1
|
Rabotin A, Schwarz Y, Pinhas-Hamiel O, Amir O, Derazne E, Tzur D, Chodick G, Afek A, Tsur AM, Twig G. Stuttering in adolescence and the risk for dysglycemia in early adulthood. Diabetes Metab Res Rev 2024; 40:e3828. [PMID: 38859687 DOI: 10.1002/dmrr.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
AIMS To investigate the association between stuttering during adolescence and the onset of dysglycemia (prediabetes or type 2 diabetes) in early adulthood among men and women. MATERIALS AND METHODS This cohort study included Maccabi Health Services members assessed for mandatory military service at ages 16-19 during 1990-2019 and followed until 31 December 2020. Stuttering status was recorded in the baseline medical evaluation. Incident cases of dysglycemia were identified systematically using prediabetes and diabetes registries. Cox proportional hazard models were applied for men and women separately, adjusting for sociodemographics and medical status. RESULTS The study cohort comprised 866,304 individuals (55% men; 0.21% with stuttering) followed for a total of 12,696,250 person-years. During the study period, 7.6% (n = 36,603) of men and 9.0% (n = 34,723) of women were diagnosed with dysglycemia. The mean ages at diagnosis were 34 and 32 years for men and women, respectively. Women with stuttering exhibited the highest dysglycemia incidence rate (102.3 per 10,000 person-years) compared with the other groups (61.4, 69.0, and 51.9 per 10,000 person-years for women without stuttering, men with stuttering, and men without stuttering, respectively). For both men and women, those with stuttering showed an increased risk of being diagnosed with dysglycemia compared with those without (adjusted hazard ratios 1.18 [1.01-1.38] and 1.61 [1.15-2.26], respectively). The associations persisted in extensive sub-analyses. CONCLUSIONS Stuttering in adolescence is associated with a higher risk of dysglycemia in early adulthood for men and women. Screening and targeted prevention in this population, especially women, may be beneficial.
Collapse
Affiliation(s)
- Alexandra Rabotin
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yair Schwarz
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat Gan, Israel
| | - Orit Pinhas-Hamiel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Ofer Amir
- Department of Communication Disorders, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Estela Derazne
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Tzur
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | - Gabriel Chodick
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Arnon Afek
- Central Management, Sheba Medical Center, Ramat Gan, Israel
| | - Avishai M Tsur
- The Israel Defense Forces Medical Corps, Ramat Gan, Israel
- Department of Military Medicine, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Department of Medicine B, Sheba Medical Center, Ramat Gan, Israel
- Department of Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Twig
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat Gan, Israel
- Department of Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
2
|
Liu X, Cheng Z, Shang X, Zhang H, Liu X, Pan W, Fu J, Xue Q, Zhang A. New Mechanism for the Apoptosis of Human Neuroblastoma Cells by the Interaction between Fluorene-9-Bisphenol and the G Protein-Coupled Estrogen Receptor 1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10494-10503. [PMID: 38833413 DOI: 10.1021/acs.est.4c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorene-9-bisphenol (BHPF) is an emerging contaminant. Presently, there is no report on its interaction with G protein-coupled estrogen receptor 1 (GPER). By using an integrated toxicity research scenario that combined theoretical study with experimental methods, BHPF was found to inhibit the GPER-mediated effect via direct receptor binding. Molecular dynamics simulations found that Trp2726.48 and Glu2756.51 be the key amino acids of BHPF binding with GPER. Moreover, the calculation indicated that BHPF was a suspected GPER inhibitor, which neither can activate GPER nor is able to form water channels of GPER. The role of two residues was successfully verified by following gene knockout and site-directed mutagenesis assays. Further in vitro assays showed that BHPF could attenuate the increase in intracellular concentration of free Ca2+ induced by G1-activated GPER. Besides, BHPF showed an enhanced cytotoxicity compared with G15, indicating that BHPF might be a more potent GPER inhibitor than G15. In addition, a statistically significant effect on the mRNA level of GPER was observed for BHPF. In brief, the present study proposes that BHPF be a GPER inhibitor, and its GPER molecular recognition mechanism has been revealed, which is of great significance for the health risk and assessment of BHPF.
Collapse
Affiliation(s)
- Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhi Cheng
- College of Life Sciences and Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xueliang Shang
- School of Psychology and Mental Health, North China University of Science and Technology, Tang'shan 063210, P. R. China
| | - Huazhou Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Institute of Environmental and Health, Jianghan University, Wuhan 430056, P. R. China
| |
Collapse
|
3
|
Cignarella A, Bolego C, Barton M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024; 206:109423. [PMID: 38631602 DOI: 10.1016/j.steroids.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.
Collapse
Affiliation(s)
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
4
|
Yao W, Tao R, Wang K, Ding X. Icariin attenuates vascular endothelial dysfunction by inhibiting inflammation through GPER/Sirt1/HMGB1 signaling pathway in type 1 diabetic rats. Chin J Nat Med 2024; 22:293-306. [PMID: 38658093 DOI: 10.1016/s1875-5364(24)60618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1β, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongpin Tao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Muhammad A, Hixon JC, Pharmacy Yusuf A, Rivas Zarete JI, Johnson I, Miller J, Adu-Addai B, Yates C, Mahavadi S. Sex-specific epigenetics drive low GPER expression in gastrointestinal smooth muscles in type 2 diabetic mice. Sci Rep 2024; 14:5633. [PMID: 38453938 PMCID: PMC10920797 DOI: 10.1038/s41598-024-54213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Type 2 diabetes mellitus (T2D) causes gastroparesis, delayed intestinal transit, and constipation, for unknown reasons. Complications are predominant in women than men (particularly pregnant and postmenopausal women), suggesting a female hormone-mediated mechanism. Low G-protein coupled estrogen receptor (GPER) expression from epigenetic modifications may explain it. We explored sexually differentiated GPER expression and gastrointestinal symptoms related to GPER alterations in wild-type (WT) and T2D mice (db/db). We also created smooth muscle-specific GPER knockout (GPER KO) mice to phenotypically explore the effect of GPER deficiency on gastrointestinal motility. GPER mRNA and protein expression, DNA methylation and histone modifications were measured from stomach and colon samples of db/db and WT mice. Changes in gut motility were also evaluated as daily fecal pellet production patterns. We found that WT female tissues have the highest GPER mRNA and protein expressions. The expression is lowest in all db/db. GPER downregulation is associated with promoter hypermethylation and reduced enrichment of H3K4me3 and H3K27ac marks around the GPER promoter. We also observed sex-specific disparities in fecal pellet production patterns of the GPER KO mice compared to WT. We thus, conclude that T2D impairs gut GPER expression, and epigenetic sex-specific mechanisms matter in the downregulation.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Juanita C Hixon
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | | | - Jatna I Rivas Zarete
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - India Johnson
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Jamial Miller
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Benjamin Adu-Addai
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Clayton Yates
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunila Mahavadi
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA.
| |
Collapse
|
6
|
Haider MZ, Sahebkar A, Eid AH. Selective Activation of G Protein-coupled Estrogen Receptor 1 Attenuates Atherosclerosis. Curr Med Chem 2024; 31:4312-4319. [PMID: 37138482 DOI: 10.2174/0929867330666230501231528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 05/05/2023]
Abstract
Atherosclerosis remains a leading contributor to cardiovascular disease-associated morbidity and mortality. Interestingly, atherosclerosis-associated mortality rate is higher in men than women. This suggested a protective role for estrogen in the cardiovasculature. These effects of estrogen were initially thought to be mediated by the classic estrogen receptors, ER alpha, and beta. However, genetic knockdown of these receptors did not abolish estrogen's vasculoprotective effects suggesting that the other membranous Gprotein coupled estrogen receptor, GPER1, maybe the actual mediator. Indeed, in addition to its role in vasotone regulation, this GPER1 appears to play important roles in regulating vascular smooth cell phenotype, a critical player in the onset of atherosclerosis. Moreover, GPER1-selective agonists appear to reduce LDL levels by promoting the expression of LDL receptors as well as potentiating LDL re-uptake in liver cells. Further evidence also show that GPER1 can downregulate Proprotein Convertase Subtilisin/ Kexin type 9, leading to suppression of LDL receptor breakdown. Here, we review how selective activation of GPER1 might prevent or suppress atherosclerosis, with less side effects than those of the non-selective estrogen.
Collapse
Affiliation(s)
- Mohammad Zulqurnain Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amirhossein Sahebkar
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
7
|
Murphy CN, Delles C, Davies E, Connelly PJ. Cardiovascular disease in transgender individuals. Atherosclerosis 2023; 384:117282. [PMID: 37821271 DOI: 10.1016/j.atherosclerosis.2023.117282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/23/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
The population of people identifying as transgender has grown rapidly in recent years, resulting in a substantive increase in individuals obtaining gender-affirming medical care to align their secondary sex characteristics with their gender identity. This has established benefits for patients including improvements in gender dysphoria and psychosocial functioning, while reducing adverse mental health outcomes. Despite these potential advantages, recent evidence has suggested that gender-affirming hormone therapy (GAHT) may increase the risk of cardiovascular disease. However, owing to a paucity of research, the mechanisms underpinning these increased risks are poorly understood. Moreover, previous research has been limited by heterogenous methodologies, being underpowered, and lacking appropriate control populations. Consequently, the need for evidence regarding cardiovascular health in LGBTQ + individuals has been recognised as a critical area for future research to facilitate better healthcare and guidance. Recent research investigating the effect of transmasculine (testosterone) GAHT on cardiovascular disease risk points to testosterone effecting the nitric oxide pathway, triggering inflammation, and promoting endothelial dysfunction. Equivalent studies focussing on transfeminine (oestrogen) GAHT are required, representing a crucial area of future research. Furthermore, when examining the effects of GAHT on the vasculature, it cannot be ignored that there are multiple factors that may increase the burden of cardiovascular disease in the transgender population. Such stressors include major psychological stress; increased adverse health behaviours, such as smoking; discrimination; and lowered socioeconomic status; all of which undoubtedly impact upon cardiovascular disease risk and offers the opportunity for intervention.
Collapse
Affiliation(s)
- Charlotte N Murphy
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Eleanor Davies
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Paul J Connelly
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom.
| |
Collapse
|
8
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
9
|
Huang D, Gao W, Zhong X, Wu H, Zhou Y, Ma Y, Qian J, Ge J. Epigenetically altered macrophages promote development of diabetes-associated atherosclerosis. Front Immunol 2023; 14:1196704. [PMID: 37215106 PMCID: PMC10196132 DOI: 10.3389/fimmu.2023.1196704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Background Atherosclerosis (AS) risk is elevated in diabetic patients, but the underlying mechanism such as involvement of epigenetic control of foam macrophages remains unclear. We have previously shown the importance of immune regulation on endothelial cells to AS development in diabetes. In this study, we examined the hypothesis that diabetes may promote AS through modification of the epigenetic status of macrophages. Methods We employed the Laser Capture Microdissection (LCM) method to evaluate the expression levels of key epigenetic regulators in both endothelial cells and macrophages at the AS lesions of patients. We then assessed the correlation between the significantly altered epigenetic regulator and serum levels of low-density Lipoprotein (LDL), triglycerides (TRIG) and high-density Lipoprotein (HDL) in patients. In vitro, the effects of high glucose on glucose utilization, lactate production, succinate levels, oxygen consumption and polarization in either undifferentiated or differentiated bone marrow-derived macrophages (BMDMs) were analyzed. The effects of depleting this significantly altered epigenetic regulator in macrophages on AS development were assessed in AS-prone diabetic mice. Results Histone deacetylase 3 (HDAC3) was identified as the most significantly altered epigenetic regulator in macrophages from the AS lesions in human diabetic patients. The levels of HDAC3 positively correlated with high serum LDL and TRIG, as well as low serum HDL. High glucose significantly increased glucose utilization, lactate production, succinate levels and oxygen consumption in cultured macrophages, and induced proinflammatory M1-like polarization. Macrophage depletion of HDAC3 significantly attenuated AS severity in AS-prone diabetic mice. Conclusion Epigenetically altered macrophages promote development of diabetes-associated AS, which could be prevented through HDAC3 depletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junbo Ge
- *Correspondence: Juying Qian, ; Junbo Ge,
| |
Collapse
|
10
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
11
|
Sousa AS, Passos MP, Ruberti OM, Jarrete AP, Delbin MA. Evaluation of coronary function in female rats with severe type 1 diabetes: Effects of combined treatment with insulin and pyridoxamine. Microvasc Res 2023; 146:104474. [PMID: 36592817 DOI: 10.1016/j.mvr.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND This study aimed to evaluate the coronary function, myocardium, and epicardial adipose tissue (EAT) in female rats with severe type 1 diabetes and the effects of combined treatment with insulin and pyridoxamine (AGEs inhibitor). METHODS Female Wistar rats were divided into groups: control (CTR, n = 13), type 1 diabetes (DM1, n = 12), type 1 diabetes treated with insulin (DM1 + INS, n = 11), and type 1 diabetes treated with insulin and pyridoxamine (DM1 + INS + PDX, n = 14). The vascular responsiveness was performed in the septal coronary artery and the protein expressions of AGE, RAGE, GPER, NF-kB was evaluated in the left ventricle (LV), as well as the reactive oxygen species (ROS) was measured in LV and in EAT. We analyzed plasma levels of glucose, estradiol, Nε-carboxymethylisine (CML), thiobarbituric acid reactive substances (TBARS), catalase (CAT), and superoxide dismutase (SOD). RESULTS The maximal responses to ACh were reduced in the DM1 compared with the CTR group, accompanied by an increase in circulating glucose, CML, and TBARS. Additionally, the expression of NF-kB in LV and generation of ROS in the presence of MnTMPyP (SOD mimetic) were increased in the DM1 group compared with CTR. Only the combined treatment was effective for fully re-establish ACh relaxation response, NF-kB protein expression, ROS generation, and increased SOD activity in the DM1 + INS + PDX group. CONCLUSION The reduction of the endothelium-dependent relaxation response in the septal coronary artery of female rats with severe type 1 diabetes was normalized with the combined treatment with insulin and pyridoxamine, associated with reduced inflammation and oxidative stress in the myocardium and increased circulating antioxidant activity.
Collapse
Affiliation(s)
- Andressa S Sousa
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Matheus P Passos
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Olivia M Ruberti
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline P Jarrete
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Dhankhar S, Chauhan S, Mehta DK, Saini K, Saini M, Das R, Gupta S, Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr 2023; 15:17. [PMID: 36782201 PMCID: PMC9926720 DOI: 10.1186/s13098-023-00983-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Future targets are a promising prospect to overcome the limitation of conventional and current approaches by providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This number may increase to 430 million people in the coming years if there is no better treatment or cure is available. Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compromising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for developing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for diabetes that may be effective and safer as compared to the conventional and current treatment approaches.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Kamal Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monika Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Vinod Gautam
- Department of Pharmaceutical Sciences, IES Institute of Pharmacy, IES University, Bhopal, India
| |
Collapse
|
13
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
14
|
Beyoğlu A, Kurutaş EB, Karaküçük Y, Çömez A, Meşen A. Comparing the effects of serum GPER-1 and oxidant/antioxidant levels on retinopathy in patients with diabetes and healthy individuals: a pilot study. Arq Bras Oftalmol 2022; 87:0311. [PMID: 35857982 PMCID: PMC11587498 DOI: 10.5935/0004-2749.2021-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2023] Open
Abstract
PURPOSE This study aimed to determine the effect of serum G receptor-mediated protein-1 levels on the development of retinopathy in patients with diabetes in comparison with healthy individuals. METHODS The study enrolled patients with diabetic retinopathy (Group 1), patients without diabetic retinopathy (Group 2), and healthy individuals (Group 3). Levels of serum progesterone, serum G receptor-mediated protein-1, estradiol, oxidant/antioxidants, and thyroid-releasing hormones were analyzed and compared among the groups. Post-hoc analysis was performed to compare the subgroups in which significant differences were found. RESULTS Groups 1, 2, and 3 each included 40 patients. A significant difference was found among all groups in terms of serum G receptor-mediated protein-1, oxidant/antioxidant, and estradiol levels (p<0.01), but no significant difference was found in terms of thyroid-releasing hormone or progesterone (p=0.496, p=0.220, respectively). In the post-hoc analysis of the groups with significant differences, another significant difference was found among all groups for serum G receptor-mediated protein-1 and oxidant/antioxidant levels (p<0.05). Serum G receptor-mediated protein-1 and oxidant levels were positively correlated, whereas serum G receptor-mediated protein-1 and antioxidant levels were negatively correlated (r=0.622/p<0.01, r=0.453/p<0.01, r=0.460/p<0.01, respectively). The multiple regression analysis showed that increased levels of serum G receptor-mediated protein-1 may help prevent diabetic retinopathy. CONCLUSIONS Serum G receptor-mediated protein-1 levels, which were the highest in the diabetic retinopathy Group, increased as the oxidant/antioxidant balance changed in favor of oxidative stress. This appears to be a defense mechanism for preventing neuronal damage.
Collapse
Affiliation(s)
- Abdullah Beyoğlu
- Department of Ophthalmology, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| | - Ergül Belge Kurutaş
- Department of Biochemistry, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| | - Yalçın Karaküçük
- Department of Ophthalmology, Faculty of Medicine, Selcuk Universty,
Konya, Turkey
| | - Ayşegül Çömez
- Department of Ophthalmology, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| | - Ali Meşen
- Department of Ophthalmology, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| |
Collapse
|
15
|
Li Q, Yang Y, Wang H, Jiang Z, Ma H. Genistein accelerates glucose catabolism via activation the GPER-mediated cAMP/PKA-AMPK signaling pathway in broiler chickens. Life Sci 2022; 303:120676. [PMID: 35640778 DOI: 10.1016/j.lfs.2022.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022]
Abstract
Genistein, the most abundance of phytoestrogens in soybeans, has beneficial effects in regulating metabolism-related disease; however, there is few available literatures about whether genistein regulates glucose metabolism that in turn affects the lipid accumulation in animals or humans. The current study showed that genistein promoted glucose uptake by enhancing glucose transporter-2 (GLUT2) protein level; and it also increased the activity of phosphofructokinase-1 (PFK) and pyruvate dehydrogenase (PDH), and the mRNA level of succinate dehydrogenase (SDH) both in broiler chickens or hepatocytes. Moreover, genistein obviously increased the p-LKB1 and p-AMPKα protein levels both in vivo and in vitro. Furthermore, the enhancement of genistein on glucose uptake and catabolism were reversed in hepatocytes pre-treated with AMPK inhibitor Compound C, and the increasing of genistein on the p-LKB1 and p-AMPKα protein levels were also reversed in hepatocytes pre-treated with PKA inhibitor H89. Importantly, the results showed that genistein simultaneously increased the estrogen receptor β (ERβ) and G protein-coupled estrogen receptor (GPER) protein levels, but the elevation effect of genistein on cAMP content was completely reversed in hepatocytes pre-treated with GPER antagonist G15, rather than ERβ inhibitor PHTPP. Meanwhile, the increasing of p-LKB1 and p-AMPKα protein levels induced by genistein were also reversed in hepatocytes pre-treated with G15. Collectively, our data demonstrated that genistein improves glucose metabolism via activating the GPER-mediated cAMP/PKA-AMPK signaling pathway. These findings provide theoretical basis for genistein as a promising nutritional supplemental to alleviate metabolism disorders and related diseases in animals or even humans.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Bubb M, Beyer ASL, Dasgupta P, Kaemmerer D, Sänger J, Evert K, Wirtz RM, Schulz S, Lupp A. Assessment of G Protein-Coupled Oestrogen Receptor Expression in Normal and Neoplastic Human Tissues Using a Novel Rabbit Monoclonal Antibody. Int J Mol Sci 2022; 23:ijms23095191. [PMID: 35563581 PMCID: PMC9099907 DOI: 10.3390/ijms23095191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
In addition to the classical oestrogen receptors, ERα and ERβ, a G protein-coupled oestrogen receptor (GPER) has been identified that primarily mediates the rapid, non-genomic signalling of oestrogens. Data on GPER expression at the protein level are contradictory; therefore, the present study was conducted to re-evaluate GPER expression by immunohistochemistry to obtain broad GPER expression profiles in human non-neoplastic and neoplastic tissues, especially those not investigated in this respect so far. We developed and thoroughly characterised a novel rabbit monoclonal anti-human GPER antibody, 20H15L21, using Western blot analyses and immunocytochemistry. The antibody was then applied to a large series of formalin-fixed, paraffin-embedded human tissue samples. In normal tissue, GPER was identified in distinct cell populations of the cortex and the anterior pituitary; islets and pancreatic ducts; fundic glands of the stomach; the epithelium of the duodenum and gallbladder; hepatocytes; proximal tubules of the kidney; the adrenal medulla; and syncytiotrophoblasts and decidua cells of the placenta. GPER was also expressed in hepatocellular, pancreatic, renal, and endometrial cancers, pancreatic neuroendocrine tumours, and pheochromocytomas. The novel antibody 20H15L21 will serve as a valuable tool for basic research and the identification of GPER-expressing tumours during histopathological examinations.
Collapse
Affiliation(s)
- Maria Bubb
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Anna-Sophia Lieselott Beyer
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, 99438 Bad Berka, Germany;
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, 99438 Bad Berka, Germany;
| | - Katja Evert
- Department of Pathology, University of Regensburg, 93053 Regensburg, Germany;
- Institute of Pathology, University Medicine of Greifswald, 17475 Greifswald, Germany
| | - Ralph M. Wirtz
- STRATIFYER Molecular Pathology GmbH, 50935 Cologne, Germany;
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, 07747 Jena, Germany; (M.B.); (A.-S.L.B.); (P.D.); (S.S.)
- Correspondence: ; Tel.: +49-3641-9325678; Fax: +49-3641-9325652
| |
Collapse
|
17
|
Pepermans RA, Prossnitz ER. Assessing Estrogenic Activity of Classical Estrogen Receptor-Binding Compounds. Methods Mol Biol 2022; 2418:187-201. [PMID: 35119667 DOI: 10.1007/978-1-0716-1920-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The classical estrogen receptor α (ERα) has been a clinical therapeutic target for decades. ERα-targeted drugs have shown great clinical success, in particular as antagonists for the treatment of ERα-positive breast cancers. However, ERα-targeted agonists have also been clinically useful (e.g., for the treatment of osteoporosis). The breast cancer field is regularly identifying novel ERα-binding compounds with the goal of identifying new potential ERα-targeted therapeutics. To determine whether such newly identified ERα-binding compounds have clinical potential, it is important to characterize the estrogenic activity (i.e., both receptor-mediated agonism and/or antagonism) of these compounds. This chapter focuses on methods that allow determination of whether an ERα-binding compound acts as an agonist or antagonist of the receptor and whether the compound induces degradation of the receptor.
Collapse
Affiliation(s)
- Richard A Pepermans
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
18
|
Feng Z, Wang C, Jin Y, Meng Q, Wu J, Sun H. Kaempferol-induced GPER upregulation attenuates atherosclerosis via the PI3K/AKT/Nrf2 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:1106-1116. [PMID: 34403325 PMCID: PMC8436971 DOI: 10.1080/13880209.2021.1961823] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT The effect of kaempferol, a regulator of oestrogen receptors, on atherosclerosis (AS) and the underlying mechanism is elusive. OBJECTIVE To explore the effect and mechanism of kaempferol on AS. METHODS AND MATERIALS In vivo, C57BL/6 and apolipoprotein E (APOE)-/- mice were randomly categorized into six groups (C57BL/6: control, ovariectomy (OVX), high-fat diet (HFD); APOE-/-: OVX-HFD, OVX-HFD + kaempferol (50 mg/kg) and OVX-HFD + kaempferol (100 mg/kg) and administered with kaempferol for 16 weeks, intragastrically. Oil-Red and haematoxylin-eosin (HE) staining were employed to examine the effect of kaempferol. In vitro, human aortic endothelial cells (HAECs) were pre-treated with or without kaempferol (5, 10 or 20 μM), followed by administration with kaempferol and oxidized low-density lipoprotein (ox-LDL) (200 μg/mL). The effect of kaempferol was evaluated using flow cytometry, and TdT-mediated dUTP Nick-End Labelling (TUNEL). RESULTS In vivo, kaempferol (50 and 100 mg/kg) normalized the morphology of blood vessels and lipid levels and suppressed inflammation and apoptosis. It also activated the G protein-coupled oestrogen receptor (GPER) and PI3K/AKT/nuclear factor-erythroid 2-related factor 2 (Nrf2) pathways. In vitro, ox-LDL (200 μg/mL) reduced the cell viability to 50% (IC50). Kaempferol (5, 10 or 20 μM) induced-GPER activation increased cell viability to nearly 10%, 19.8%, 30%, and the decreased cellular reactive oxygen species (ROS) generation (16.7%, 25.6%, 31.1%), respectively, consequently attenuating postmenopausal AS. However, the protective effects of kaempferol were blocked through co-treatment with si-GPER. CONCLUSIONS The beneficial effects of kaempferol against postmenopausal AS are associated with the PI3K/AKT/Nrf2 pathways, mediated by the activation of GPER.
Collapse
Affiliation(s)
- Zhuo Feng
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- CONTACT Huijun Sun Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian116044, China
| |
Collapse
|
19
|
Wang J, Zhang YW, Zhang NJ, Yin S, Ruan DJ, He N, Chen X, Yang XF. Coiled-Coil Domain Containing 80 Suppresses Nonylphenol-Induced Colorectal Cancer Cell Proliferation by Inhibiting the Activation of ERK1/2. Front Cell Dev Biol 2021; 9:759820. [PMID: 34746152 PMCID: PMC8570822 DOI: 10.3389/fcell.2021.759820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, the effect of endocrine-disrupting chemicals on the cancer procession has been a concern. Nonylphenol (NP) is a common environmental estrogen that has been shown to enhance the proliferation of colorectal cancer (CRC) cells in our previous studies; however, the underlying mechanism remains unclear. In this study, we confirmed the increased concentration of NP in the serum of patients with CRC. RNA sequencing was used to explore the differentially expressed genes after NP exposure. We found 16 upregulated genes and 12 downregulated genes in COLO205 cells after NP treatment. Among these differentially expressed genes, we found that coiled-coil domain containing 80 (CCDC80) was downregulated by NP treatment and was associated with CRC progression. Further experiments revealed that the overexpression of CCDC80 significantly suppressed NP-induced cell proliferation and recovered the reduced cell apoptosis. Meanwhile, the overexpression of CCDC80 significantly inhibited the activation of ERK1/2 induced by NP treatment. ERK1/2 inhibitor (PD98059) treatment also suppressed NP-induced CRC cell growth, but the overexpression of CCDC80 did not enhance the effect of ERK1/2 inhibitor. Taken together, NP treatment significantly inhibited the expression of CCDC80, and the overexpression of CCDC80 suppressed NP-induced CRC cell growth by inhibiting the activation of ERK1/2. These results suggest that NP could induce CRC cell growth by influencing the expression of multiple genes. CCDC80 and ERK1/2 inhibitors may be suitable therapeutic targets in NP-related CRC progression.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, China
| | - Yuan-Wei Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Nian-Jie Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Shuo Yin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Du-Ji Ruan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Nian He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xu Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Xue-Feng Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, China
| |
Collapse
|
20
|
Yang S, Yin Z, Zhu G. A review of the functions of G protein-coupled estrogen receptor 1 in vascular and neurological aging. Eur J Pharmacol 2021; 908:174363. [PMID: 34297966 DOI: 10.1016/j.ejphar.2021.174363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Aging-related diseases, especially vascular and neurological disorders cause huge economic burden. How to delay vascular and neurological aging is one of the insurmountable questions. G protein-coupled estrogen receptor 1 (GPER) has been extensively investigated in recent years due to its multiple biological responses. In this review, the function of GPER in aging-related diseases represented by vascular diseases, and neurological disorders were discussed. Apart from that, activation of GPER was also found to renovate the aging brain characterized by memory decline, but in a manner different from another two nuclear estrogen receptors estrogen receptor (ER)α and ERβ. This salutary effect would be better clarified from the aspects of synaptic inputs and transmission. Furthermore, we carefully described molecular mechanisms underpinning GPER-mediated effects. This review would update our understanding of GPER in the aging process. Targeting GPER may represent a promising strategy in the aging-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Zhe Yin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
21
|
Yu L, Dai Y, Mineo C. Novel Functions of Endothelial Scavenger Receptor Class B Type I. Curr Atheroscler Rep 2021; 23:6. [PMID: 33420646 DOI: 10.1007/s11883-020-00903-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Scavenger receptor class B type I (SR-BI) serves a key role in the reverse cholesterol transport in the liver as the high-affinity receptor for HDL. SR-BI is abundantly expressed in endothelium, and earlier works indicate that the receptor mediates anti-atherogenic actions of HDL. However, more recent studies uncovered novel functions of endothelial SR-BI as a lipoprotein transporter, which regulates transcellular transport process of both LDL and HDL. This brief review focuses on the unique functions of endothelial SR-BI and how they influence atherogenesis. RECENT FINDINGS Earlier studies indicate that SR-BI facilitates anti-atherogenic actions of HDL through modulation of intracellular signaling to stimulate endothelial nitric oxide synthase. In vivo studies in global SR-BI knockout mice also showed a strong atheroprotective role of the receptor; however, a contribution of endothelial SR-BI to atherosclerosis process in vivo has not been fully appreciated. Recent studies using cultured endothelial cells and in mice with endothelial-specific deletion of the receptor revealed previously unappreciated pro-atherogenic actions of SR-BI, which relates to its ability to deliver LDL into arteries. On the other hand, SR-BI has also been implicated in transport of HDL to the sub-intimal space as a part of reverse cholesterol transport. SR-BI mediates internalization and transcellular transport of both HDL and LDL, and the cellular and molecular mechanism of the process has just begun to emerge. Harnessing these dual transport functions of the endothelial SR-BI may provide a novel, effective intervention to atherosclerosis.
Collapse
Affiliation(s)
- Liming Yu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yao Dai
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
Lachowski D, Cortes E, Matellan C, Rice A, Lee DA, Thorpe SD, del Río Hernández AE. G Protein-Coupled Estrogen Receptor Regulates Actin Cytoskeleton Dynamics to Impair Cell Polarization. Front Cell Dev Biol 2020; 8:592628. [PMID: 33195261 PMCID: PMC7649801 DOI: 10.3389/fcell.2020.592628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Mechanical forces regulate cell functions through multiple pathways. G protein-coupled estrogen receptor (GPER) is a seven-transmembrane receptor that is ubiquitously expressed across tissues and mediates the acute cellular response to estrogens. Here, we demonstrate an unidentified role of GPER as a cellular mechanoregulator. G protein-coupled estrogen receptor signaling controls the assembly of stress fibers, the dynamics of the associated focal adhesions, and cell polarization via RhoA GTPase (RhoA). G protein-coupled estrogen receptor activation inhibits F-actin polymerization and subsequently triggers a negative feedback that transcriptionally suppresses the expression of monomeric G-actin. Given the broad expression of GPER and the range of cytoskeletal changes modulated by this receptor, our findings position GPER as a key player in mechanotransduction.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - David A. Lee
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D. Thorpe
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Armando E. del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Non-genomic actions of sex hormones on pregnant uterine contractility in rats: An in vitro study at term. Life Sci 2020; 263:118584. [PMID: 33058919 DOI: 10.1016/j.lfs.2020.118584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
AIMS The non-genomic (prompt) actions of sex steroids on pregnant uterine contractility are not fully explored yet, the aim of our study was to clarify such effects of 17-β estradiol (E2), progesterone (P4) and testosterone (T) on late (22-day) pregnant uterine contractions together with the signaling pathways in rats in vitro. METHODS The uterine effects of sex steroids on KCl-stimulated contractions were examined in the presence of genomic pathway blocker actinomycin D and cycloheximide, sex hormone receptor antagonists (flutamide, fulvestrant, mifepristone) and also after removing the endometrium. The modifications in uterine G-protein activation and cAMP levels were also detected. RESULTS T and E2 both relaxed the uterine contractions in the concentration range of 10-8-10-3 M with an increase in the activated G-protein and cAMP levels of the uterus, while P4 was ineffective. Cycloheximide, actinomycin D, antagonist for T and E2 were not able to modify the responses along with the endothelium removal. Mifepristone blocked the relaxing effects of T and E2 and reduced the activation of G-protein and the formation of cAMP. SIGNIFICANCE T and E2 can inhibit KCl-stimulated contractions in the late pregnant uterus in high concentrations and in a non-genomic manner. Their actions are mediated by a G-protein coupled receptor that can be blocked by mifepristone. A single and high dose of T or E2 might be considered in premature contractions, however, further preclinical and clinical studies are required for the approval of such a therapeutic intervention.
Collapse
|
24
|
Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M, Mauvais-Jarvis F, Pasqualini R, Arap W, Arterburn JB, Hathaway HJ, Prossnitz ER. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci Transl Med 2020; 12:12/528/eaau5956. [PMID: 31996464 DOI: 10.1126/scitranslmed.aau5956] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/23/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERβ, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Daniela I Staquicini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Sex-Based Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.,Section of Endocrinology, Southeast Louisiana Veterans Administration Health Care System, New Orleans, LA 70112, USA
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA. .,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
25
|
Huang D, Gao W, Zhong X, Ge J. NLRP3 activation in endothelia promotes development of diabetes-associated atherosclerosis. Aging (Albany NY) 2020; 12:18181-18191. [PMID: 32966239 PMCID: PMC7585081 DOI: 10.18632/aging.103666] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
Inflammatory damage to endothelial cells plays a pivotal role in the diabetes-provoked atherosclerosis (AS). PYD domains-containing protein 3 (NLRP3) induces formation of inflammasome activates caspase-1, which subsequently cleaves the precursor form of IL-1β (pro-IL-1β) into the processed, secreted form IL-1β to promote the immune responses in AS. However, it is not known whether NLRP3 activation specifically in endothelial cells causes AS. Here, in an in vitro model for AS, we showed that NLRP3-depleted human aortic endothelial cells (HAECs) became resistant to apoptotic cell death, maintained proliferative potential and reduced reactive oxygen species (ROS) production upon treatment with oxidized low-density lipoprotein (ox-LDL). Next, the role of NLRP3 in endothelial cells in the development of diabetes-associated AS was assessed in endothelial cell-specific NLRP3 mutant, ApoE (-/-) mice (APOEKO/Tie2p-Cre/NLRP3MKO), compared to control ApoE (-/-) mice (APOEKO), supplied with either high-fat diet (HFD), or normal diet (ND). We found that endothelia-specific NLRP3-depletion significantly attenuated AS severity in mice treated with HFD, likely through reduced apoptotic death of endothelial cells and production of ROS. Together, our data suggest that NLRP3 activation in endothelial cells promotes development of diabetes-associated AS.
Collapse
Affiliation(s)
- Dong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Wei Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
26
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Adlanmerini M, Fébrissy C, Zahreddine R, Vessières E, Buscato M, Solinhac R, Favre J, Anquetil T, Guihot AL, Boudou F, Raymond-Letron I, Chambon P, Gourdy P, Ohlsson C, Laurell H, Fontaine C, Metivier R, Le Romancer M, Henrion D, Arnal JF, Lenfant F. Mutation of Arginine 264 on ERα (Estrogen Receptor Alpha) Selectively Abrogates the Rapid Signaling of Estradiol in the Endothelium Without Altering Fertility. Arterioscler Thromb Vasc Biol 2020; 40:2143-2158. [PMID: 32640903 DOI: 10.1161/atvbaha.120.314159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17β-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.
Collapse
Affiliation(s)
- Marine Adlanmerini
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Chanaelle Fébrissy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Rana Zahreddine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Emilie Vessières
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Mélissa Buscato
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Romain Solinhac
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Julie Favre
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Typhaine Anquetil
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Anne-Laure Guihot
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Frederic Boudou
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Isabelle Raymond-Letron
- Institut National Polytechnique, École Nationale Vétérinaire de Toulouse, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Service 006 (I.R.-L.), Université de Toulouse, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Collège de France, Université de Strasbourg, Illkirch, France (P.C.)
| | - Pierre Gourdy
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden (C.O.)
| | - Henrik Laurell
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Coralie Fontaine
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Raphaël Metivier
- CNRS, Université de Rennes, IGDR (Institut de Génétique De Rennes) - UMR 6290, France (R.M.)
| | - Muriel Le Romancer
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, France (M.L.R.)
| | - Daniel Henrion
- Institut National de la Santé et de la Recherche Médicale U1083, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 46 015, Université d'Angers, France (E.V., J.F., A.-L.G., D.H.)
| | - Jean-Francois Arnal
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| | - Francoise Lenfant
- From the INSERM-UPS UMR U1048, Institut des Maladies Métaboliques et Cardiovasculaires (M.A., C.F., R.Z., M.B., R.S., T.A., F.B., P.G., H.L., C.F., J.-F.A., F.L.), Université de Toulouse, France
| |
Collapse
|
28
|
Aryan L, Younessi D, Zargari M, Banerjee S, Agopian J, Rahman S, Borna R, Ruffenach G, Umar S, Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21124314. [PMID: 32560398 PMCID: PMC7352426 DOI: 10.3390/ijms21124314] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular Diseases (CVDs) are the leading cause of death globally. More than 17 million people die worldwide from CVD per year. There is considerable evidence suggesting that estrogen modulates cardiovascular physiology and function in both health and disease, and that it could potentially serve as a cardioprotective agent. The effects of estrogen on cardiovascular function are mediated by nuclear and membrane estrogen receptors (ERs), including estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G-protein-coupled ER (GPR30 or GPER). Receptor binding in turn confers pleiotropic effects through both genomic and non-genomic signaling to maintain cardiovascular homeostasis. Each ER has been implicated in multiple pre-clinical cardiovascular disease models. This review will discuss current reports on the underlying molecular mechanisms of the ERs in regulating vascular pathology, with a special emphasis on hypertension, pulmonary hypertension, and atherosclerosis, as well as in regulating cardiac pathology, with a particular emphasis on ischemia/reperfusion injury, heart failure with reduced ejection fraction, and heart failure with preserved ejection fraction.
Collapse
|
29
|
Noorimotlagh Z, Mirzaee SA, Martinez SS, Rachoń D, Hoseinzadeh M, Jaafarzadeh N. Environmental exposure to nonylphenol and cancer progression Risk-A systematic review. ENVIRONMENTAL RESEARCH 2020; 184:109263. [PMID: 32113025 DOI: 10.1016/j.envres.2020.109263] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 05/26/2023]
Abstract
Environmental exposure to nonylphenol (NP) can adversely affect human and wildlife health. A systematic review was conducted to evaluate the relationship between environmental NP exposure and cancer progression risk. Literature surveys were conducted within several international databases using appropriate keywords. A comprehensive search yielded 58 eligible studies involving a wide range of adverse effects, exposure assessment methods, study designs, and experimental models. Most studies reported that NP strongly induced breast cancer progression in intended experiments. Positive associations between NP exposure and ovarian, uterine, pituitary, and testicular cancers were also reported. Although some studies reported no relation between environmental NP exposure and tumour and/or cancer progression, NP (a known endocrine disrupting chemical) induced action mechanisms in multiple experimental models and may interfere with/hyper-activate oestrogen signalling. Secretion of oestrogen and development of reproductive tissues like breasts, uteruses, and ovaries showed strong associations with possible neoplasia (i.e., uncontrolled development of tumours and/or malignant cancers). Findings of this study are important for informing policymakers to pass legislation limiting the use of environmental contaminants such as NP before all adverse effects of exposure have been determined.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Biotechnology and Medical Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran.
| | - Seyyed Abbas Mirzaee
- Biotechnology and Medical Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Sciences, Ilam, Iran.
| | - Susana Silva Martinez
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Mehran Hoseinzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neemat Jaafarzadeh
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
30
|
Sex Hormone-Dependent Physiology and Diseases of Liver. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082620. [PMID: 32290381 PMCID: PMC7216036 DOI: 10.3390/ijerph17082620] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism is associated not only with somatic and behavioral differences between men and women, but also with physiological differences reflected in organ metabolism. Genes regulated by sex hormones differ in expression in various tissues, which is especially important in the case of liver metabolism, with the liver being a target organ for sex hormones as its cells express estrogen receptors (ERs: ERα, also known as ESR1 or NR3A; ERβ; GPER (G protein-coupled ER, also known as GPR 30)) and the androgen receptor (AR) in both men and women. Differences in sex hormone levels and sex hormone-specific gene expression are mentioned as some of the main variations in causes of the incidence of hepatic diseases; for example, hepatocellular carcinoma (HCC) is more common in men, while women have an increased risk of autoimmune liver disease and show more acute liver failure symptoms in alcoholic liver disease. In non-alcoholic fatty liver disease (NAFLD), the distinction is less pronounced, but increased incidences are suggested among men and postmenopausal women, probably due to an increased tendency towards visceral fat accumulation.
Collapse
|
31
|
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol 2020; 31:101435. [PMID: 32001259 PMCID: PMC7212490 DOI: 10.1016/j.redox.2020.101435] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Sex-based differences in human disease are caused in part by the levels of endogenous sex steroid hormones which regulate mitochondrial metabolism. This review updates a previous review on how estrogens regulate metabolism and mitochondrial function that was published in 2017. Estrogens are produced by ovaries and adrenals, and in lesser amounts by adipose, breast stromal, and brain tissues. At the cellular level, the mechanisms by which estrogens regulate diverse cellular functions including reproduction and behavior is by binding to estrogen receptors α, β (ERα and ERβ) and G-protein coupled ER (GPER1). ERα and ERβ are transcription factors that bind genomic and mitochondrial DNA to regulate gene transcription. A small proportion of ERα and ERβ interact with plasma membrane-associated signaling proteins to activate intracellular signaling cascades that ultimately alter transcriptional responses, including mitochondrial morphology and function. Although the mechanisms and targets by which estrogens act directly and indirectly to regulate mitochondrial function are not fully elucidated, it is clear that estradiol regulates mitochondrial metabolism and morphology via nuclear and mitochondrial-mediated events, including stimulation of nuclear respiratory factor-1 (NRF-1) transcription that will be reviewed here. NRF-1 is a transcription factor that interacts with coactivators including peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) to regulate nuclear-encoded mitochondrial genes. One NRF-1 target is TFAM that binds mtDNA to regulate its transcription. Nuclear-encoded miRNA and lncRNA regulate mtDNA-encoded and nuclear-encoded transcripts that regulate mitochondrial function, thus acting as anterograde signals. Other estrogen-regulated mitochondrial activities including bioenergetics, oxygen consumption rate (OCR), and extracellular acidification (ECAR), are reviewed.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, 40292, KY, USA.
| |
Collapse
|
32
|
Notas G, Kampa M, Castanas E. G Protein-Coupled Estrogen Receptor in Immune Cells and Its Role in Immune-Related Diseases. Front Endocrinol (Lausanne) 2020; 11:579420. [PMID: 33133022 PMCID: PMC7564022 DOI: 10.3389/fendo.2020.579420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1), is a functional estrogen receptor involved in estrogen related actions on several systems including processes of the nervous, reproductive, metabolic, cardiovascular, and immune system. Regarding the latter, GPER is expressed in peripheral B and T lymphocytes as well as in monocytes, eosinophils, and neutrophils. Several studies have implicated GPER in immune-mediated diseases like multiple sclerosis, Parkinson's disease, and atherosclerosis-related inflammation, while a recent report suggests that its deletion could be responsible for a form of familial immunodeficiency. It has also been suggested that it is a key regulator of immune-mediated events in breast, pancreatic, prostate, and hepatocellular cancer as well as in melanoma. GPER has been also reported to interact with classic ER-alpha or its splice variants in order to modify immune functions. This review aims to present current knowledge relating GPER to immune functions, the cellular and signaling pathways involved, as well as the potential clinical implications of GPER modulation in immune-related diseases.
Collapse
|
33
|
Périan S, Cerutti C, Forcet C, Tribollet V, Vanacker JM. A Cell-Based Method to Detect Agonist and Antagonist Activities of Endocrine-Disrupting Chemicals on GPER. Front Endocrinol (Lausanne) 2020; 11:547. [PMID: 32922363 PMCID: PMC7456940 DOI: 10.3389/fendo.2020.00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that impact endogenous hormonal systems, resulting in adverse health effects. These chemicals can exert their actions by interfering with several pathways. Simple biological systems to determine whether EDCs act positively or negatively on a given receptor are often lacking. Here we describe a low-to-middle throughput method to screen the agonist/antagonist potential of EDCs specifically on the GPER membrane estrogen receptor. Application of this assay to 23 candidate EDCs from different chemical families reveals the existence of six agonists and six antagonists.
Collapse
|
34
|
Omotola O, Legan S, Slade E, Adekunle A, Pendergast JS. Estradiol regulates daily rhythms underlying diet-induced obesity in female mice. Am J Physiol Endocrinol Metab 2019; 317:E1172-E1181. [PMID: 31689145 PMCID: PMC6957379 DOI: 10.1152/ajpendo.00365.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The circadian system is a critical regulator of metabolism and obesity in males, but its role in regulating obesity in females is poorly understood. Because there are sex differences in the development of obesity and susceptibility to obesity-related disorders, we sought to determine the role of estrogens in regulating the circadian mechanisms underlying diet-induced obesity. When fed high-fat diet, C57BL/6J male mice gain weight, whereas females are resistant to diet-induced obesity. Here, we demonstrate that estradiol regulates circadian rhythms in females to confer resistance to diet-induced obesity. We found that ovariectomized females with undetectable circulating estrogens became obese and had disrupted daily rhythms of eating behavior and locomotor activity when fed a high-fat diet. The phase of the liver molecular circadian rhythm was also altered by high-fat diet feeding in ovariectomized mice. Estradiol replacement in ovariectomized females a fed high-fat diet rescued these behavioral and tissue rhythms. Additionally, restoring the daily rhythm of eating behavior in ovariectomized females with time-restricted feeding inhibited diet-induced obesity and insulin resistance. Together, these data suggest that the circadian system is a target for treating obesity and its comorbidities in women after menopause, when circulating levels of estrogens are too low to protect their circadian rhythms.
Collapse
Affiliation(s)
| | - Sandra Legan
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Emily Slade
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | | | | |
Collapse
|
35
|
A Selective Ligand for Estrogen Receptor Proteins Discriminates Rapid and Genomic Signaling. Cell Chem Biol 2019; 26:1692-1702.e5. [PMID: 31706983 DOI: 10.1016/j.chembiol.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/05/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022]
Abstract
Estrogen exerts extensive and diverse effects throughout the body of women. In addition to the classical nuclear estrogen receptors (ERα and ERβ), the G protein-coupled estrogen receptor GPER is an important mediator of estrogen action. Existing ER-targeted therapeutic agents act as GPER agonists. Here, we report the identification of a small molecule, named AB-1, with the previously unidentified activity of high selectivity for binding classical ERs over GPER. AB-1 also possesses a unique functional activity profile as an agonist of transcriptional activity but an antagonist of rapid signaling through ERα. Our results define a class of small molecules that discriminate between the classical ERs and GPER, as well as between modes of signaling within the classical ERs. Such an activity profile, if developed into an ER antagonist, could represent an opportunity for the development of first-in-class nuclear hormone receptor-targeted therapeutics for breast cancer exhibiting reduced acquired and de novo resistance.
Collapse
|
36
|
Connelly PJ, Marie Freel E, Perry C, Ewan J, Touyz RM, Currie G, Delles C. Gender-Affirming Hormone Therapy, Vascular Health and Cardiovascular Disease in Transgender Adults. Hypertension 2019; 74:1266-1274. [PMID: 31656099 PMCID: PMC6887638 DOI: 10.1161/hypertensionaha.119.13080] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gender-affirming or cross-sex hormone therapy is integral to the management of transgender individuals yet our appreciation of the effects of such hormones on cardiovascular health is limited. Insights into vascular pathophysiology and outcomes in transgender people receiving sex steroids could be fundamental in providing better care for this population through the management of cardiovascular risk and more broadly advance our understanding of the role of sex and gender in vascular health and disease. In addition, there is a need to understand how gender-affirming hormone therapy impacts cardiovascular disease risk and events as transgender individuals age. This review explores the available evidence on the associations between gender-affirming hormones and cardiovascular events such as coronary artery disease, stroke, hypertension, thrombosis, lipid abnormalities, and diabetes mellitus. Current research about vascular outcomes in adults receiving hormonal therapy is limited by the absence of large cohort studies, lack of appropriate control populations, and inadequate data acquisition from gender identity services. Existing epidemiological data suggest that the use of estrogens in transgender females confers an increased risk of myocardial infarction and ischemic stroke. Conversely, transgender males receiving testosterone lack any consistent or convincing evidence of increased risk of cardiovascular or cerebrovascular disease. Further studies are required to confirm whether such risk exists and the mechanisms by which they occur.
Collapse
Affiliation(s)
- Paul J Connelly
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Center, University of Glasgow, United Kingdom (P.J.C., E.M.F., C.P., R.M.T., G.C., C.D.)
| | - E Marie Freel
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Center, University of Glasgow, United Kingdom (P.J.C., E.M.F., C.P., R.M.T., G.C., C.D.)
| | - Colin Perry
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Center, University of Glasgow, United Kingdom (P.J.C., E.M.F., C.P., R.M.T., G.C., C.D.)
| | - John Ewan
- Sandyford Sexual Health Service, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom (J.E.)
| | - Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Center, University of Glasgow, United Kingdom (P.J.C., E.M.F., C.P., R.M.T., G.C., C.D.)
| | - Gemma Currie
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Center, University of Glasgow, United Kingdom (P.J.C., E.M.F., C.P., R.M.T., G.C., C.D.)
| | - Christian Delles
- From the Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Center, University of Glasgow, United Kingdom (P.J.C., E.M.F., C.P., R.M.T., G.C., C.D.)
| |
Collapse
|
37
|
Tang ZR, Zhang R, Lian ZX, Deng SL, Yu K. Estrogen-Receptor Expression and Function in Female Reproductive Disease. Cells 2019; 8:E1123. [PMID: 31546660 PMCID: PMC6830311 DOI: 10.3390/cells8101123] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptors (ER) include ER alpha, ER beta and new membrane receptor G protein-coupled receptor 30 (GPR30). Estrogen receptors are key receptors to maintain ovarian granulosa cell differentiation, follicle and oocyte growth and development, and ovulation function. The abnormal functions of estrogen, its receptors, and estradiol synthesis-related enzymes are closely related to clinical reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS) and endometriosis (EMS). At present, hormone therapy is the main treatment for ovarian-related diseases, and a stable hormone environment is established by regulating ovarian function. In recent years, some estrogen-related drugs have made great progress, such as clomiphene, which is a nonsteroidal antiestrogen drug in clinical application. This article elaborates on the regulatory role of estrogen and its nuclear receptors and membrane receptors in oocyte development, especially female reproductive diseases related to the abnormal expression of estrogen and its receptors. We also highlighted the latest advances of treatment strategy for these diseases and the application of related targeted small molecule drugs in clinical research and treatment, so as to provide reference for the treatment of female reproductive diseases.
Collapse
Affiliation(s)
- Zi-Run Tang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Rui Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Ghaffari S, Naderi Nabi F, Sugiyama MG, Lee WL. Estrogen Inhibits LDL (Low-Density Lipoprotein) Transcytosis by Human Coronary Artery Endothelial Cells via GPER (G-Protein-Coupled Estrogen Receptor) and SR-BI (Scavenger Receptor Class B Type 1). Arterioscler Thromb Vasc Biol 2019; 38:2283-2294. [PMID: 30354216 DOI: 10.1161/atvbaha.118.310792] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective- The atheroprotective effects of estrogen are independent of circulating lipid levels. Whether estrogen regulates transcytosis of LDL (low-density lipoprotein) across the coronary endothelium is unknown. Approach and Results- Using total internal reflection fluorescence microscopy, we quantified transcytosis of LDL across human coronary artery endothelial cells from multiple donors. LDL transcytosis was significantly higher in cells from men compared with premenopausal women. Estrogen significantly attenuated LDL transcytosis by endothelial cells from male but not female donors; transcytosis of albumin was not affected. Estrogen caused downregulation of endothelial SR-BI (scavenger receptor class B type 1), and overexpression of SR-BI was sufficient to restore LDL transcytosis. Similarly, depletion of SR-BI by siRNA attenuated endothelial LDL transcytosis and prevented any further effect of estrogen. In contrast, treatment with estrogen had no effect on SR-BI expression by liver cells. Inhibition of estrogen receptors α and β had no effect on estrogen-mediated attenuation of LDL transcytosis. However, estrogen's effect on LDL transcytosis was blocked by depletion of the GPER (G-protein-coupled estrogen receptor). GPER was found to be enriched in endothelial cells compared with hepatocytes and is reported to signal via transactivation of the EGFR (epidermal growth factor receptor); inhibition of EGFR prevented the effect of estrogen on LDL transcytosis and SR-BI mRNA. Last, SR-BI expression was significantly higher in human coronary artery endothelial cells from male compared with premenopausal female donors. Conclusions- Estrogen significantly inhibits LDL transcytosis by downregulating endothelial SR-BI; this effect requires GPER.
Collapse
Affiliation(s)
- Siavash Ghaffari
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.)
| | - Farnoosh Naderi Nabi
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.).,Department of Laboratory Medicine and Pathobiology (F.N.N., M.G.S., W.L.L.), University of Toronto, Canada
| | - Michael G Sugiyama
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.).,Department of Laboratory Medicine and Pathobiology (F.N.N., M.G.S., W.L.L.), University of Toronto, Canada
| | - Warren L Lee
- From the Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., M.G.S., W.L.L.).,Department of Laboratory Medicine and Pathobiology (F.N.N., M.G.S., W.L.L.), University of Toronto, Canada.,Division of Critical Care, Department of Medicine (W.L.L.), University of Toronto, Canada.,Department of Biochemistry (W.L.L.), University of Toronto, Canada.,Institute of Medical Science (W.L.L.), University of Toronto, Canada
| |
Collapse
|
39
|
Zheng Y, Houston KD. Glucose-dependent GPER1 expression modulates tamoxifen-induced IGFBP-1 accumulation. J Mol Endocrinol 2019; 63:103-112. [PMID: 31242463 PMCID: PMC6598863 DOI: 10.1530/jme-18-0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
G protein-coupled estrogen receptor 1 (GPER1) is a seven-transmembrane receptor that mediates rapid cell signaling events stimulated by estrogens. While the role that GPER1 has in the modulation of E2-responsive tissues and cancers is well documented, the molecular mechanisms that regulate GPER1 expression are currently not well defined. The recently identified GPER1-dependent mechanism of tamoxifen action in breast cancer cells underscores the importance of identifying mechanisms that regulate GPER1 expression in this cell type. We hypothesized that GPER1 expression in breast cancer cells is sensitive to [D-glucose] and provide data showing increased GPER1 expression when cells were cultured in low [D-glucose]. To determine if the observed accumulation of GPER1 was AMP-activated protein kinase (AMPK)-dependent, small molecule stimulation or inhibition of AMPK was performed. AMPK inhibition decreased GPER1 accumulation in cells grown in low [D-glucose] while the AMPK-activating compound AICAR increased GPER1 accumulation in cells grown in high [D-glucose] media. Additionally, transfection of cells with a plasmid expressing constitutively active AMPK resulted in increased GPER1 accumulation. To determine if [D-glucose]-dependent GPER1 accumulation altered breast cancer cell response to tamoxifen, cells grown in the presence of decreasing [D-glucose] were co-treated with tamoxifen and IGFBP-1 transcription was measured. The results from these experiments reveal that D-glucose deprivation increased GPER1-mediated and tamoxifen-induced IGFBP-1 transcription suggesting that [D-glucose] may increase breast cancer cell sensitivity to tamoxifen. Taken together, these results identify a previously unknown mechanism that regulates GPER1 expression that modifies one aspect tamoxifen action in breast cancer cells.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Kevin D Houston
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- Correspondence should be addressed to K D Houston:
| |
Collapse
|
40
|
Tian S, Zhan N, Li R, Dong W. Downregulation of G Protein-Coupled Estrogen Receptor (GPER) is Associated with Reduced Prognosis in Patients with Gastric Cancer. Med Sci Monit 2019; 25:3115-3126. [PMID: 31028714 PMCID: PMC6503750 DOI: 10.12659/msm.913634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This study is aimed to investigate the prognostic significance of the expression of G protein-coupled estrogen receptor (GPER) in gastric cancer tissue using bioinformatics data and immunohistochemistry. MATERIAL AND METHODS Expression of GPER mRNA in gastric cancer tissues and normal adjacent tissues was investigated using data from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and Oncomine database. Kaplan-Meier Plotter identified the association between GPER mRNA and prognosis. Correlation between GPER mRNA and DNA methylation used the cBioPortal for Cancer Genomics and the MethHC website. Genes co-expressed with GPER were identified from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) underwent FunRich analysis. Immunohistochemistry and Western blot evaluated GPER protein expression in tissue microarrays (TMAs) and gastric cancer cell lines. RESULTS GPER mRNA and protein levels were significantly lower in gastric cancer tissue and cells lined when compared with normal tissues and cells. The results from GSE15459 showed that patients with low levels of GPER mRNA had a reduced overall survival (OS) (P=0.013) and disease-free survival (DFS) (P=0.019). A negative correlation (r=-0.611) between GPER mRNA and DNA methylation was found using the cBioPortal and MethHC. Co-expressed epithelial-mesenchymal transformation (EMT) genes were enriched with GPER (P<0.0001). Cox regression analysis showed that GPER protein expression was an independent prognostic factor (P=0.035) CONCLUSIONS Downregulation of GPER predicts poor prognosis in gastric cancer. GPER may act as a tumor suppressor through the regulation of EMT in gastric cancer.
Collapse
Affiliation(s)
- Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Ruixue Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
41
|
Henstridge DC, Abildgaard J, Lindegaard B, Febbraio MA. Metabolic control and sex: A focus on inflammatory-linked mediators. Br J Pharmacol 2019; 176:4193-4207. [PMID: 30820935 DOI: 10.1111/bph.14642] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Men and women have many differing biological and physiological characteristics. Thus, it is no surprise that the control of metabolic processes and the mechanisms underlying metabolic-related diseases have sex-specific components. There is a clear metabolic sexual dimorphism in that up until midlife, men have a far greater likelihood of acquiring cardio-metabolic disease than women. Following menopause, however, this difference is reduced, suggestive of a protective role of the female sex hormones. Inflammatory processes have been implicated in the pathogenesis of cardio-metabolic disease with human studies correlating metabolic disease acquisition or risk with levels of various inflammatory markers. Rodent studies employing genetic modifications or novel pharmacological approaches have provided mechanistic insight into the role of these inflammatory mediators. Sex differences impact inflammatory processes and the subsequent biological response. As a consequence, this may affect how inflammation alters metabolic processes between the sexes. Recently, some of our work in the field of inflammatory genes and metabolic control identified a sexual dimorphism in a preclinical model and caused us to question the frequency and scale of such findings in the literature. This review concentrates on inflammatory-related signalling in relation to obesity, insulin resistance, and type 2 diabetes and highlights the differences observed between males and females. Differences in the activation and signalling of various inflammatory genes and proteins present another reason why studying both male and female patients or animals is important in the context of understanding and finding therapeutics for metabolic-related disease. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Darren C Henstridge
- Molecular Metabolism & Aging Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Julie Abildgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| | - Mark A Febbraio
- Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Drug Discover Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
The Importance of G-protein Coupled Estrogen Receptor in Patients With Fibromyalgia. Arch Rheumatol 2019; 34:419-425. [PMID: 32010891 DOI: 10.5606/archrheumatol.2019.7236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
Objectives This study aims to analyze the G-protein coupled estrogen receptor (GPER/GPR30) activity in patients with fibromyalgia syndrome (FMS). Patients and methods We enrolled 40 female patients with FMS (mean age 42.9±11.2 years; range, 18 to 64 years) diagnosed according to the 2010 American College of Rheumatology classification criteria and 30 age- and body mass index-matched female healthy controls (mean age 43.7±13.6 years; range, 19 to 64 years). Sex hormones of patients (morning) including estradiol, follicle stimulating hormone, luteinizing hormone, and prolactin (PRL) were recorded. FMS severity was assessed by Fibromyalgia Impact Questionnaire (FIQ). Serum GPER levels were measured by using a quantitative sandwich enzyme-linked immunosorbent assay method with a commercial kit. Results G-protein coupled estrogen receptor levels were 0.11 (0.02-0.9) ng/mL in the FMS patients and 0.059 (0.01-0.13) ng/mL in controls, with a statistically significant difference (p=0.037). GPER levels were positively correlated with age and negatively correlated with PRL, while they were not correlated with FIQ. Differential diagnosis for FMS with receiver operating characteristic (ROC) analysis for the serum GPER levels was statistically significant (area under the ROC curve: 0.653, confidence interval: 0.522-0.785, p=0.029). High values indicated FMS, with a threshold of >0.075, sensitivity of 60%, and specificity of 60%. Conclusion The GPER levels of FMS patients were higher than those of the controls. Thus, GPER levels may be considered as a biomarker in the diagnosis of FMS independent of disease severity.
Collapse
|
43
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC ) is one of the deadliest human cancers and is associated with extensive desmoplastic changes in the tumor microenvironment. In this issue of EMBO Reports , two studies by Cortes et al 1 , 2 identify the G‐protein‐coupled estrogen receptor (GPER ) as an important regulator of the PDAC ‐associated stroma, modulating tissue stiffness, hypoxic responses, and desmoplasia. Intriguingly, the authors find that tamoxifen, which is widely used for its antagonizing effect on nuclear estrogen receptor (ER )‐positive breast cancers, acts as GPER agonist to normalize the PDAC microenvironment. The two studies thus open up new opportunities to explore tamoxifen as potential anti‐stromal therapy in PDAC .
Collapse
Affiliation(s)
- Maren Pein
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesUniversity of HeidelbergHeidelbergGermany
| | - Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM gGmbH)HeidelbergGermany
- Division of Stem Cells and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)HeidelbergGermany
| |
Collapse
|
44
|
Han ZW, Chang YC, Zhou Y, Zhang H, Chen L, Zhang Y, Si JQ, Li L. GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury. Neural Regen Res 2019; 14:1221-1229. [PMID: 30804253 PMCID: PMC6425826 DOI: 10.4103/1673-5374.251571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion (I/R) injury. In this study, three key proteins in the endoplasmic reticulum stress pathway (glucose-regulated protein 78, caspase-12, and C/EBP homologous protein) were selected to examine the potential mechanism of endoplasmic reticulum stress in the neuroprotective effect of G protein-coupled estrogen receptor. Female Sprague-Dawley rats received ovariectomy (OVX), and then cerebral I/R rat models (OVX + I/R) were established by middle cerebral artery occlusion. Immediately after I/R, rat models were injected with 100 μg/kg E2 (OVX + I/R + E2), or 100 μg/kg G protein-coupled estrogen receptor agonist G1 (OVX + I/R + G1) in the lateral ventricle. Longa scoring was used to detect neurobehavioral changes in each group. Infarct volumes were measured by 2,3,5-triphenyltetrazolium chloride staining. Morphological changes in neurons were observed by Nissl staining. Terminal dexynucleotidyl transferase-mediated nick end-labeling staining revealed that compared with the OVX + I/R group, neurological function was remarkably improved, infarct volume was reduced, number of normal Nissl bodies was dramatically increased, and number of apoptotic neurons in the hippocampus was decreased after E2 and G1 intervention. To detect the expression and distribution of endoplasmic reticulum stress-related proteins in the endoplasmic reticulum, caspase-12 distribution and expression were detected by immunofluorescence, and mRNA and protein levels of glucose-regulated protein 78, caspase-12, and C/EBP homologous protein were determined by polymerase chain reaction and western blot assay. The results showed that compared with the OVX + I/R group, E2 and G1 treatment obviously decreased mRNA and protein expression levels of glucose-regulated protein 78, C/EBP homologous protein, and caspase-12. However, the G protein-coupled estrogen receptor antagonist G15 (OVX + I/R + E2 + G15) could eliminate the effect of E2 on cerebral I/R injury. These results confirm that E2 and G protein-coupled estrogen receptor can inhibit the expression of endoplasmic reticulum stress-related proteins and neuronal apoptosis in the hippocampus, thereby improving dysfunction caused by cerebral I/R injury. Every experimental protocol was approved by the Institutional Ethics Review Board at the First Affiliated Hospital of Shihezi University School of Medicine, China (approval No. SHZ A2017-171) on February 27, 2017.
Collapse
Affiliation(s)
- Zi-Wei Han
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yue-Chen Chang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ying Zhou
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Hang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Affiliated Teng Zhou Central People's Hospital, Jining Medical University, Jining, Shandong Province, China
| | - Long Chen
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yang Zhang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, Jiaxing College of Medicine, Jiaxing, Zhejiang Province, China
| |
Collapse
|
45
|
Abstract
Estrogens coordinate and integrate cellular metabolism and mitochondrial activities by direct and indirect mechanisms mediated by differential expression and localization of estrogen receptors (ER) in a cell-specific manner. Estrogens regulate transcription and cell signaling pathways that converge to stimulate mitochondrial function- including mitochondrial bioenergetics, mitochondrial fusion and fission, calcium homeostasis, and antioxidant defense against free radicals. Estrogens regulate nuclear gene transcription by binding and activating the classical genomic estrogen receptors α and β (ERα and ERβ) and by activating plasma membrane-associated mERα, mERβ, and G-protein coupled ER (GPER, GPER1). Localization of ERα and ERβ within mitochondria and in the mitochondrial membrane provides additional mechanisms of regulation. Here we review the mechanisms of rapid and longer-term effects of estrogens and selective ER modulators (SERMs, e.g., tamoxifen (TAM)) on mitochondrial biogenesis, morphology, and function including regulation of Nuclear Respiratory Factor-1 (NRF-1, NRF1) transcription. NRF-1 is a nuclear transcription factor that promotes transcription of mitochondrial transcription factor TFAM (mtDNA maintenance factorFA) which then regulates mtDNA-encoded genes. The nuclear effects of estrogens on gene expression directly controlling mitochondrial biogenesis, oxygen consumption, mtDNA transcription, and apoptosis are reviewed.
Collapse
|
46
|
Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:427-453. [PMID: 29224106 DOI: 10.1007/978-3-319-70178-3_20] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, and Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
47
|
Barton M, Filardo EJ, Lolait SJ, Thomas P, Maggiolini M, Prossnitz ER. Twenty years of the G protein-coupled estrogen receptor GPER: Historical and personal perspectives. J Steroid Biochem Mol Biol 2018; 176:4-15. [PMID: 28347854 PMCID: PMC5716468 DOI: 10.1016/j.jsbmb.2017.03.021] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022]
Abstract
Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial hypertension and heart failure through the stimulation of Nox expression.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, 8057 Zürich, Switzerland.
| | - Edward J Filardo
- Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Stephen J Lolait
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center and University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
48
|
Fredette NC, Meyer MR, Prossnitz ER. Role of GPER in estrogen-dependent nitric oxide formation and vasodilation. J Steroid Biochem Mol Biol 2018; 176:65-72. [PMID: 28529128 PMCID: PMC5694388 DOI: 10.1016/j.jsbmb.2017.05.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Abstract
Estrogens are potent regulators of vasomotor tone, yet underlying receptor- and ligand-specific signaling pathways remain poorly characterized. The primary physiological estrogen 17β-estradiol (E2), a non-selective agonist of classical nuclear estrogen receptors (ERα and ERβ) as well as the G protein-coupled estrogen receptor (GPER), stimulates formation of the vasodilator nitric oxide (NO) in endothelial cells. Here, we studied the contribution of GPER signaling in E2-dependent activation of endothelial NO formation and subsequent vasodilation. Employing E2 and the GPER-selective agonist G-1, we investigated eNOS phosphorylation and NO formation in human endothelial cells, and endothelium-dependent vasodilation in the aortae of wild-type and Gper-deficient mice. Both E2 and G-1 induced phosphorylation of eNOS at the activation site Ser1177 to similar extents. Endothelial NO production to E2 was comparable to that of G-1, and was substantially reduced after pharmacological inhibition of GPER. Similarly, the clinically used ER-targeting drugs 4OH-tamoxifen, raloxifene, and ICI182,780 (faslodex, fulvestrant™) induced NO formation in part via GPER. We identified c-Src, EGFR, PI3K and ERK signaling pathways to be involved in GPER-dependent NO formation. In line with activation of NO formation in cells, E2 and G-1 induced equally potent vasodilation in the aorta of wild-type mice. Gper deletion completely abrogated the vasodilator response to G-1, while reducing the response to E2 by ∼50%. These findings indicate that a substantial portion of E2-induced endothelium-dependent vasodilation and NO formation is mediated by GPER. Thus, selective targeting of vascular GPER may be a suitable approach to activate the endothelial NO pathway, possibly leading to reduced vasomotor tone and inhibition of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Natalie C Fredette
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Current address: Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Matthias R Meyer
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
49
|
Wehling M. Rapid actions of aldosterone revisited: Receptors in the limelight. J Steroid Biochem Mol Biol 2018; 176:94-98. [PMID: 28126566 DOI: 10.1016/j.jsbmb.2017.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 12/27/2022]
Abstract
Steroid hormones like aldosterone have been conclusively shown to elicit both late genomic and rapid, nongenomically initiated responses. Aldosterone was among the first for which rapid, clinically relevant effects were even shown in humans. Yet, after over 30 years of research, the nature of receptors involved in rapid actions of aldosterone is still unclear. Such effects may be assigned to the classical, intracellular steroid receptors, in this case mineralocorticoid receptors (MR, class IIa action Mannheim classification). They typically disappear in knockout models and are blocked by MR-antagonists such as spironolactone, as shown for several cellular and physiological, e.g. renal or cardiovascular effects. In contrast, there is also consistent evidence suggesting type IIb effects involving structurally different receptors ("membrane receptors") being insensitive to classic antagonists and persistent in knockout models; IIb effects have lately even been confirmed by atomic force detection of surface receptors which bind aldosterone but not spironolactone. Type IIa and b may coexist in the same cell with IIa often augmenting early IIb effects. So far cloning of IIb receptors was unsuccessful; therefore results on G-protein coupled estrogen receptor 1 (GPER1) being potentially involved in rapid aldosterone action raised considerable interest. Surprisingly, GPER1 does not bind aldosterone. Though under these circumstances GPER1 should not yet be considered as IIb-receptor, it might be an intermediary signaling enhancer of mineralocorticoid action as shown for epithelial growth factor receptors reconciling those results. We still seem to be left without IIb-receptors whose identification would however be highly desirable and essential for clinical translation.
Collapse
Affiliation(s)
- Martin Wehling
- University of Heidelberg, Clinical Pharmacology Mannheim, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany.
| |
Collapse
|
50
|
Prossnitz ER. GPER modulators: Opportunity Nox on the heels of a class Akt. J Steroid Biochem Mol Biol 2018; 176:73-81. [PMID: 28285016 PMCID: PMC5591048 DOI: 10.1016/j.jsbmb.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
The (patho)physiology of estrogen and its receptors is complex. It is therefore not surprising that therapeutic approaches targeting this hormone include stimulation of its activity through supplementation with either the hormone itself or natural or synthetic agonists, inhibition of its activity through the use of antagonists or inhibitors of its synthesis, and tissue-selective modulation of its activity with biased ligands. The physiology of this hormone is further complicated by the existence of at least three receptors, the classical nuclear estrogen receptors α and β (ERα and ERβ), and the 7-transmembrane G protein-coupled estrogen receptor (GPER/GPR30), with overlapping but distinct pharmacologic profiles, particularly of anti-estrogenic ligands. GPER-selective ligands, as well as GPER knockout mice, have greatly aided our understanding of the physiological roles of GPER. Such ligands have revealed that GPER activation mediates many of the rapid cellular signaling events (including Ca2+ mobilization, ERK and PI3K/Akt activation) associated with estrogen activity, as opposed to the nuclear ERs that are traditionally described to function as ligand-induced transcriptional factors. Many of the salutary effects of estrogen throughout the body are reproduced by the GPER-selective agonist G-1, which, owing to its minimal effects on reproductive tissues, can be considered a non-feminizing estrogenic compound, and thus of potential therapeutic use in both women and men. On the contrary, until recently GPER-selective antagonists had predominantly found preclinical application in cancer models where estrogen stimulates cell growth and survival. This viewpoint changed recently with the discovery that GPER is associated with aging, particularly that of the cardiovascular system, where the GPER antagonist G36 reduced hypertension and GPER deficiency prevented cardiac fibrosis and vascular dysfunction with age, through the downregulation of Nox1 and as a consequence superoxide production. Thus, similar to the classical ERs, both agonists and antagonists of GPER may be of therapeutic benefit depending on the disease or condition to be treated.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|