1
|
Nonn M, Fustero S, Kiss L. Application of 2-Azabicyclo[2.2.1]Hept-5-En-3-One (Vince Lactam) in Synthetic Organic and Medicinal Chemistry. CHEM REC 2024; 24:e202400070. [PMID: 39008895 DOI: 10.1002/tcr.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Indexed: 07/17/2024]
Abstract
2-Azabicyclo[2.2.1]hept-5-en-3-one (Vince lactam) is known to be a valuable building block in synthetic organic chemistry and drug research. It is an important precursor to access of some blockbuster antiviral drugs such as Carbovir or Abacavir as well as other carbocyclic neuraminidase inhibitors as antiviral agents. The ring C=C bond of the Vince lactam allows versatile chemical manipulations to create not only functionalized γ-lactams, but also γ-amino acid derivatives with a cyclopentane framework. The aim of the current account is to summarize the chemistry of Vince lactam, its synthetic utility and application in organic and medicinal chemistry over the last decade.
Collapse
Affiliation(s)
- Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, València, 46100-Burjassot Valencia, Spain
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| |
Collapse
|
2
|
Ren JX, Zhou M, Feng XT, Zhao HY, Fu XP, Zhang X. Site-selective S-gem-difluoroallylation of unprotected peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:10002-10009. [PMID: 38966370 PMCID: PMC11220611 DOI: 10.1039/d4sc02681k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Bench-stable 3,3-difluoroallyl sulfonium salts (DFASs), featuring tunable activity and their editable C-β and gem-difluoroallyl group, proved to be versatile fluoroalkylating reagents for site-selective S-gem-difluoroallylation of cysteine residues in unprotected peptides. The reaction proceeds with high efficiency under mild conditions (ambient temperature and aqueous and weak basic conditions). Various protected/unprotected peptides, especially bioactive peptides, are site-selectively S-gem-difluoroallylated. The newly added gem-difluoroallyl group and other functional groups derived from C-β of DFASs are poised for ligation with bio-functional groups through click and radical chemistry. This stepwise "doubly orthogonal" modification of peptides enables the construction of bioconjugates with enhanced complexity and functionality. This proof of principle is successfully applied to construct a peptide-saccharide-biotin chimeric bioconjugate, indicating its great potential application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Minqi Zhou
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
3
|
Zhou M, Ren JX, Feng XT, Zhao HY, Fu XP, Min QQ, Zhang X. Late-stage gem-difluoroallylation of phenol in bioactive molecules and peptides with 3,3-difluoroallyl sulfonium salts. Chem Sci 2024; 15:2937-2945. [PMID: 38404383 PMCID: PMC10882445 DOI: 10.1039/d3sc06302j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
An efficient method for the late-stage selective O-fluoroalkylation of tyrosine residues with a stable yet highly reactive fluoroalkylating reagent, 3,3-difluoroallyl sulfonium salts (DFASs), has been developed. The reaction proceeds in a mild basic aqueous buffer (pH = 11.6) with high efficiency, high biocompatibility, and excellent regio- and chemoselectivity. Various oligopeptides and phenol-containing bioactive molecules, including carbohydrates and nucleosides, could be selectively O-fluoroalkylated. The added vinyl and other functional groups from DFASs can be valuable linkers for successive modification, significantly expanding the chemical space for further bioconjugation. The synthetic utility of this protocol has been demonstrated by the fluorescently labeled anti-cancer drug and the synthesis of O-link type 1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid-tyrosine3-octreotate (DOTA-TATE), showing the prospect of the method in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Jin-Xiu Ren
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao-Tian Feng
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
| | - Hai-Yang Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xia-Ping Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao-Qiao Min
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials (Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
4
|
Nonn M, Paizs C, Kiss L. Recent Progress in the Selective Fluorinations of Some Functionalized Cycloalkenes. CHEM REC 2022; 22:e202200130. [PMID: 35680609 DOI: 10.1002/tcr.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Organofluorine compounds have had an increasing impact in synthetic organic chemistry and pharmaceutical research over the past two decades. Their syntheses and the development of novel synthetic approaches towards versatile fluorinated small molecules have received great interest. Our research team has designed various selective and stereocontrolled methods for the construction of fluorine-containing small molecular entities, involving the transformation of various functionalized cycloalkenes across their ring olefin bond. The synthetic methodologies developed to access various pharmacologically interesting fluorinated derivatives with multiple chiral centers might be valuable protocols for the preparation of other classes of organic compounds as well.
Collapse
Affiliation(s)
- Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Csaba Paizs
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János str. 11, 400028-, Cluj-Napoca, Romania
| | - Loránd Kiss
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok krt. 2, Hungary
| |
Collapse
|
5
|
Mykhailiuk PK. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. J Org Chem 2022; 87:6961-7005. [PMID: 35175772 DOI: 10.1021/acs.joc.1c02956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorinated prolines play an important role in peptide studies, protein engineering, medicinal chemistry, drug discovery, and agrochemistry. Since the first synthesis of 4-fluoroprolines by Gottlieb and Witkop in 1965, their popularity started to grow exponentially. For example, during the past two decades, all isomeric trifluoromethyl-substituted prolines have been synthesized. In this Perspective, chemical properties and applications of fluorinated prolines are discussed. Synthetic approaches to all known fluorine-containing prolines are also discussed and analyzed. This analysis unexpectedly revealed an unsolved problem: in strict contrast to fluoro- and trifluoromethyl-substituted prolines, the corresponding analogues with fluoromethyl and difluoromethyl groups are mostly unknown. At the end of the paper, structures of several interesting, yet unknown, fluorinated prolines are disclosed─a good opportunity for chemists to make them.
Collapse
|
6
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
7
|
Kaźmierczak M, Bilska‐Markowska M. Diethylaminosulfur Trifluoride (DAST) Mediated Transformations Leading to Valuable Building Blocks and Bioactive Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcin Kaźmierczak
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
- Centre for Advanced Technologies Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 10 61-614 Poznań Poland
| | - Monika Bilska‐Markowska
- Faculty of Chemistry Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
8
|
Benke Z, Remete AM, Kiss L. A study on selective transformation of norbornadiene into fluorinated cyclopentane-fused isoxazolines. Beilstein J Org Chem 2021; 17:2051-2066. [PMID: 34457076 PMCID: PMC8372314 DOI: 10.3762/bjoc.17.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/31/2021] [Indexed: 01/13/2023] Open
Abstract
This work presents an examination of the selective functionalization of norbornadiene through nitrile oxide 1,3-dipolar cycloaddition/ring-opening metathesis (ROM)/cross-metathesis (CM) protocols. Functionalization of commercially available norbornadiene provided novel bicyclic scaffolds with multiple stereogenic centers. The synthesis involved selective cycloadditions, with subsequent ROM of the formed cycloalkene-fused isoxazoline scaffolds and selective CM by chemodifferentiation of the olefin bonds of the resulting alkenylated derivatives. Various experimental conditions were applied for the CM transformations with the goal of exploring substrate and steric effects, catalyst influence and chemodifferentiation of the olefin bonds furnishing the corresponding functionalized, fluorine-containing isoxazoline derivatives.
Collapse
Affiliation(s)
- Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Attila M Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, H-6720 Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
9
|
Han ZZ, Dong T, Ming XX, Kuang F, Zhang CP. Synthesis and Biological Evaluation of CF 3 Se-Substituted α-Amino Acid Derivatives. ChemMedChem 2021; 16:3177-3180. [PMID: 34268896 DOI: 10.1002/cmdc.202100451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Indexed: 11/07/2022]
Abstract
Several CF3 Se-substituted α-amino acid derivatives, such as (R)-2-amino-3-((trifluoromethyl)selanyl)propanoates (5 a/6 a), (S)-2-amino-4-((trifluoromethyl)selanyl)butanoates (5 b/6 b), (2R,3R)-2-amino-3-((trifluoromethyl)selanyl)butanoates (5 c/6 c), (R)-2-((S)-2-amino-3-phenylpropanamido)-3-((trifluoromethyl)selanyl)propanoates (11 a/12 a), and (R)-2-(2-aminoacetamido)-3-((trifluoromethyl)selanyl)propanoates (11 b/12 b), were readily synthesized from natural amino acids and [Me4 N][SeCF3 ]. The primary in vitro cytotoxicity assays revealed that compounds 6 a, 11 a and 12 a were more effective cell growth inhibitors than the other tested CF3 Se-substituted derivatives towards MCF-7, HCT116, and SK-OV-3 cells, with their IC50 values being less than 10 μM for MCF-7 and HCT116 cells. This study indicated the potentials of CF3 Se moiety as a pharmaceutically relevant group in the design and synthesis of novel biologically active molecules.
Collapse
Affiliation(s)
- Zhou-Zhou Han
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Tao Dong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Xiao-Xia Ming
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Fu Kuang
- Department of phase I clinical trial center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 40010, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
10
|
Zhang M, Zhong S, Peng Y, Jiang J, Zhao Y, Wan C, Zhang Z, Zhang R, Zhang AQ. Site-selective and diastereoselective functionalization of α-amino acid and peptide derivatives via palladium-catalyzed sp3 C–H activation. Org Chem Front 2021. [DOI: 10.1039/d0qo00988a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review introduces palladium-catalyzed C–H functionalization of amino acids and peptides.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Yiyuan Peng
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Jianwen Jiang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Yongli Zhao
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Changfeng Wan
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Zhenming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Rongli Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University (Yaohu campus)
- Nanchang
- China
| | - Ai Qin Zhang
- Department of Environmental and Chemical Engineering
- Nanchang Hangkong University
- Nanchang
- China
| |
Collapse
|
11
|
Hu T, Xu Y, Zhang S, Xiong HY, Zhang G. Synthesis of β-CF3 β-Amino Esters with an Indane Backbone by Rhenium-Catalyzed [3+2] Annulation. Org Lett 2020; 22:8866-8871. [DOI: 10.1021/acs.orglett.0c03239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tingjun Hu
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuanqing Xu
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Saisai Zhang
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Heng-Ying Xiong
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Guangwu Zhang
- Institute of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
12
|
|
13
|
Awad LF, Ayoup MS. Fluorinated phenylalanines: synthesis and pharmaceutical applications. Beilstein J Org Chem 2020; 16:1022-1050. [PMID: 32509033 PMCID: PMC7237815 DOI: 10.3762/bjoc.16.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Recent advances in the chemistry of peptides containing fluorinated phenylalanines (Phe) represents a hot topic in drug research over the last few decades. ᴅ- or ʟ-fluorinated phenylalanines have had considerable industrial and pharmaceutical applications and they have been expanded also to play an important role as potential enzyme inhibitors as well as therapeutic agents and topography imaging of tumor ecosystems using PET. Incorporation of fluorinated aromatic amino acids into proteins increases their catabolic stability especially in therapeutic proteins and peptide-based vaccines. This review seeks to summarize the different synthetic approaches in the literature to prepare ᴅ- or ʟ-fluorinated phenylalanines and their pharmaceutical applications with a focus on published synthetic methods that introduce fluorine into the phenyl, the β-carbon or the α-carbon of ᴅ-or ʟ-phenylalanines.
Collapse
Affiliation(s)
- Laila Fathy Awad
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| |
Collapse
|
14
|
Bugera MY, Tarasenko KV, Kondratov IS, Gerus II, Vashchenko BV, Ivasyshyn VE, Grygorenko OO. (Het)aryl Difluoromethyl-Substituted β-Alkoxyenones: Synthesis and Heterocyclizations. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maksym Ya. Bugera
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry; NAS of Ukraine; Murmanska Street 1 02660 Kyiv Ukraine
| | - Karen V. Tarasenko
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry; NAS of Ukraine; Murmanska Street 1 02660 Kyiv Ukraine
- Chemspace; Ilukstes iela 38-5 1082 Riga Latvia
| | - Ivan S. Kondratov
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry; NAS of Ukraine; Murmanska Street 1 02660 Kyiv Ukraine
| | - Igor I. Gerus
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry; NAS of Ukraine; Murmanska Street 1 02660 Kyiv Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Viktor E. Ivasyshyn
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry; NAS of Ukraine; Murmanska Street 1 02660 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
15
|
Yoritate M, Londregan AT, Lian Y, Hartwig JF. Sequential Xanthalation and O-Trifluoromethylation of Phenols: A Procedure for the Synthesis of Aryl Trifluoromethyl Ethers. J Org Chem 2019; 84:15767-15776. [PMID: 31738556 PMCID: PMC7660230 DOI: 10.1021/acs.joc.9b02717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules containing trifluoromethoxyaryl groups are of interest in pharmaceutical, agrochemical, and materials science research, due to their unique physical and electronic properties. Many of the known methods to synthesize aryl trifluoromethyl ethers require harsh reagents and highly controlled reaction conditions and rarely occur when heteroaromatic units are present. The two-step O-trifluoromethylation of phenols via aryl xanthates is one such method that suffers from these drawbacks. Herein, we report a method for the synthesis of aryl trifluoromethyl ethers from phenols by the facile conversion of the phenol to the corresponding aryl and heteroaryl xanthates with newly synthesized imidazolium methylthiocarbonothioyl salts and conversion of these xanthates to the trifluoromethyl ethers under mild reaction conditions.
Collapse
Affiliation(s)
- Makoto Yoritate
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Yajing Lian
- Medicine Design, Pfizer Inc., Groton, Connecticut 06340, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Winter M, Kim H, Waser M. Pd-Catalyzed Allylation of Imines to Access α-CF 3-Substituted α-Amino Acid Derivatives. European J Org Chem 2019; 2019:7122-7127. [PMID: 31798337 PMCID: PMC6887540 DOI: 10.1002/ejoc.201901272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/06/2023]
Abstract
We herein report a high yielding protocol for the direct α-allylation of easily accessible trifluoropyruvate-derived imines using Pd-catalysis. The reaction gives access to a variety of different α-allylated-α-CF3-amino acids in a straightforward manner, starting from commercially available trifluoropyruvate. We also provide a proof-of-concept for an enantioselective protocol (up to er = 75:25) by using chiral phosphane ligands.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Hyunwoo Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology291 Daehak‐ro34141DaejeonYuseong‐guRepublic of Korea
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
17
|
|
18
|
Metal- and additive-free cascade trifluoroethylation/cyclization of organic isoselenocyanates by phenyl(2,2,2-trifluoroethyl)iodonium triflate. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Wu S, Shi J, Zhang CP. Cu-Mediated arylselenylation of aryl halides with trifluoromethyl aryl selenonium ylides. Org Biomol Chem 2019; 17:7468-7473. [PMID: 31361284 DOI: 10.1039/c9ob01506j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An unprecedented arylselenylation of aryl halides with trifluoromethyl aryl selenonium ylides in the presence of copper is described. The reaction proceeded at 100-140 °C under ligand- and additive-free conditions for 3-20 h to form a variety of unsymmetrical diaryl selenides in good to high yields. Arylselenylation is easy to operate, has good functional group tolerance, and demonstrates the different reaction profiles of trifluoromethyl aryl selenonium ylides from the homologous trifluoromethyl aryl sulfonium ylides.
Collapse
Affiliation(s)
- Shuai Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Jin Shi
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
20
|
Winter M, Faust K, Himmelsbach M, Waser M. Synthesis of α-CF 3-proline derivatives by means of a formal (3 + 2)-cyclisation between trifluoropyruvate imines and Michael acceptors. Org Biomol Chem 2019; 17:5731-5735. [PMID: 31149695 PMCID: PMC6625964 DOI: 10.1039/c9ob01134j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report the first formal (3 + 2)-cyclisation between 3,3,3-trifluoropyruvate-derived imines and indandione-based Michael acceptors. This reaction gives access to a novel class of spirocyclic α-CF3-α-proline derivatives with complete control of the diastereoselectivity under phase transfer-catalysed reaction conditions.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria.
| | | | | | | |
Collapse
|