnati
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati
| |
Collapse
|
27
|
Liu Y, Liu T, Wang Y, Liu J, Liu B, Gong L, Lü Z, Liu L. Genome Sequencing Provides Novel Insights into Mudflat Burrowing Adaptations in Eel Goby Taenioides sp. (Teleost: Amblyopinae). Int J Mol Sci 2023; 24:12892. [PMID: 37629073 PMCID: PMC10454203 DOI: 10.3390/ijms241612892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Amblyopinae is one of the lineage of bony fish that preserves amphibious traits living in tidal mudflat habitats. In contrast to other active amphibious fish, Amblyopinae species adopt a seemly more passive lifestyle by living in deep burrows of mudflat to circumvent the typical negative effects associated with terrestriality. However, little is known about the genetic origin of these mudflat deep-burrowing adaptations in Amblyopinae. Here we sequenced the first genome of Amblyopinae species, Taenioides sp., to elucidate their mudflat deep-burrowing adaptations. Our results revealed an assembled genome size of 774.06 Mb with 23 pseudochromosomes anchored, which predicted 22,399 protein-coding genes. Phylogenetic analyses indicated that Taenioides sp. diverged from the active amphibious fish of mudskipper approximately 28.3 Ma ago. In addition, 185 and 977 putative gene families were identified to be under expansion, contraction and 172 genes were undergone positive selection in Taenioides sp., respectively. Enrichment categories of top candidate genes under significant expansion and selection were mainly associated with hematopoiesis or angiogenesis, DNA repairs and the immune response, possibly suggesting their involvement in the adaptation to the hypoxia and diverse pathogens typically observed in mudflat burrowing environments. Some carbohydrate/lipid metabolism, and insulin signaling genes were also remarkably alterated, illustrating physiological remolding associated with nutrient-limited subterranean environments. Interestingly, several genes related to visual perception (e.g., crystallins) have undergone apparent gene losses, pointing to their role in the small vestigial eyes development in Taenioides sp. Our work provide valuable resources for understanding the molecular mechanisms underlying mudflat deep-burrowing adaptations in Amblyopinae, as well as in other tidal burrowing teleosts.
Collapse
Affiliation(s)
- Yantao Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianwei Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuzhen Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, College of Marine Sciences and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
28
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Qiu J, Wang Z, Zhao L, Zhang P, Xu Y, Xia Q. High C1QTNF1 expression mediated by potential ncRNAs is associated with poor prognosis and tumor immunity in kidney renal clear cell carcinoma. Front Mol Biosci 2023; 10:1201155. [PMID: 37529377 PMCID: PMC10387556 DOI: 10.3389/fmolb.2023.1201155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Background: Kidney renal clear cell carcinoma (KIRC) originates from proximal tubular cells and is the most common subtype of renal cell carcinoma. KIRC is characterized by changes in lipid metabolism, and obesity is a risk factor for it. C1q And TNF Related 1 (C1QTNF1), a novel adipokine and member of the C1q and TNF-related protein (CTRP) family, has been shown to affect the progression of various cancers. However, the role of C1QTNF1 in KIRC has not been studied. Methods: The Wilcoxon rank sum test was used to analyze the expression of C1QTNF1 in KIRC tissues and normal tissues. The relationship between clinicopathological features and C1QTNF1 levels was also examined by logistic regression and the Wilcoxon rank sum test. In addition, the effect of C1QTNF1 on the prognosis of KIRC patients was analyzed by Kaplan-Meier (KM). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the potential signaling pathways and biological functions of differential genes. A nomogram was constructed to predict the prognosis of KIRC patients. Spearman correlation analysis was performed to determine the association between C1QTNF1 expression and immune cell infiltration and immune checkpoint genes. The upstream miRNAs and lncRNAs of C1QTNF1 were predicted by the ENCORI online tool. Finally, we examined the proliferation, invasion, and migration abilities of KIRC cells after C1QTNF1 knockdown. Results: The expression of C1QTNF1 in KIRC tissues was significantly higher than in normal renal tissues. Patients with higher C1QTNF1 expression had a poor prognosis, a finding supported by Kaplan-Meier survival analysis. C1QTNF1 expression was significantly correlated with TNM and pathologic stages, age, and gender (p < 0.05). The C1QTNF1 expression level was significantly correlated with immune cell infiltration and immune checkpoint genes in KIRC. Additionally, high C1QTNF1 expression was associated with poor prognosis in stage I and II, T1 and T2, T3 and T4, N0, and M0 patients (HR > 1, p < 0.05). The calibration diagram shows that the C1QTNF1 model has effective predictive performance for the survival of KIRC patients. Knockdown of C1QTNF1 inhibited KIRC cell proliferation, cell migration, and cell invasion. In addition, CYTOR and AC040970.1/hsa-miR-27b-3p axis were identified as the most likely upstream ncRNA-related pathways of C1QTNF1 in KIRC. Conclusion: In conclusion, our study suggests that high expression of C1QTNF1 is associated with KIRC progression and immune infiltration. The increased expression of C1QTNF1 suggests a poor prognosis in KIRC patients.
Collapse
Affiliation(s)
- Jiechuan Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leizuo Zhao
- Department of Urology, Dongying People’s Hospital, Dongying, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
30
|
Peña Palomino PA, Black KC, Ressl S. Pleiotropy of C1QL proteins across physiological systems and their emerging role in synapse homeostasis. Biochem Soc Trans 2023:233015. [PMID: 37140354 DOI: 10.1042/bst20220439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The C1q/TNF superfamily of proteins engages in a pleiotropy of physiological functions associated with various diseases. C1QL proteins demonstrate important protective and regulatory roles in the endocrine, immune, cardiovascular, and nervous systems in both human and rodent studies. Studies in the central nervous system (CNS), adipose, and muscle tissue reveal several C1QL protein and receptor pathways altering multiple cellular responses, including cell fusion, morphology, and adhesion. This review examines C1QL proteins across these systems, summarizing functional and disease associations and highlighting cellular responses based on in vitro and in vivo data, receptor interaction partners, and C1QL-associated protein signaling pathways. We highlight the functions of C1QL proteins in organizing CNS synapses, regulating synapse homeostasis, maintaining excitatory synapses, and mediating signaling and trans-synaptic connections. Yet, while these associations are known, present studies provide insufficient insight into the underlying molecular mechanism of their pleiotropy, including specific protein interactions and functional pathways. Thus, we suggest several areas for more in-depth and interdisciplinary hypothesis testing.
Collapse
Affiliation(s)
- Perla A Peña Palomino
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| | - Kylie C Black
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| | - Susanne Ressl
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 208047, U.S.A
| |
Collapse
|
31
|
Nicolaus HF, Klonisch T, Paulsen F, Garreis F. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro. Int J Mol Sci 2023; 24:ijms24076839. [PMID: 37047812 PMCID: PMC10095411 DOI: 10.3390/ijms24076839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Inadequate wound healing of ocular surface injuries can lead to permanent visual impairment. The relaxin ligand-receptor system has been demonstrated to promote corneal wound healing through increased cell migration and modulation of extracellular matrix formation. Recently, C1q/tumor necrosis factor-related protein (CTRP) 8 was identified as a novel interaction partner of relaxin receptor RXFP1. Additional data also suggest a role for CTRP1 and CTRP6 in RXFP1-mediated cAMP signaling. However, the role of CTRP1, CTRP6 and CTRP8 at the ocular surface remains unclear. In this study, we investigated the effects of CTRP1, CTRP6, and CTRP8 on epithelial ocular surface wound closure and their dependence on the RXFP1 receptor pathway. CTRP1, CTRP6, and CTRP8 expression was analyzed by RT-PCR and immunohistochemistry in human tissues and cell lines derived from the ocular surface and lacrimal apparatus. In vitro ocular surface wound modeling was performed using scratch assays. We analyzed the effects of recombinant CTRP1, CTRP6, and CTRP8 on cell proliferation and migration in human corneal and conjunctival epithelial cell lines. Dependence on RXFP1 signaling was established by inhibiting ligand binding to RXFP1 using a specific anti-RXFP1 antibody. We detected the expression of CTRP1, CTRP6, and CTRP8 in human tissue samples of the cornea, conjunctiva, meibomian gland, efferent tear ducts, and lacrimal gland, as well as in human corneal, conjunctival, and meibomian gland epithelial cell lines. Scratch assays revealed a dose-dependent increase in the closure rate of surface defects in human corneal epithelial cells after treatment with CTRP1, CTRP6, and CTRP8, but not in conjunctival epithelial cells. Inhibition of RXFP1 fully attenuated the effect of CTRP8 on the closure rate of surface defects in human corneal epithelial cells, whereas the CTRP1 and CTRP6 effects were not completely suppressed. Conclusions: Our findings demonstrate a novel role for CTRP1, CTRP6, and CTRP8 in corneal epithelial wound closure and suggest an involvement of the relaxin receptor RXFP1 signaling pathway. This could be a first step toward new approaches for pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Hagen Fabian Nicolaus
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
32
|
Roy PK, Islam J, Lalhlenmawia H. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance. Egypt Heart J 2023; 75:24. [PMID: 37014444 PMCID: PMC10073393 DOI: 10.1186/s43044-023-00352-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND In normal circumstances, AT secretes anti-inflammatory adipokines (AAKs) which regulates lipid metabolism, insulin sensitivity, vascular hemostasis, and angiogenesis. However, during obesity AT dysfunction occurs and leads to microvascular imbalance and secretes several pro-inflammatory adipokines (PAKs), thereby favoring atherogenic dyslipidemia and insulin resistance. Literature suggests decreased levels of circulating AAKs and increased levels of PAKs in obesity-linked disorders. Importantly, AAKs have been reported to play a vital role in obesity-linked metabolic disorders mainly insulin resistance, type-2 diabetes mellitus and coronary heart diseases. Interestingly, AAKs counteract the microvascular imbalance in AT and exert cardioprotection via several signaling pathways such as PI3-AKT/PKB pathway. Although literature reviews have presented a number of investigations detailing specific pathways involved in obesity-linked disorders, literature concerning AT dysfunction and AAKs remains sketchy. In view of the above, in the present contribution an effort has been made to provide an insight on the AT dysfunction and role of AAKs in modulating the obesity and obesity-linked atherogenesis and insulin resistance. MAIN BODY "Obesity-linked insulin resistance", "obesity-linked cardiometabolic disease", "anti-inflammatory adipokines", "pro-inflammatory adipokines", "adipose tissue dysfunction" and "obesity-linked microvascular dysfunction" are the keywords used for searching article. Google scholar, Google, Pubmed and Scopus were used as search engines for the articles. CONCLUSIONS This review offers an overview on the pathophysiology of obesity, management of obesity-linked disorders, and areas in need of attention such as novel therapeutic adipokines and their possible future perspectives as therapeutic agents.
Collapse
Affiliation(s)
- Probin Kr Roy
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India.
| | - Johirul Islam
- Coromandel International Limited, Hyderabad, Telangana, 500101, India
| | - Hauzel Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences (RIPANS), Aizawl, Mizoram, 796017, India
| |
Collapse
|
33
|
Schäffler A. [Role of metaflammation as a systemic manifestation of metabolic diseases]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:313-322. [PMID: 36346457 DOI: 10.1007/s00108-022-01416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Visceral obesity as a component of the metabolic syndrome is characterized by systemic and local inflammation, which can be quantified in organs (metaflammation). This process can be regarded as a chronic, sterile, and low-grade state of inflammation without infection, trauma, tumor or autoimmunity. It is caused by an inflammation of the visceral adipose tissue (adipose inflammation or adipoflammation) due to adipocyte hypertrophy and hyperplasia with increased infiltration by monocytes and macrophages. Important is the presence of proinflammatory, so-called polarized M1 macrophages that are induced by interferon gamma (IFN-γ) and lipopolysaccharides (LPS) with secretion of interleukin (IL)-6, tumor necrosis factor (TNF) and IL‑1. In contrast, the anti-inflammatory, so-called polarized M2 macrophages induced by IL‑4 and IL-13 with secretion of IL‑8 and IL-10 decrease. In addition, the secreted adipokine pattern changes from anti-inflammatory to proinflammatory. Adipocyte necrosis, local hypoxia, dysregulated autophagy, activation of inflammasomes, modulation of toll-like receptors, and epigenetic factors play a complex role. This mechanism results in local insulin resistance and subsequently a systemic insulin resistance of peripheral organs as well as a spillover of local mediators of inflammation into the systemic circulation (measured as obesity C‑reactive protein, CRP). The activation of inflammatory signal transduction cascades leads to inhibitory phosphorylation of the insulin signaling pathway and a weakening of the effect of insulin. In parallel, ectopic lipid accumulation occurs in the liver, musculature, pancreas, pericardium and lungs. Diacylglycerol (DAG) activates specific isoforms of protein kinase C (ε in the liver and τ in the musculature), which in turn lead to inhibition of the insulin signaling pathway. Insulin resistance in obesity and type 2 diabetes mellitus is an inflammatory disease. The aim of future translational approaches is an anti-inflammatory, molecularly individualized (precision medicine) treatment in adipose tissue (targeted therapy) and in organs of insulin resistance.
Collapse
Affiliation(s)
- Andreas Schäffler
- Klinik und Poliklinik für Innere Medizin III (Endokrinologie, Diabetologie, Stoffwechsel und Ernährungsmedizin), Justus-Liebig-Universität Gießen (JLU) und Universitätsklinikum Gießen und Marburg (UKGM), Standort Gießen, Klinikstraße 33, 35392, Gießen, Deutschland.
| |
Collapse
|
34
|
Zhang H, Zhang-Sun ZY, Xue CX, Li XY, Ren J, Jiang YT, Liu T, Yao HR, Zhang J, Gou TT, Tian Y, Lei WR, Yang Y. CTRP family in diseases associated with inflammation and metabolism: molecular mechanisms and clinical implication. Acta Pharmacol Sin 2023; 44:710-725. [PMID: 36207402 PMCID: PMC10042840 DOI: 10.1038/s41401-022-00991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/27/2022] [Indexed: 11/08/2022] Open
Abstract
C1q/tumor necrosis factor (TNF) related proteins (CTRPs) is a newly discovered adipokine family with conservative structure and ubiquitous distribution and is secreted by adipose tissues. Recently, CTRPs have attracted increasing attention due to the its wide-ranging effects upon inflammation and metabolism. To-date, 15 members of CTRPs (CTRP1-15) with the characteristic C1q domain have been characterized. Earlier in-depth phenotypic analyses of mouse models of CTRPs deficiency have also unveiled ample function of CTRPs in inflammation and metabolism. This review focuses on the rise of CTRPs, with a special emphasis on the latest discoveries with regards to the effects of the CTRP family on inflammation and metabolism as well as related diseases. We first introduced the structure of characteristic domain and polymerization of CTRPs to reveal its pleiotropic biological functions. Next, intimate association of CTRP family with inflammation and metabolism, as well as the involvement of CTRPs as nodes in complex molecular networks, were elaborated. With expanding membership of CTRP family, the information presented here provides new perspectives for therapeutic strategies to improve inflammatory and metabolic abnormalities.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zi-Yin Zhang-Sun
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Cheng-Xu Xue
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xi-Yang Li
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yu-Ting Jiang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Hai-Rong Yao
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Gou
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Wang-Rui Lei
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital/The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710021, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
35
|
The Effects of 12 Weeks of Concurrent and Combined Training on Inflammatory Markers, Muscular Performance, and Body Composition in Middle-Aged Overweight and Obese Males. Nutrients 2023; 15:nu15061482. [PMID: 36986212 PMCID: PMC10056532 DOI: 10.3390/nu15061482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Aim: Previous studies have focused on the order of endurance and resistance training when performing concurrent training (CT). However, no study has compared the effects of combined training with CT orders on inflammatory markers, muscular performance, and body composition in overweight and obese males. Therefore, the purpose of the current study was to compare the effects of 12 weeks of CT and combined training on the aforementioned markers in overweight and obese males. Methods: Sixty middle-aged overweight and obese males (age 51 ± 4 years) were randomly assigned into one of four groups: endurance followed by resistance training (ER; n = 15), resistance followed by endurance training (RE; n = 15), combined resistance and endurance training (COM), or control (CON; n = 15). Anthropometric, body composition, inflammatory marker, and muscular performance measurements were collected at baseline and after 12 weeks. Results: FFM remained unchanged in all three intervention groups (p > 0.05). Reductions in FM in the RE group were significantly greater than in CON (p = 0.038). The increases in serum concentrations of adiponectin in the RE group were significantly greater than in all other groups (p < 0.05). Increased serum concentrations of CTRP3 in all intervention groups were significantly greater than the CON group (p < 0.05); moreover, the increases in the RE group were significantly greater than CON (p < 0.001). Regarding CTRP5, the increase in RE was significantly greater than COM (p = 0.014). The RE group experienced significantly greater increases in CTRP9 than all other groups (p < 0.05), and the decreases in serum concentrations of CRP and TNF-α were significantly greater in the RE group compared to CON and ER (p < 0.05). Vo2max in the ER group was significantly greater than COM (p = 0.009), and all interventions resulted in higher gains compared to CON (p < 0.05). The increases in leg press strength, chest press strength, lower-body power, and upper-body power in the RE group were significantly greater than in the COM group (p < 0.05). In addition, the increases in chest press strength in the ER group were significantly greater than COM (p = 0.023). Conclusions: Regardless of training order, CT improved inflammatory markers, body composition, power, and VO2max. Notably, our analysis indicated significantly greater improvements in adiponectin, CTRP5, CTRP9, CRP, and TNF-α levels when RT preceded ET in CT sessions compared to other exercise training sequences. These findings suggested that the order of exercise training may have a significant impact on the effectiveness of CT on inflammatory markers, which has potential implications for exercise prescription and optimization of health-related training outcomes.
Collapse
|
36
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
37
|
In Silico Pan-Cancer Analysis Reveals Prognostic Role of the Erythroferrone (ERFE) Gene in Human Malignancies. Int J Mol Sci 2023; 24:ijms24021725. [PMID: 36675239 PMCID: PMC9864255 DOI: 10.3390/ijms24021725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The erythroferrone gene (ERFE), also termed CTRP15, belongs to the C1q tumor necrosis factor-related protein (CTRP) family. Despite multiple reports about the involvement of CTRPs in cancer, the role of ERFE in cancer progression is largely unknown. We previously found that ERFE was upregulated in erythroid progenitors in myelodysplastic syndromes and strongly predicted overall survival. To understand the potential molecular interactions and identify cues for further functional investigation and the prognostic impact of ERFE in other malignancies, we performed a pan-cancer in silico analysis utilizing the Cancer Genome Atlas datasets. Our analysis shows that the ERFE mRNA is significantly overexpressed in 22 tumors and affects the prognosis in 11 cancer types. In certain tumors such as breast cancer and adrenocortical carcinoma, ERFE overexpression has been associated with the presence of oncogenic mutations and a higher tumor mutational burden. The expression of ERFE is co-regulated with the factors and pathways involved in cancer progression and metastasis, including activated pathways of the cell cycle, extracellular matrix/tumor microenvironment, G protein-coupled receptor, NOTCH, WNT, and PI3 kinase-AKT. Moreover, ERFE expression influences intratumoral immune cell infiltration. Conclusively, ERFE is aberrantly expressed in pan-cancer and can potentially function as a prognostic biomarker based on its putative functions during tumorigenesis and tumor development.
Collapse
|
38
|
He L, Zhu C, Dou H, Yu X, Jia J, Shu M. Keloid Core Factor CTRP3 Overexpression Significantly Controlled TGF- β1-Induced Propagation and Migration in Keloid Fibroblasts. DISEASE MARKERS 2023; 2023:9638322. [PMID: 37091895 PMCID: PMC10115533 DOI: 10.1155/2023/9638322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 04/25/2023]
Abstract
Purpose Keloid is a type of benign fibrous proliferative tumor characterized by excessive scarring. C1q/TNF-related protein 3 (CTRP3) has been proven to possess antifibrotic effect. Here, we explored the role of CTRP3 in keloid. In the current research, we examined the influence of CTRP3 on keloid fibroblasts (KFs) and investigated the potential molecular mechanism. Methods KF tissue specimens and adjacent normal fibroblast (NF) tissues were collected cultured from 10 keloid participants. For the TGF-β1 stimulation group, KFs were processed with human recombinant TGF-β1. Cell transfection of pcDNA3.1-CTRP3 or pcDNA3.1 was performed. The siRNA of CTRP3 (si-CTRP3) or negative control siRNA (si-scramble) was transfected into KFs. Results CTRP3 was downregulated in keloid tissues and KFs. CTRP3 overexpression significantly controlled TGF-β1-induced propagation and migration in KFs. Col I, α-SMA, and fibronectin mRNA and protein levels were enhanced by TGF-β1 stimulation, whereas they were inhibited by CTRP3 overexpression. In contrast, CTRP3 knockdown exhibited the opposite effect. In addition, CTRP3 attenuated TGF-β receptors TRI and TRII in TGF-β1-induced KFs. Furthermore, CTRP3 prevented TGF-β1-stimulated nuclear translocation of smad2 and smad3 and suppressed the expression levels of p-smad2 and p-smad3 in KFs. Conclusion CTRP3 exerted an antifibrotic role through inhibiting proliferation, migration, and ECM accumulation of KFs via regulating TGF-β1/Smad signal path.
Collapse
Affiliation(s)
- Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chan Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huicong Dou
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueyuan Yu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Jia
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Maoguo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
39
|
Yu H, Zhang Z, Li G, Feng Y, Xian L, Bakhsh F, Xu D, Xu C, Vong T, Wu B, Selaru FM, Wan F, Donowitz M, Wong GW. Adipokine C1q/Tumor Necrosis Factor- Related Protein 3 (CTRP3) Attenuates Intestinal Inflammation Via Sirtuin 1/NF-κB Signaling. Cell Mol Gastroenterol Hepatol 2022; 15:1000-1015. [PMID: 36592863 PMCID: PMC10040965 DOI: 10.1016/j.jcmgh.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS The adipokine CTRP3 has anti-inflammatory effects in several nonintestinal disorders. Although serum CTRP3 is reduced in patients with inflammatory bowel disease (IBD), its function in IBD has not been established. Here, we elucidate the function of CTRP3 in intestinal inflammation. METHODS CTRP3 knockout (KO) and overexpressing transgenic (Tg) mice, along with their corresponding wild-type littermates, were treated with dextran sulfate sodium for 6-10 days. Colitis phenotypes and histologic data were analyzed. CTRP3-mediated signaling was examined in murine and human intestinal mucosa and mouse intestinal organoids derived from CTRP3 KO and Tg mice. RESULTS CTRP3 KO mice developed more severe colitis, whereas CTRP3 Tg mice developed less severe colitis than wild-type littermates. The deletion of CTRP3 correlated with decreased levels of Sirtuin-1 (SIRT1), a histone deacetylase, and increased levels of phosphorylated/acetylated NF-κB subunit p65 and proinflammatory cytokines tumor necrosis factor-α and interleukin-6. Results from CTRP3 Tg mice were inverse to those from CTRP3 KO mice. The addition of SIRT1 activator resveratrol to KO intestinal organoids and SIRT1 inhibitor Ex-527 to Tg intestinal organoids suggest that SIRT1 is a downstream effector of CTRP3-related inflammatory changes. In patients with IBD, a similar CTRP3/SIRT1/NF-κB relationship was observed. CONCLUSIONS CTRP3 expression levels correlate negatively with intestinal inflammation in acute mouse colitis models and patients with IBD. CTRP3 may attenuate intestinal inflammation via SIRT1/NF-κB signaling. The manipulation of CTRP3 signaling, including through the use of SIRT1 activators, may offer translational potential in the treatment of IBD.
Collapse
Affiliation(s)
- Huimin Yu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Zixin Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gangping Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yan Feng
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital, Penn Medicine, Philadelphia, Pennsylvania
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fatemeh Bakhsh
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dongqing Xu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tyrus Vong
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bin Wu
- Department of Biophysics and Biophysics and Biochemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Lee SM, Lee JW, Kim I, Woo DC, Pack CG, Sung YH, Baek IJ, Jung CH, Kim YH, Ha CH. Angiogenic adipokine C1q-TNF-related protein 9 ameliorates myocardial infarction via histone deacetylase 7-mediated MEF2 activation. SCIENCE ADVANCES 2022; 8:eabq0898. [PMID: 36459558 PMCID: PMC10936044 DOI: 10.1126/sciadv.abq0898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
C1q/tumor necrosis factor-related protein 9 (CTRP9) is an adipokine and has high potential as a therapeutic target. However, the role of CTRP9 in cardiovascular disease pathogenesis remains unclear. We found CTRP9 to induce HDAC7 and p38 MAPK phosphorylation via tight regulation of AMPK in vascular endothelial cells, leading to angiogenesis through increased MEF2 activity. The expression of CTRP9 and atheroprotective MEF2 was decreased in plaque tissue of atherosclerotic patients and the ventricle of post-infarction mice. CTRP9 treatment inhibited the formation of atherosclerotic plaques in ApoE KO and CTRP9 KO mice. In addition, CTRP9 induced significant ischemic injury prevention in the post-MI mice. Clinically, serum CTRP9 levels were reduced in patients with MI compared with healthy controls. In summary, CTRP9 induces a vasoprotective response via the AMPK/HDAC7/p38 MAPK pathway in vascular endothelial cells, whereas its absence can contribute to atherosclerosis and MI. Hence, CTRP9 may represent a valuable therapeutic target and biomarker in cardiovascular diseases.
Collapse
Affiliation(s)
- Seung Min Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Lee
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Inki Kim
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Cheol Woo
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Hoon Sung
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Convergence Medicine Research Center (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Hak Kim
- Cardiology Division, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hoon Ha
- Department of Convergence Medicine and Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
41
|
Shang M, Zhang Y, Zhang T. IFI44L and C1QTNF5 as promising biomarkers of proliferative diabetic retinopathy. Medicine (Baltimore) 2022; 101:e31961. [PMID: 36451477 PMCID: PMC9704899 DOI: 10.1097/md.0000000000031961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Proliferative diabetic retinopathy (PDR) is a world-wide leading cause of blindness among adults and may be associated with the influence of genetic factors. It is significant to search for genetic biomarkers of PDR. In our study, we collected genomic data about PDR from gene expression omnibus (GEO) database. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) were carried out. The gene module with the highest gene significance (GS) was defined as the key module. Hub genes were identified by Venn diagram. Then we verified the expression of hub genes in validation data sets and built a diagnostic model by least absolute shrinkage and selection operator (LASSO) regression. Enrichment analysis, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA) and construction of a protein-protein interaction (PPI) network were conducted. In GSE60436, we identified 466 DEGs. WGCNA established 14 gene modules, and the blue module (GS = 0.64), was the key module. Interferon (IFN)-induced protein 44-like (IFI44L) and complement C1q tumor necrosis factor-related protein 5 (C1QTNF5) were identified as hub genes. The expression of hub genes in GEO datasets was verified and a diagnostic model was constructed by LASSO as follows: index = IFI44L * 0.0432 + C1QTNF5 * 0.11246. IFI44L and C1QTNF5 might affect the disease progression of PDR by regulating metabolism-related and inflammatory pathways. IFI44L and C1QTNF5 may play important roles in the disease process of PDR, and a LASSO regression model suggested that the 2 genes could serve as promising biomarkers of PDR.
Collapse
Affiliation(s)
- Mingxin Shang
- He Eye Specialist Hospital, Shenyang, Liaoning Province, China
| | - Yao Zhang
- He Eye Specialist Hospital, Shenyang, Liaoning Province, China
| | - Tongtong Zhang
- He Eye Specialist Hospital, Shenyang, Liaoning Province, China
- * Correspondence: Tongtong Zhang, He Eye Specialist Hospital, No.128 North Huanghe Street, Shenyang, Liaoning Province 110034, China (e-mail: )
| |
Collapse
|
42
|
Hu B, Qian X, Qian P, Xu G, Jin X, Chen D, Xu L, Tang J, Wu W, Li W, Zhang J. Advances in the functions of CTRP6 in the development and progression of the malignancy. Front Genet 2022; 13:985077. [PMID: 36313428 PMCID: PMC9596804 DOI: 10.3389/fgene.2022.985077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
CTRP6, a member of the C1q/TNF-related protein (CTRP) family, has gained increasing scientific interest because of its regulatory role in tumor progression. Previous studies have shown that CTRP6 is closely involved in regulating various pathophysiological processes, including glucose and lipid metabolism, cell proliferation, apoptosis, and inflammation. To date, CTRP6 has been identified as related to eight different malignancies, including lung cancer, oral cancer, gastric cancer, colon cancer, liver cancer, bladder cancer, renal cancer, and ovarian cancer. CTRP6 is reported to be associated with tumor progression by activating a series of related signal networks. This review article mainly discusses the biochemistry and pleiotropic pathophysiological functions of CTRP6 as a new molecular mediator in carcinogenesis, hoping that the information summarized herein could make a modest contribution to the development of novel cancer treatments in the future.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Xiaolan Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Ping Qian
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Guangtao Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Xin Jin
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Deqing Chen
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Long Xu
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
| | - Jie Tang
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wanlu Li
- Forensic and Pathology Laboratory, Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- *Correspondence: Wanlu Li, ; Jin Zhang,
| |
Collapse
|
43
|
Park R, Park YI, Park Y, Lee S, So J, Park J. CTRP1 Knockout Attenuates Tumor Progression in A549 and HCT116 Cancer Cells. Cancers (Basel) 2022; 14:cancers14184495. [PMID: 36139655 PMCID: PMC9496675 DOI: 10.3390/cancers14184495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary CTRP1 belongs to the C1q and TNF-related protein family, and we generated CTRP1 knockout cells to examine the role of CTRP1 in tumor progression. CTRP1 knockout attenuates cell growth, invasion and tumor growth in mice, suggesting that CTRP1 expression promotes tumor progression. Abstract C1q and TNF-related 1 (C1QTNF1/CTRP1) is an adiponectin-associated protein belonging to the C1q/TNF-related protein family. Recent studies have shown that the C1q and TNF-related protein (CTRP) family is involved in cancer progression; however, the specific role of CTRP1 in tumor progression has not yet been elucidated. To examine the role of CTRP1 in tumor progression, we generated CTRP1 knockout A549 and HCT116 cell lines, which reduced the expression levels of nuclear factor (NF)-κB-dependent and metastasis-promoting transcripts. We demonstrated that CTRP1 knockout inhibited the cell proliferation and invasion and tumor growth. Finally, database analysis showed that CTRP1 expression was upregulated in metastatic cancers and elevated levels of CTRP1 were associated with poor prognosis. These results suggest that CTRP1 expression contributes to NF-κB signaling and promotes tumor progression.
Collapse
Affiliation(s)
- Rackhyun Park
- Division of Biological Science and Technology, Yonsei University, Wonju 29493, Korea
- Division of Biological Sciences, Yong-In University, Yongin 17092, Korea
| | - Yea-In Park
- Division of Biological Science and Technology, Yonsei University, Wonju 29493, Korea
| | - Yeonjeong Park
- Division of Biological Science and Technology, Yonsei University, Wonju 29493, Korea
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 29493, Korea
| | - Jaeyeon So
- Division of Biological Science and Technology, Yonsei University, Wonju 29493, Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 29493, Korea
- Correspondence: ; Tel.: +82-33-760-2560; Fax: +82-33-760-2183
| |
Collapse
|
44
|
Wen Y, Guo G, Yang L, Chen L, Zhao D, He X, Zhang R, Huang Z, Wang G, Zhang L. A tumor microenvironment gene set–Based prognostic signature for non-small-cell lung cancer. Front Mol Biosci 2022; 9:849108. [PMID: 36032673 PMCID: PMC9400803 DOI: 10.3389/fmolb.2022.849108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The tumor microenvironment (TME) is involved in the development and progression of lung carcinomas. A deeper understanding of TME landscape would offer insight into prognostic biomarkers and potential therapeutic targets investigation. To this end, we aimed to identify the TME components of lung cancer and develop a prognostic signature to predict overall survival (OS).Methods: Expression data was retrieved from The Cancer Genome Atlas (TCGA) database and differentially expressed TME-related genes were calculated between tumor and normal tissues. Then nonnegative matrix factorization (NMF) clustering was used to identify two distinct subtypes.Results: Our analysis yielded a gene panel consisting of seven TME-related genes as candidate signature set. With this panel, our model showed that the high-risk group experienced a shorter survival time. This model was further validated by an independent cohort with data from Gene Expression Omnibus (GEO) database (GSE50081 and GSE13213). Additionally, we integrated the clinical factors and risk score to construct a nomogram for predicting prognosis. Our data suggested less immune cells infiltration but more fibroblasts were found in tumor tissues derived from patients at high-risk and those patients exhibited a worse immunotherapy response.Conclusion: The signature set proposed in this work could be an effective model for estimating OS in lung cancer patients. Hopefully analysis of the TME could have the potential to provide novel diagnostic, prognostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Yingsheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guangran Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Longjun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lianjuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dechang Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaotian He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rusi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zirui Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gongming Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lanjun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Lanjun Zhang,
| |
Collapse
|
45
|
Moradi N, Fadaei R, Rashidbeygi E, Bagheri Kargasheh F, Malek M, Shokoohi Nahrkhalaji A, Fallah S. Evaluation of changing the pattern of CTRP5 and inflammatory markers levels in patients with coronary artery disease and type 2 diabetes mellitus. Arch Physiol Biochem 2022; 128:964-969. [PMID: 32202952 DOI: 10.1080/13813455.2020.1742164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE It has recently found that adipokines, play a numerous functional roles in inflammation, lipids and glucose metabolism and in the pathogenically conditions such as atherosclerosis and insulin resistance. Therefore, for the first time we aimed the present study to evaluating serum levels of CTRP5 and inflammatory cytokines patients with CAD and T2DM in comparison with controls. METHODS This study was done on 44 patients with CAD, 45 type 2 diabetes mellitus (T2DM), 41 CAD + T2DM and 41 controls. Serum levels of TNF-α, IL-6, MCP-1 and CTRP5 were investigated by ELISA method. RESULTS The CTRP5 levels of all patients groups were lower in comparison with control group. There was a significant negative relationship between CTRP5 levels and cytokines concentration in the studied patients. CONCLUSIONS Our findings suggested a potential role of CTRP5 in inflammatory process of underlying atherosclerosis and diabetes; however, more studies are needed to support these finding.
Collapse
Affiliation(s)
- Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elaheh Rashidbeygi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mojtaba Malek
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | | | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Kim D, Justice AE, Chittoor G, Blanco E, Burrows R, Graff M, Howard AG, Wang Y, Rohde R, Buchanan VL, Voruganti VS, Almeida M, Peralta J, Lehman DM, Curran JE, Comuzzie AG, Duggirala R, Blangero J, Albala C, Santos JL, Angel B, Lozoff B, Gahagan S, North KE. Genetic determinants of metabolic biomarkers and their associations with cardiometabolic traits in Hispanic/Latino adolescents. Pediatr Res 2022; 92:563-571. [PMID: 34645953 PMCID: PMC9005573 DOI: 10.1038/s41390-021-01729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Metabolic regulation plays a significant role in energy homeostasis, and adolescence is a crucial life stage for the development of cardiometabolic disease (CMD). This study aims to investigate the genetic determinants of metabolic biomarkers-adiponectin, leptin, ghrelin, and orexin-and their associations with CMD risk factors. METHODS We characterized the genetic determinants of the biomarkers among Hispanic/Latino adolescents of the Santiago Longitudinal Study (SLS) and identified the cumulative effects of genetic variants on adiponectin and leptin using biomarker polygenic risk scores (PRS). We further investigated the direct and indirect effect of the biomarker PRS on downstream body fat percent (BF%) and glycemic traits using structural equation modeling. RESULTS We identified putatively novel genetic variants associated with the metabolic biomarkers. A substantial amount of biomarker variance was explained by SLS-specific PRS, and the prediction was improved by including the putatively novel loci. Fasting blood insulin and insulin resistance were associated with PRS for adiponectin, leptin, and ghrelin, and BF% was associated with PRS for adiponectin and leptin. We found evidence of substantial mediation of these associations by the biomarker levels. CONCLUSIONS The genetic underpinnings of metabolic biomarkers can affect the early development of CMD, partly mediated by the biomarkers. IMPACT This study characterized the genetic underpinnings of four metabolic hormones and investigated their potential influence on adiposity and insulin biology among Hispanic/Latino adolescents. Fasting blood insulin and insulin resistance were associated with polygenic risk score (PRS) for adiponectin, leptin, and ghrelin, with evidence of some degree of mediation by the biomarker levels. Body fat percent (BF%) was also associated with PRS for adiponectin and leptin. This provides important insight on biological mechanisms underlying early metabolic dysfunction and reveals candidates for prevention efforts. Our findings also highlight the importance of ancestrally diverse populations to facilitate valid studies of the genetic architecture of metabolic biomarker levels.
Collapse
Affiliation(s)
- Daeeun Kim
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anne E. Justice
- Department of Population Health Sciences, Geisinger, Danville, PA
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA
| | - Estela Blanco
- Division of Academic General Pediatrics, Child Development and Community Health at the Center for Community Health, University of California at San Diego, San Diego, CA,Department of Public Health, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raquel Burrows
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yujie Wang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Victoria L. Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - V. Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis NC
| | - Marcio Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX
| | - Juan Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX
| | - Donna M. Lehman
- Departments of Medicine and Epidemiology and Biostatistics, University of Texas Health San Antonio, San Antonio, TX
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX
| | | | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX
| | - Cecilia Albala
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Angel
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health at the Center for Community Health, University of California at San Diego, San Diego, CA
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
47
|
Elevated Plasma Levels of C1qTNF1 Protein in Patients with Age-Related Macular Degeneration and Glucose Disturbances. J Clin Med 2022; 11:jcm11154391. [PMID: 35956011 PMCID: PMC9369205 DOI: 10.3390/jcm11154391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, research has provided increasing evidence for the importance of inflammatory etiology in age-related macular degeneration (AMD) pathogenesis. This study assessed the profile of inflammatory cytokines in the serum of patients with AMD and coexisting glucose disturbances (GD). This prospective population-based cohort study addressed the determinants and occurrence of cardiovascular, neurological, ophthalmic, psychiatric, and endocrine diseases in residents of Bialystok, Poland. To make the group homogenous in terms of inflammatory markers, we analyzed only subjects with glucose disturbances (GD: diabetes or prediabetes). Four hundred fifty-six patients aged 50–80 were included. In the group of patients without macular degenerative changes, those with GD accounted for 71.7%, while among those with AMD, GD accounted for 89.45%. Increased serum levels of proinflammatory cytokines were observed in both AMD and GD groups. C1qTNF1 concentration was statistically significantly higher in the group of patients with AMD, with comparable levels of concentrations of other proinflammatory cytokines. C1qTNF1 may act as a key mediator in the integration of lipid metabolism and inflammatory responses in macrophages. Moreover, C1qTNF1 levels are increased after exposure to oxidized low-density lipoprotein (oxLDL), which plays a key role in atherosclerotic plaque formation and is also a major component of the drusen observed in AMD. C1qTNF1 may, therefore, prove to be a link between the accumulation of oxLDL and the induction of local inflammation in the development of AMD with concomitant GD.
Collapse
|
48
|
Lin G, Lin L, Lin H, Xu Y, Chen W, Liu Y, Wu J, Chen S, Lin Q, Zeng Y, Xu Y. C1QTNF6 regulated by miR-29a-3p promotes proliferation and migration in stage I lung adenocarcinoma. BMC Pulm Med 2022; 22:285. [PMID: 35879698 PMCID: PMC9310408 DOI: 10.1186/s12890-022-02055-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE C1QTNF6 has been implicated as an essential component in multiple cellular and molecular preliminary event, including inflammation, glucose metabolism, endothelial cell modulation and carcinogenesis. However, the biological process and potential mechanism of C1QTNF6 in lung adenocarcinoma (LUAD) are indefinite and remain to be elucidated. Therefore, we investigated the interaction among the traits of C1QTNF6 and LUAD pathologic process. METHODS RT-qPCR and western blot were conducted to determine the expression levels of C1QTNF6. RNA interference and overexpression of C1QTNF6 were constructed to identify the biological function of C1QTNF6 in cellular proliferative, migratory and invasive potentials in vitro. Dual-luciferase reporter assay was applied to identify the possible interaction between C1QTNF6 and miR-29a-3p. Moreover, RNA sequencing analysis of C1QTNF6 knockdown was performed to identify the potential regulatory pathways. RESULTS C1QTNF6 was upregulated in stage I LUAD tissues compared with adjacent non-cancerous tissues. Concurrently, C1QTNF6 knockdown could remarkably inhibit cell proliferation, migratory and invasive abilities, while overexpression of C1QTNF6 presented opposite results. Additionally, miR-29a-3p may serve as an upstream regulator of C1QTNF6 and reduce the expression of C1QTNF6. Subsequent experiments showed that miR-29a-3p could decrease the cell mobility and proliferation positive cell rates, as well as reduce the migratory and invasive possibilities in LUAD cells via downregulating C1QTNF6. Moreover, RNA sequencing analysis demonstrated that the cytokine-cytokine receptor interaction pathway may participate in the process of C1QTNF6 regulating tumor progression. CONCLUSION Our study first demonstrated that downregulation of C1QTNF6 could inhibit tumorigenesis and progression in LUAD cells negatively regulated by miR-29a-3p. These consequences could reinforce our awareness and understanding of the underlying mechanism and provide a promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Lanlan Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Hai Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Yingxuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Wenhan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.,The Second Clinical College, Fujian Medical University, Fuzhou, 350004, Fujian Province, China
| | - Yifei Liu
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Jingyang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Shaohua Chen
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Qinhui Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.
| | - Yuan Xu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China. .,Respiratory Medicine Center of Fujian Province, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
49
|
Vatannejad A, Fadaei R, Salimi F, Fouani FZ, Habibi B, Shapourizadeh S, Eivazi S, Eivazi S, Sadeghi A, Moradi N. Plasma Complement C1q/tumor necrosis factor-related protein 15 concentration is associated with polycystic ovary syndrome. PLoS One 2022; 17:e0263658. [PMID: 35700181 PMCID: PMC9197053 DOI: 10.1371/journal.pone.0263658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a common poignant endocrine disorder affecting women, posing a close association with metabolic syndrome and obesity. Existing literature characterizes PCOS with deranged levels of several adipokines and myokines. CTRP15 is a paralogue of adiponectin, mainly expressed by skeletal muscles, and plays a key role in insulin, glucose, and lipid metabolism. In the current study, we aim to determine the circulating levels of CTRP15 and evaluate its association with cardiometabolic and inflammatory parameters in PCOS women. This case-control study included 120 PCOS patients (60 Recurrent pregnancy loss (RPL) and 60 infertile (inf) PCOS) and 60 healthy non-PCOS controls. Serum levels of hs-CRP were measured by commercial kits, while serum levels of adiponectin and CTRP15 were determined using the ELISA technique. Serum levels of CTRP15 were significantly elevated in PCOS-RPL and PCOS-inf subgroups when compared to controls (94.80 ± 27.08 and 87.77 ± 25.48 vs. 54.78 ± 15.45, both P < 0.001). Moreover, serum adiponectin was considerably lower in the PCOS group and subgroups (P < 0.001), while serum hs-CRP, fasting insulin, HOMA-IR, and free testosterone were significantly higher when compared to the non-PCOS group (P < 0.05). Furthermore, CTRP15 closely associated with FSH, HOMA-IR, hs-CRP, and BMI. These results highlight a possible involvement of CTRP15 in the pathogenesis of PCOS. The elevated levels of CTRP15 might be a compensatory mechanism for the metabolic dysregulations (excess adiposity, insulin resistance, metaflammation) associated with the syndrome. Nevertheless, future studies are necessary to unravel the underlying mechanism.
Collapse
Affiliation(s)
- Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatima Zahraa Fouani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Habibi
- Department of Biology, Faculty of postgraduate, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Somayeh Shapourizadeh
- School of Mohadeseh, Shahriyar Education Office, Ministry of Education, Tehran, Iran
| | - Samira Eivazi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Eivazi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Kerman, Iran
- * E-mail: (AS); (NM)
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- * E-mail: (AS); (NM)
| |
Collapse
|
50
|
Lu X, Ding F, Chen Y, Ke S, Yuan S, Qiu H, Xiao L, Yu Y. Deficiency of C1QL1 Reduced Murine Ovarian Follicle Reserve Through Intraovarian and Endocrine Control. Endocrinology 2022; 163:6585027. [PMID: 35560215 DOI: 10.1210/endocr/bqac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/19/2022]
Abstract
Ovarian aging is associated with depletion of the ovarian follicle reserve, which is the key determinant of fertility potential in females. In this study, we found that the small, secreted protein complement 1Q-like (C1QL1) is involved in the regulation of follicle depletion through intraovarian and endocrine control in a multidimensional collaborative manner. C1ql1 was detected to be conserved in the ovary and showed high transcript levels during folliculogenesis. Blockade of C1QL1 by IP and ovarian intrabursal injection of C1QL1 antiserum into prepubertal mice impaired folliculogenesis accompanied by reductions in body weight, fat mass, and intraovarian lipid accumulation. An elevation of circulating estradiol levels, reduction of hypothalamic KISS1 and GnRH expression, and a decrease in serum FSH levels were found in C1QL1-deficient mice. In C1QL1-deficient ovaries, many primordial follicles were recruited and developed into medium follicles but underwent atresia at the large follicle stages, which resulted in depletion of follicle reserve. Depletion of C1QL1 alleviated the inhibitory effect of C1QL1 on granulosa cell apoptosis and the stimulatory effect of C1QL1 on granulosa cell autophagy, which resulted in accumulation in the preantral and early antral follicles and an increase in the atretic follicles. The abnormal profile of endocrine hormones accelerated the intraovarian effect of C1QL1 deficiency and further led to depletion of ovarian reserve. Altogether, this study revealed the expression patterns and the mechanism of action of C1QL1 during folliculogenesis and demonstrated that deficiency of C1QL1 caused ovarian follicular depletion.
Collapse
Affiliation(s)
- Xiaosheng Lu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fei Ding
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yao Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shiyun Ke
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Han Qiu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Luanjuan Xiao
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yanhong Yu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education, Department of Developmental and Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|