1
|
Sebastian AT, Maji S, Rajashekhar M, Maiti S, Kowalczyk R, Maiti D. Palladium-Catalyzed Remote C-H Functionalization: Non-Covalent Interactions and Reversibly Bound Templates. Angew Chem Int Ed Engl 2024; 63:e202410806. [PMID: 39072955 DOI: 10.1002/anie.202410806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Pd-catalysis has stood as a pivotal force in synthetic transformations for decades, maintaining its status as a paramount tool in the realm of C-H bond activation. While functionalization at proximal positions has become commonplace, achieving selective and sustainable access to distal positions continues to captivate scientific endeavors. Recently, a noteworthy trend has emerged, focusing on the utilization of non-covalent interactions to address the challenges associated with remote functionalization. The integration of these non-covalent interactions into palladium catalysis stands as a justified response to the demands of achieving selective transformations at distal positions. This review delves into the latest advancements and trends surrounding the incorporation of non-covalent interactions within the field of palladium catalysis. Furthermore, it is noteworthy to emphasize that multifunctional templates, particularly those harnessing hydrogen bonding, present an elegant and sophisticated approach to activate C-H bonds in a highly directed fashion. These templates showcase versatility and demonstrate potential applications across diverse contexts within the area of remote functionalization.
Collapse
Affiliation(s)
- Amal Tom Sebastian
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Mulimani Rajashekhar
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Siddhartha Maiti
- School of Biosciences, Engineering and Technology, VIT Bhopal University Kothrikalan, Sehore, Madhya Pradesh, 466114, India
| | - Rafał Kowalczyk
- Department of Chemistry, Wrocław University of Science and Technology, Wrocław, 50-370, Poland
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
2
|
Vampugani NMR, Shelke AB, Singh PB, Ahmad A, Kapat A. Regioselective Synthesis of the Tetrahydrocarbazole Core of Akuammiline Alkaloids via Palladium-Catalyzed Intramolecular Arylation Reaction. J Org Chem 2024; 89:4461-4466. [PMID: 38527008 DOI: 10.1021/acs.joc.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tetrahydrocarbazole is the central core for several biologically active alkaloids, and regioselective synthesis of this core is a challenging task. Herein, we report an efficient strategy for the synthesis of this core involving palladium-catalyzed intramolecular arylation reaction with excellent regioselectivity (>99%) starting from N-phenyl-bromoalkene without having any relocation of double bonds via competitive palladium-catalyzed isomerization reaction. Broad functional group tolerance and exclusive regioselectivity have been observed for meta-substituted halide substrates. Furthermore, this reaction can be scalable on the gram scale.
Collapse
Affiliation(s)
- Naga M R Vampugani
- Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institution of Eminence Deemed to be University) Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Ajay B Shelke
- Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institution of Eminence Deemed to be University) Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Prashant B Singh
- Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institution of Eminence Deemed to be University) Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Asrar Ahmad
- Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institution of Eminence Deemed to be University) Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| | - Ajoy Kapat
- Department of Chemistry, School of Natural Sciences, Shiv Nadar (Institution of Eminence Deemed to be University) Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
3
|
Zhang Y, Zhang JJ, Lou L, Lin R, Cramer N, Wang SG, Chen Z. Recent advances in Rh(I)-catalyzed enantioselective C-H functionalization. Chem Soc Rev 2024; 53:3457-3484. [PMID: 38411467 DOI: 10.1039/d3cs00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lujun Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC), EPFL SB ISIC LCSA, BCH 4305, 1015 Lausanne, Switzerland.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
4
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
5
|
Donthoju A, Phanindrudu M, Ellandula S, Lal MR, Nanubolu JB, Chegondi R. Rh 2(II)-Catalyzed Selective C(sp 3)-H Bond Electrophilic Amination of Aryl Azide-Tethered 1,3-Dicarbonyl Compounds. Org Lett 2023; 25:7589-7594. [PMID: 37818903 DOI: 10.1021/acs.orglett.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Herein, we report the accomplishment of Rh2(II)-catalyzed intramolecular amination of aryl azide-tethered 1,3-dicarbonyls to access privileged heterocyclic scaffolds with exclusive diastereoselectivity under simple reaction conditions. This method also allows an unconventional direct α-amination at electron-deficient C(sp3)-H bonds of aryl azide-tethered 1,3-diketones to afford fused 2-azatricyclo[4.4.0.02,8]decanones and 2,2-disubstituted indolines, which are present in several biologically active alkaloids. Kinetic isotope experiments revealed that the nucleophilic addition of enol π-bonds on the transient electrophilic rhodium-nitrenoid intermediate enables C-N bond formation.
Collapse
Affiliation(s)
- Ashok Donthoju
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | | | | | | | | - Rambabu Chegondi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
6
|
Al Mamari HH, Borel J, Hickey A, Courtney E, Merz J, Zhang X, Friedrich A, Marder TB, McGlacken GP. Regioselective Iridium-Catalyzed C8-H Borylation of 4-Quinolones via Transient O-Borylated Quinolines. Chemistry 2023; 29:e202301734. [PMID: 37280155 DOI: 10.1002/chem.202301734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
The quinolone-quinoline tautomerization is harnessed to effect the regioselective C8-borylation of biologically important 4-quinolones by using [Ir(OMe)(cod)]2 as the catalyst precursor, the silica-supported monodentate phosphine Si-SMAP as the ligand, and B2 pin2 as the boron source. Initially, O-borylation of the quinoline tautomer takes place. Critically, the newly formed 4-(pinBO)-quinolines then undergo N-directed selective Ir-catalyzed borylation at C8. Hydrolysis of the OBpin moiety on workup returns the system to the quinolone tautomer. The C8-borylated quinolines were converted to their corresponding potassium trifluoroborate (BF3 K) salts and to their C8-chlorinated quinolone derivatives. The two-step C-H borylation-chlorination reaction sequence resulted in various C8-Cl quinolones in good yields. Conversion to C8-OH-, C8-NH2 -, and C8-Ar-substituted quinolones was also feasible by using this methodology.
Collapse
Affiliation(s)
- Hamad H Al Mamari
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khoudh 123, Muscat, Sultanate of Oman
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julie Borel
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Aobha Hickey
- School of Chemistry & Analytical and, Biological Chemistry Research Facility, University College Cork, T12 YN60, Ireland
| | - Eimear Courtney
- School of Chemistry & Analytical and, Biological Chemistry Research Facility, University College Cork, T12 YN60, Ireland
| | - Julia Merz
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Xiaolei Zhang
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerard P McGlacken
- School of Chemistry & Analytical and, Biological Chemistry Research Facility, University College Cork, T12 YN60, Ireland
| |
Collapse
|
7
|
Kumar S, Prince, Gupta M, Lalji RSK, Singh BK. Microwave assisted regioselective halogenation of benzo[ b][1,4]oxazin-2-ones via sp 2 C-H functionalization. RSC Adv 2023; 13:2365-2371. [PMID: 36741130 PMCID: PMC9841512 DOI: 10.1039/d2ra07259a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
A microwave assisted, palladium-catalyzed regioselective halogenation of 3-phenyl-2H-benzo[b][1,4]oxazin-2-ones has been demonstrated using inexpensive and readily available N-halosuccinimide. The reaction utilizes the nitrogen atom present in the heterocyclic ring as the directing group to afford regioselective halogenated products in good to moderate yields. The established protocol provides wide substrate scope, high functional group tolerance, and high atom and step economy. The reaction proved to be cost-effective and time-saving as it required only a few minutes for completion and is amenable to gram scale. The halogen atoms present in synthesized products provide further scope for post-functionalization. Several post-functionalized products have also been synthesised to demonstrate the high utility of the reaction in the field of drug discovery and late-stage functionalization.
Collapse
Affiliation(s)
- Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Prince
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, Kirori-mal College, Delhi University Delhi 110007 India
| | - Brajendra K Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
8
|
Hao Z, Yue X, Zhou X, Ma Z, Han Z, Lin J, Lu G. Selective Oxidation of C (sp
3
)−H Bonds Enabled by Ruthenium Clusters Containing Pyridine‐alkoxide Ligands. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiqiang Hao
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Xiaohui Yue
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Xiaoyu Zhou
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Zhihong Ma
- School of Pharmacy Hebei Medical University Shijiazhuang People’s Republic of China
| | - Zhangang Han
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Jin Lin
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang People’s Republic of China
| | - Guo‐Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences The University of Auckland Auckland New Zealand
- Maurice Wilkins Centre The University of Auckland Auckland New Zealand
| |
Collapse
|
9
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
11
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202204290. [DOI: 10.1002/anie.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
12
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
13
|
Zhang ML, Zhang XL, Guo RL, Wang MY, Zhao BY, Yang JH, Jia Q, Wang YQ. Switchable, Reagent-Controlled C(sp 3)-H Selective Iodination and Acetoxylation of 8-Methylquinolines. J Org Chem 2022; 87:5730-5743. [PMID: 35471034 DOI: 10.1021/acs.joc.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Pd-catalyzed C(sp3)-H selective iodination of 8-methylquinolines is reported herein for the first time. Because of the versatility of organic iodides, the method offers a facile access to various C8-substituted quinolines. By slightly switching the reaction conditions, an efficient C(sp3)-H acetoxylation of 8-methylquinolines has also been enabled. Both approaches feature mild reaction conditions, good tolerance of functional groups, and a broad substrate scope.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jin-Hui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Yinchuan 750021, P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
14
|
Das A, Patil NT. Enantioselective C-H Functionalization Reactions under Gold Catalysis. Chemistry 2022; 28:e202104371. [PMID: 35014732 DOI: 10.1002/chem.202104371] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 01/18/2023]
Abstract
Transition metal-catalyzed enantioselective functionalization of ubiquitous C-H bonds has proven to be promising field as it offers the construction of chiral molecular complexity in a step- and atom-economical manner. In recent years, gold has emerged as an attractive contender for catalyzing such reactions. The unique reactivities and selectivities offered by gold catalysts have been exploited to access numerous asymmetric transformations based on gold-catalyzed C-H functionalization processes. Herein, this review critically highlights the major advances and discoveries made in the enantioselective C-H functionalization under gold catalysis which is accompanied by mechanistic insights at appropriate places.
Collapse
Affiliation(s)
- Avishek Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462 066, India
| |
Collapse
|
15
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
16
|
Bühler J, Zurflüh J, Siol S, Blacque O, Sévery L, Tilley D. Electrochemical Ruthenium-Catalysed C–H Activation in Water Through Heterogenization of a Molecular Catalyst. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01999f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient catalytic oxidative C–H activation of organic substrates remains an important challenge in synthetic chemistry. Here, we show that the combination of a transition metal catalyst, surface immobilisation and an...
Collapse
|
17
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
18
|
Chang CY, Hong FE. Incorporation of Norbornene or Dicyclopentadiene Moiety onto Naphthoquinone-containing Pyrroles through Transition metal Catalyzed C-H or N-H Bond Activation. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Talukdar K, Shah TA, Sarkar T, Roy S, Maharana PK, Punniyamurthy T. Pd-catalyzed bidentate auxiliary assisted remote C(sp 3)-H functionalization. Chem Commun (Camb) 2021; 57:13221-13233. [PMID: 34816830 DOI: 10.1039/d1cc05291h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pd-catalyzed C-H functionalisation affords effective synthetic tools to construct C-C and C-X bonds. Despite the challenges, the distal functionalization of C(sp3)-H bonds has witnessed significant developments and the use of bidentate auxiliaries has garnished this area by providing an opportunity to control reactivity as well as selectivity beyond proximal sites. This article covers the recent developments on the Pd-catalyzed bidentate auxiliary-assisted distal C(sp3)-H functionalization and is categorized based on the nature of functionalizations.
Collapse
Affiliation(s)
- Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tariq A Shah
- Department of Chemistry, University of Kashmir, Srinagar-190006, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhasish Roy
- Department of Chemistry, School of Fundamental and Applied Sciences, Assam Don Bosco University, Kamarkuchi, Sonapur-782402, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
20
|
Saraswat A, Sharma A. Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Nagasawa S, Hosaka M, Iwabuchi Y. ortho-C-H Acetoxylation of Cubane Enabling Access to Cubane Analogues of Pharmaceutically Relevant Scaffolds. Org Lett 2021; 23:8717-8721. [PMID: 34672601 DOI: 10.1021/acs.orglett.1c03144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel method of introducing an oxygen functionality into a cubane core was developed using a transition-metal-catalyzed directed acetoxylation methodology via C-H activation. The obtained compounds were derivatized into cubane analogues of pharmaceutically relevant structural motifs, namely, acetylsalicylic acid and coumarin motifs, which could potentially act as bioisosteres of these scaffolds.
Collapse
Affiliation(s)
- Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masaki Hosaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Wasa M, Yesilcimen A. Enantioselective Cooperative Catalysis within Frustrated Lewis Pair Complexes. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College
| | | |
Collapse
|
23
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
24
|
Kimura K, Murano S, Kurahashi T, Matsubara S. Catalytic Aerobic Oxidation of Alkenes with Ferric Boroperoxo Porphyrin Complex; Reduction of Oxygen by Iron Porphyrin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kento Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shunpei Murano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuya Kurahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Shi R, Tan J, Wang Z, Wang Y. Oxidatively Induced Selective Carbon-Carbon Bond Formation From Isolated Rhodium(III) Complexes. Chemistry 2021; 27:14317-14321. [PMID: 34424573 DOI: 10.1002/chem.202102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/07/2022]
Abstract
This work focuses on oxidatively induced regioselective intramolecular C-C bond formations based on the RhIII complexes synthesized from dirhodium(II) trifluoroacetate with 2-arylpyridines. With the selection of electron-donating groups on the arene rings of 2-arylpyridines, the unusual meta-ortho C-C bond-forming was favored, which led to the formation of meta-substituted 2-arylpyridine homocoupling dimers. On the contrary, the electron-withdrawing groups have tendency to occur conventional ortho-ortho bond-forming, resulting in the formation of new RhIII complexes possessing the intriguing RhIII (TFA)3 fragment. Preliminary mechanistic experiments suggest that the sequential oxidation of RhIII occurred in the reaction.
Collapse
Affiliation(s)
- Ruoyi Shi
- Department of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiantao Tan
- School of Primary Education, Chongqing Normal University, Chongqing, 400700, P. R. China
| | - Zhifan Wang
- Department of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yuanhua Wang
- Department of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
26
|
A New Dioxazolone for the Synthesis of 1,2‐Aminoalcohols via Iridium(III)‐Catalyzed C(sp
3
)−H Amidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Antien K, Geraci A, Parmentier M, Baudoin O. A New Dioxazolone for the Synthesis of 1,2-Aminoalcohols via Iridium(III)-Catalyzed C(sp 3 )-H Amidation. Angew Chem Int Ed Engl 2021; 60:22948-22955. [PMID: 34427390 PMCID: PMC8519009 DOI: 10.1002/anie.202110019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Vicinal aminoalcohols are widespread structural motifs in bioactive molecules. We report the development of a new dioxazolone reagent containing a p-nitrophenyldifluoromethyl group, which 1. displays a good safety profile; 2. shows a remarkably high reactivity in the oxime-directed iridium(III)-catalyzed amidation of unactivated C(sp3 )-H bonds; 3. leads to amide products which can be hydrolyzed under mild conditions. The amidation reaction is mild, general and compatible with both primary C-H bonds of tertiary and secondary alcohols, as well as secondary C-H bonds of cyclic secondary alcohols. This method provides an easy access to free 1,2-aminoalcohols after efficient and mild cleavage of the oxime directing group and activated amide.
Collapse
Affiliation(s)
- Kevin Antien
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | - Andrea Geraci
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | | | - Olivier Baudoin
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
28
|
Bakas NJ, Neidig ML. Additive and Counterion Effects in Iron-Catalyzed Reactions Relevant to C-C Bond Formation. ACS Catal 2021; 11:8493-8503. [PMID: 35664726 DOI: 10.1021/acscatal.1c00928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of iron catalysts in carbon-carbon bond forming reactions is of interest as an alternative to precious metal catalysts, offering reduced cost, lower toxicity, and different reactivity. While well-defined ligands such as N-heterocyclic carbenes (NHCs) and phosphines can be highly effective in these reactions, additional additives such as N-methylpyrrolidone (NMP), N,N,N',N'-tetramethylethylenediamine (TMEDA), and iron salts that alter speciation can also be employed to achieve high product yields. However, in contrast to well-defined iron ligands, the roles of these additives are often ambiguous, and molecular-level insights into how they achieve effective catalysis are not well-defined. Using a unique physical-inorganic in situ spectroscopic approach, detailed insights into the effect of additives on iron speciation, mechanism, and catalysis can inform further reaction development. In this Perspective, recent advances will be discussed as well as ongoing challenges and potential opportunities in iron-catalyzed reactions.
Collapse
Affiliation(s)
- Nikki J Bakas
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
29
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
30
|
Al Mamari HH, Al Kiumi D, Al Rashdi T, Al Quraini H, Al Rashdi M, Al Sheraiqi S, Al Harmali S, Al Lamki M, Al Sheidi A, Al Zadjali A. Ru‐Catalyzed C(sp
2
)−H Bond Arylation of Benzamides Bearing a Novel 4‐Aminoantipyrine as a Directing Group. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hamad H. Al Mamari
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Diana Al Kiumi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Tamadher Al Rashdi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Huda Al Quraini
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Malak Al Rashdi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Sumayya Al Sheraiqi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Sara Al Harmali
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Mohammed Al Lamki
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Ahmed Al Sheidi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Asma Al Zadjali
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| |
Collapse
|
31
|
Wedi P, Farizyan M, Bergander K, Mück-Lichtenfeld C, van Gemmeren M. Mechanism of the Arene-Limited Nondirected C-H Activation of Arenes with Palladium*. Angew Chem Int Ed Engl 2021; 60:15641-15649. [PMID: 33998116 PMCID: PMC8361776 DOI: 10.1002/anie.202105092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Indexed: 01/11/2023]
Abstract
Recently palladium catalysts have been discovered that enable the directing-group-free C-H activation of arenes without requiring an excess of the arene substrate, thereby enabling methods for the late-stage modification of complex organic molecules. The key to success has been the use of two complementary ligands, an N-acyl amino acid and an N-heterocycle. Detailed experimental and computational mechanistic studies on the dual-ligand-enabled C-H activation of arenes have led us to identify the catalytically active species and a transition state model that explains the exceptional activity and selectivity of these catalysts. These findings are expected to be highly useful for further method development using this powerful class of catalysts.
Collapse
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Mirxan Farizyan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
32
|
Wedi P, Farizyan M, Bergander K, Mück‐Lichtenfeld C, Gemmeren M. Mechanismus der Aren‐limitierten, nicht‐dirigierten C‐H‐Aktivierung von Arenen mit Palladium**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Mirxan Farizyan
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| |
Collapse
|
33
|
Cobalt-catalyzed C H activation of N-carbamoyl indoles or benzamides with maleimides: Synthesis of imidazo[1,5-a]indole- or isoindolone-incorporated spirosuccinimides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Sun X, Dong X, Liu H, Liu Y. Recent Progress in Palladium‐Catalyzed Radical Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xi Sun
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Xu Dong
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Hui Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Yuying Liu
- School of Chemistry Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| |
Collapse
|
35
|
Chang Y, Cao M, Chan JZ, Zhao C, Wang Y, Yang R, Wasa M. Enantioselective Synthesis of N-Alkylamines through β-Amino C-H Functionalization Promoted by Cooperative Actions of B(C 6F 5) 3 and a Chiral Lewis Acid Co-Catalyst. J Am Chem Soc 2021; 143:2441-2455. [PMID: 33512998 DOI: 10.1021/jacs.0c13200] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We disclose a catalytic method for β-C(sp3)-H functionalization of N-alkylamines for the synthesis of enantiomerically enriched β-substituted amines, entities prevalent in pharmaceutical compounds and used to generate different families of chiral catalysts. We demonstrate that a catalyst system comprising of seemingly competitive Lewis acids, B(C6F5)3, and a chiral Mg- or Sc-based complex, promotes the highly enantioselective union of N-alkylamines and α,β-unsaturated compounds. An array of δ-amino carbonyl compounds was synthesized under redox-neutral conditions by enantioselective reaction of a N-alkylamine-derived enamine and an electrophile activated by the chiral Lewis acid co-catalyst. The utility of the approach is highlighted by late-stage β-C-H functionalization of bioactive amines. Investigations in regard to the mechanistic nuances of the catalytic processes are described.
Collapse
Affiliation(s)
- Yejin Chang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Min Cao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jessica Z Chan
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Cunyuan Zhao
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yuankai Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Rose Yang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Masayuki Wasa
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
36
|
Ito M, Sugiyama S, Mori M, Nakagawa T, Hori M, Higuchi K. Dirhodium(II)-Catalyzed ortho C–H Amination of N-Alkyldiarylamines. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Abstract
In the present Short Note, we report a synthesis for the title compound, N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)-2-methylbenzamide by reacting 2-methylbenzoyl chloride (or 2-methylbenzoic acid) with 1-aminoanthraquinone. The synthesized target compound was fully characterized by various spectroscopic methods (1H-NMR, 13C-NMR, IR, GC-MS). The importance of this compound lies its possession of an N,O-bidentate directing group, potentially suitable for metal-catalyzed C-H bond functionalization reactions.
Collapse
|
38
|
Li C, Tseng Y, Hsu T, Chang C, Hong F. Formations of aryl or pyrrole ring via palladium‐catalyzed CH functionalization on amido‐substituted quinones in the presence of amines or phosphines. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cang‐Sian Li
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Yi‐Ping Tseng
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Ting‐Hsuan Hsu
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Chiao‐Yun Chang
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Fung‐E Hong
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| |
Collapse
|
39
|
Subramanian P, Kaliappan KP. A One‐Pot Copper‐Catalyzed 3‐Fold C–N Bond Coupling Strategy to the Synthesis of Substituted Benzimidazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Krishna P. Kaliappan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
40
|
Lin X, Vigalok A, Vedernikov AN. Aryl C(sp 2)-X Coupling (X = C, N, O, Cl) and Facile Control of N-Mono- and N,N-Diarylation of Primary Alkylamines at a Pt(IV) Center. J Am Chem Soc 2020; 142:20725-20734. [PMID: 33226792 PMCID: PMC7884019 DOI: 10.1021/jacs.0c09452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present the first example of an unprecedented and fast aryl
C(sp2)–X reductive elimination from a series of
isolated Pt(IV) aryl complexes (Ar = p-FC6H4) LPtIVF(py)(Ar)X (X = CN, Cl, 4-OC6H4NO2) and LPtIVF2(Ar)(HX)
(X = NHAlk; Alk = n-Bu, PhCH2, cyclo-C6H11, t-Bu, cyclopropylmethyl)
bearing a bulky bidentate 2-[bis(adamant-1-yl)phosphino]phenoxide
ligand (L). The C(sp2)–X reductive elimination reactions
of all isolated Pt(IV) complexes follow first-order kinetics and were
modeled using density functional theory (DFT) calculations. When a
difluoro complex LPtIVF2(Ar)(py) is treated
with TMS–X (TMS = trimethylsilyl; X= NMe2, SPh,
OPh, CCPh) it also gives the corresponding products of the Ar–X
coupling but without observable LPtIVF(py)(Ar)X intermediates.
Remarkably, the LPtIVF2(Ar)(HX) complexes with
alkylamine ligands (HX = NH2Alk) form selectively either
mono- (ArNHAlk) or diarylated (Ar2NAlk) products in the
presence or absence of an added Et3N, respectively. This
method allows for a one-pot preparation of diarylalkylamine bearing
different aryl groups. These findings were also applied in unprecedented
mono- and di-N-arylation of amino acid derivatives (lysine and tryptophan)
under very mild conditions.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arkadi Vigalok
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrei N Vedernikov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
41
|
Achar TK, Maiti S, Jana S, Maiti D. Transition Metal Catalyzed Enantioselective C(sp2)–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03743] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sadhan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
42
|
Liu Y, Yu Y, Sun C, Fu Y, Mang Z, Shi L, Li H. Transition-Metal Free Chemoselective Hydroxylation and Hydroxylation–Deuteration of Heterobenzylic Methylenes. Org Lett 2020; 22:8127-8131. [DOI: 10.1021/acs.orglett.0c03108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yonghai Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengyu Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiwei Fu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhiguo Mang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Shi
- Corporate R&D Division, Firmenich Aromatics (China) Company, Ltd., Shanghai 201108, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
43
|
Kakiuchi F, Kochi T. New Strategy for Catalytic Oxidative C–H Functionalization: Efficient Combination of Transition-metal Catalyst and Electrochemical Oxidation. CHEM LETT 2020. [DOI: 10.1246/cl.200475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
44
|
Das Adhikari G, Chebolu R, Ravikumar PC. Regio- and Stereoselective Synthesis of the Core Structure of Hexahydrobenzo[ c]phenanthridine Alkaloids via Redox-Neutral Cp*Rh(III)-Catalyzed C-H/N-H Annulation of Cyclic Alkenes with Benzamides. ACS OMEGA 2020; 5:24033-24044. [PMID: 32984725 PMCID: PMC7513371 DOI: 10.1021/acsomega.0c03434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
A highly stereo- and regioselective synthesis of the core skeleton of hexahydrobenzo[c]phenanthridine-type alkaloids is reported herein for the first time. A wide range of substrate scope, excellent functional group tolerance, and good to excellent yields were observed. This protocol gives very concise and efficient access to the core skeleton of chelidonine alkaloids as compared to the earlier approaches.
Collapse
|
45
|
Das SK, Roy S, Khatua H, Chattopadhyay B. Iron-Catalyzed Amination of Strong Aliphatic C(sp 3)-H Bonds. J Am Chem Soc 2020; 142:16211-16217. [PMID: 32893615 DOI: 10.1021/jacs.0c07810] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A concept for intramolecular denitrogenative C(sp3)-H amination of 1,2,3,4-tetrazoles bearing unactivated primary, secondary, and tertiary C-H bonds is discovered. This catalytic amination follows an unprecedented metalloradical activation mechanism. The utility of the method is showcased with the short synthesis of a bioactive molecule. Moreover, an initial effort has been embarked on for the enantioselective C(sp3)-H amination through the catalyst design. Collectively, this study underlines the development of C(sp3)-H bond functionalization chemistry that should find wide application in the context of drug discovery and natural product synthesis.
Collapse
Affiliation(s)
- Sandip Kumar Das
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Satyajit Roy
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Hillol Khatua
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
46
|
Woźniak Ł, Tan JF, Nguyen QH, Madron du Vigné A, Smal V, Cao YX, Cramer N. Catalytic Enantioselective Functionalizations of C–H Bonds by Chiral Iridium Complexes. Chem Rev 2020; 120:10516-10543. [DOI: 10.1021/acs.chemrev.0c00559] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Łukasz Woźniak
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jin-Fay Tan
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Qui-Hien Nguyen
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Adrien Madron du Vigné
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Vitalii Smal
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yi-Xuan Cao
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Jhou J, Cheng C, Hong F. Tertiary amines as vinyl source for the formations of aryl or pyrrole ring on
amido‐substitued
1,
4‐quinone
with the assistance of palladium salt. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jia‐Nan Jhou
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Chiu‐Wen Cheng
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Fung‐E Hong
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| |
Collapse
|
48
|
Fujita D, Sugimoto H, Itoh S. C(sp 2)–H Iodination by a Rhodium(III) Complex Supported by a Redox-active Ligand Bearing Amidophenolato Moieties. CHEM LETT 2020. [DOI: 10.1246/cl.200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daiki Fujita
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Steck V, Kolev JN, Ren X, Fasan R. Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C-H Amination Biocatalysts. J Am Chem Soc 2020; 142:10343-10357. [PMID: 32407077 DOI: 10.1021/jacs.9b12859] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochromes P450 have been recently identified as a promising class of biocatalysts for mediating C-H aminations via nitrene transfer, a valuable transformation for forging new C-N bonds. The catalytic efficiency of P450s in these non-native transformations is however significantly inferior to that exhibited by these enzymes in their native monooxygenase function. Using a mechanism-guided strategy, we report here the rational design of a series of P450BM3-based variants with dramatically enhanced C-H amination activity acquired through disruption of the native proton relay network and other highly conserved structural elements within this class of enzymes. This approach further guided the identification of XplA and BezE, two "atypical" natural P450s implicated in the degradation of a man-made explosive and in benzastatins biosynthesis, respectively, as very efficient C-H aminases. Both XplA and BezE could be engineered to further improve their C-H amination reactivity, which demonstrates their evolvability for abiological reactions. These engineered and natural P450 catalysts can promote the intramolecular C-H amination of arylsulfonyl azides with over 10 000-14 000 catalytic turnovers, ranking among the most efficient nitrene transfer biocatalysts reported to date. Mechanistic and structure-reactivity studies provide insights into the origin of the C-H amination reactivity enhancement and highlight the divergent structural requirements inherent to supporting C-H amination versus C-H monooxygenation reactivity within this class of enzymes. Overall, this work provides new promising scaffolds for the development of nitrene transferases and demonstrates the value of mechanism-driven rational design as a strategy for improving the catalytic efficiency of metalloenzymes in the context of abiological transformations.
Collapse
Affiliation(s)
- Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joshua N Kolev
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Xinkun Ren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
50
|
Al Mamari HH, Al Lawati Y. Investigations into the ligand steric and electronic effects of Ru-catalyzed C–H bond arylation directed by 8-aminoquinoline as a bidentate-directing group. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820920154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we report an investigation into the steric (cone angle, θ) and electronic properties of ligands in Ru-catalyzed C–H arylation of aromatic benzamides bearing 8-aminoquinoline as an N,N’-bidentate-directing group. The study employs [RuCl2( p-cymene)]2 as a precatalyst, and a ligand, under study, as a cocatalyst. Various electronically and sterically different monodentate and bidentate phosphine ligands were examined. Other ligands such as phosphites and amines were also tested. The study reveals that while bidentate phosphines, phosphites, and aryl and alkyl amines were found to be ineffective, monodentate triarylphosphines represented by triphenylphosphine were found to be the most effective ligands in the Ru-catalyzed C–H arylation under the conditions specified. In addition, the study reveals that there is a correlation between the steric effects, cone angle (θ) and the reaction efficiency. Thus, for symmetrical phosphine ligands, as the cone angle increases, the yield of the CH arylation product gradually decreased. Moreover, the electronic properties of triarylphosphine ligands influenced the reaction as demonstrated by the decreased ability of electron-poor ligands to promote the reaction. The study also reveals a correlation between the electronic parameter, υCO, of the triarylphosphine ligand and the reaction efficiency. As the carbonyl stretching frequency increases, the reaction yield gradually decreased.
Collapse
Affiliation(s)
- Hamad H. Al Mamari
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yousuf Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|