1
|
Ndochinwa OG, Wang QY, Amadi OC, Nwagu TN, Nnamchi CI, Okeke ES, Moneke AN. Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon 2024; 10:e32673. [PMID: 38912509 PMCID: PMC11193041 DOI: 10.1016/j.heliyon.2024.e32673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
Protein engineering mechanisms can be an efficient approach to enhance the biochemical properties of various biocatalysts. Immobilization of biocatalysts and the introduction of new-to-nature chemical reactivities are also possible through the same mechanism. Discovering new protocols that enhance the catalytic active protein that possesses novelty in terms of being stable, active, and, stereoselectivity with functions could be identified as essential areas in terms of concurrent bioorganic chemistry (synergistic relationship between organic chemistry and biochemistry in the context of enzyme engineering). However, with our current level of knowledge about protein folding and its correlation with protein conformation and activities, it is almost impossible to design proteins with specific biological and physical properties. Hence, contemporary protein engineering typically involves reprogramming existing enzymes by mutagenesis to generate new phenotypes with desired properties. These processes ensure that limitations of naturally occurring enzymes are not encountered. For example, researchers have engineered cellulases and hemicellulases to withstand harsh conditions encountered during biomass pretreatment, such as high temperatures and acidic environments. By enhancing the activity and robustness of these enzymes, biofuel production becomes more economically viable and environmentally sustainable. Recent trends in enzyme engineering have enabled the development of tailored biocatalysts for pharmaceutical applications. For instance, researchers have engineered enzymes such as cytochrome P450s and amine oxidases to catalyze challenging reactions involved in drug synthesis. In addition to conventional methods, there has been an increasing application of machine learning techniques to identify patterns in data. These patterns are then used to predict protein structures, enhance enzyme solubility, stability, and function, forecast substrate specificity, and assist in rational protein design. In this review, we discussed recent trends in enzyme engineering to optimize the biochemical properties of various biocatalysts. Using examples relevant to biotechnology in engineering enzymes, we try to expatiate the significance of enzyme engineering with how these methods could be applied to optimize the biochemical properties of a naturally occurring enzyme.
Collapse
Affiliation(s)
- Obinna Giles Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
3
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
4
|
Reed JH, Seebeck FP. Reagent Engineering for Group Transfer Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202311159. [PMID: 37688533 DOI: 10.1002/anie.202311159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/11/2023]
Abstract
Biocatalysis has become a major driver in the innovation of preparative chemistry. Enzyme discovery, engineering and computational design have matured to reliable strategies in the development of biocatalytic processes. By comparison, substrate engineering has received much less attention. In this Minireview, we highlight the idea that the design of synthetic reagents may be an equally fruitful and complementary approach to develop novel enzyme-catalysed group transfer chemistry. This Minireview discusses key examples from the literature that illustrate how synthetic substrates can be devised to improve the efficiency, scalability and sustainability, as well as the scope of such reactions. We also provide an opinion as to how this concept might be further developed in the future, aspiring to replicate the evolutionary success story of natural group transfer reagents, such as adenosine triphosphate (ATP) and S-adenosyl methionine (SAM).
Collapse
Affiliation(s)
- John H Reed
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| | - Florian P Seebeck
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002, Basel, Switzerland
- Molecular Systems Engineering, National Competence Center in Research, 4058, Basel, Switzerland
| |
Collapse
|
5
|
Ali Rachedi S, Genest M, Mann S, Buisson D. Combinatory Library of Microorganisms in the Selection of Reductive Activity Applied to a Ketone Mixture: Unexpected Highlighting of an Enantioselective Oxidative Activity. Microorganisms 2023; 11:1415. [PMID: 37374917 DOI: 10.3390/microorganisms11061415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Biocatalytic processes are increasingly used in organic synthesis for the preparation of targeted molecules or the generation of molecular diversity. The search for the biocatalyst is often the bottleneck in the development of the process. We described a combinatorial approach for the selection of active strains from a library of microorganisms. In order to show the potential of the method we applied it to a mixture of substrates. We were able to select yeast strains capable of producing enantiopure alcohol from corresponding ketones with very few tests and highlight tandem reaction sequences involving several microorganisms. We demonstrate an interest in the kinetic study and the importance of incubation conditions. This approach is a promising tool for generating new products.
Collapse
Affiliation(s)
- Sofiane Ali Rachedi
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS UMR 7245, CP54, 57 rue Cuvier (63 rue Buffon), 75005 Paris, France
| | - Maximillien Genest
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS UMR 7245, CP54, 57 rue Cuvier (63 rue Buffon), 75005 Paris, France
| | - Stéphane Mann
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS UMR 7245, CP54, 57 rue Cuvier (63 rue Buffon), 75005 Paris, France
| | - Didier Buisson
- Unité Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, CNRS UMR 7245, CP54, 57 rue Cuvier (63 rue Buffon), 75005 Paris, France
| |
Collapse
|
6
|
Imam H, Hill K, Reid A, Mix S, Marr PC, Marr AC. Supramolecular Ionic Liquid Gels for Enzyme Entrapment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:6829-6837. [PMID: 37180026 PMCID: PMC10170508 DOI: 10.1021/acssuschemeng.3c00517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Reported herein is an entrapment method for enzyme immobilization that does not require the formation of new covalent bonds. Ionic liquid supramolecular gels are formed containing enzymes that can be shaped into gel beads and act as recyclable immobilized biocatalysts. The gel was formed from two components, a hydrophobic phosphonium ionic liquid and a low molecular weight gelator derived from the amino acid phenylalanine. Gel-entrapped lipase from Aneurinibacillus thermoaerophilus was recycled for 10 runs over 3 days without loss of activity and retained activity for at least 150 days. The procedure does not form covalent bonds upon gel formation, which is supramolecular, and no bonds are formed between the enzyme and the solid support.
Collapse
Affiliation(s)
- Hasan
T. Imam
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Kyle Hill
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Andrew Reid
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Stefan Mix
- Department
of Biocatalysis, Almac Bioscience, Almac
Group, Almac House, 20 Seagoe Industrial Estate, Craigavon, Belfast, Northern Ireland, United Kingdom BT63 5QD
| | - Patricia C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| | - Andrew C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| |
Collapse
|
7
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
8
|
Nowak-Król A, Dydio P. The 55 th Bürgenstock Conference under the Banner of Sustainability. Angew Chem Int Ed Engl 2022; 61:e202214722. [PMID: 36477955 DOI: 10.1002/anie.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
9
|
Nowak‐Król A, Dydio P. The 55
th
Bürgenstock Conference under the Banner of Sustainability**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Agnieszka Nowak‐Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
10
|
Rossino G, Robescu MS, Licastro E, Tedesco C, Martello I, Maffei L, Vincenti G, Bavaro T, Collina S. Biocatalysis: A smart and green tool for the preparation of chiral drugs. Chirality 2022; 34:1403-1418. [PMID: 35929567 DOI: 10.1002/chir.23498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023]
Abstract
Over the last decades, biocatalysis has achieved growing interest thanks to its potential to enable high efficiency, high yield, and eco-friendly processes aimed at the production of pharmacologically relevant compounds. Particularly, biocatalysis proved an effective and potent tool in the preparation of chiral molecules, and the recent innovations of biotechnologies and nanotechnologies open up a new era of further developments in this field. Different strategies are now available for the synthesis of chiral drugs and their intermediates. Enzymes are green tools that offer several advantages, associated both to catalysis and environmentally friendly reactants. Specifically, the use of enzymes isolated from biological sources or of whole-cell represents a valuable approach to obtain pharmaceutical products. The sustainability, the higher efficiency, and cost-effectiveness of biocatalytic reactions result in improved performance and properties that can be translated from academia to industry. In this review, we focus on biocatalytic approaches for synthesizing chiral drugs or their intermediates. Aiming to unveil the potentialities of biocatalysis systems, we discuss different examples of innovative biocatalytic approaches and their applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Marina Simona Robescu
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Ester Licastro
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Claudia Tedesco
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Ilaria Martello
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Luciana Maffei
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Gregory Vincenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli, Pavia, Lombardia, Italy
| |
Collapse
|
11
|
Gao D, Song W, Wu J, Guo L, Gao C, Liu J, Chen X, Liu L. Efficient Production of L‐Homophenylalanine by Enzymatic‐Chemical Cascade Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207077. [DOI: 10.1002/anie.202207077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dengke Gao
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Song
- School of Life Sciences and Health Engineering Jiangnan University Wuxi 214122 China
| | - Jing Wu
- School of Life Sciences and Health Engineering Jiangnan University Wuxi 214122 China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
12
|
Ding Y, Perez-Ortiz G, Peate J, Barry SM. Redesigning Enzymes for Biocatalysis: Exploiting Structural Understanding for Improved Selectivity. Front Mol Biosci 2022; 9:908285. [PMID: 35936784 PMCID: PMC9355150 DOI: 10.3389/fmolb.2022.908285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of new enzymes, alongside the push to make chemical processes more sustainable, has resulted in increased industrial interest in the use of biocatalytic processes to produce high-value and chiral precursor chemicals. Huge strides in protein engineering methodology and in silico tools have facilitated significant progress in the discovery and production of enzymes for biocatalytic processes. However, there are significant gaps in our knowledge of the relationship between enzyme structure and function. This has demonstrated the need for improved computational methods to model mechanisms and understand structure dynamics. Here, we explore efforts to rationally modify enzymes toward changing aspects of their catalyzed chemistry. We highlight examples of enzymes where links between enzyme function and structure have been made, thus enabling rational changes to the enzyme structure to give predictable chemical outcomes. We look at future directions the field could take and the technologies that will enable it.
Collapse
|
13
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202204290. [DOI: 10.1002/anie.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
14
|
Efficient Production of L‐homophenylalanine by Enzymatic–Chemical Cascade Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Magano J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Magano
- Chemical Research & Development, Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
Zhang K, Yu A, Chu X, Li F, Liu J, Liu L, Bai W, He C, Wang X. Biocatalytic Enantioselective β‐Hydroxylation of Unactivated C−H Bonds in Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun Zhang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Aiqin Yu
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xuan Chu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China
| | - Juan Liu
- Testing Center Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lin Liu
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Wen‐Ju Bai
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Chao He
- School of Life Science Economic and Technology Development Zone Anhui University Hefei Anhui 230601 China
| | - Xiqing Wang
- College of Bioscience and Biotechnology Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
17
|
Ascaso-Alegre C, MANGAS JUAN. Construction of chemoenzymatic linear cascades for the synthesis of chiral compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Ascaso-Alegre
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - JUAN MANGAS
- ARAID: Agencia Aragonesa para la Investigacion y Desarrollo ISQCH PEDRO CERBUNA, 12FACULTAD DE CIENCIAS D 50009 ZARAGOZA SPAIN
| |
Collapse
|
18
|
Kinner A, Nerke P, Siedentop R, Steinmetz T, Classen T, Rosenthal K, Nett M, Pietruszka J, Lütz S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022; 10:964. [PMID: 35625702 PMCID: PMC9138302 DOI: 10.3390/biomedicines10050964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Biocatalysis is constantly providing novel options for the synthesis of active pharmaceutical ingredients (APIs). In addition to drug development and manufacturing, biocatalysis also plays a role in drug discovery and can support many active ingredient syntheses at an early stage to build up entire scaffolds in a targeted and preparative manner. Recent progress in recruiting new enzymes by genome mining and screening or adapting their substrate, as well as product scope, by protein engineering has made biocatalysts a competitive tool applied in academic and industrial spheres. This is especially true for the advances in the field of nonribosomal peptide synthesis and enzyme cascades that are expanding the capabilities for the discovery and synthesis of new bioactive compounds via biotransformation. Here we highlight some of the most recent developments to add to the portfolio of biocatalysis with special relevance for the synthesis and late-stage functionalization of APIs, in order to bypass pure chemical processes.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Regine Siedentop
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Till Steinmetz
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Thomas Classen
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| | - Markus Nett
- Laboratory for Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (T.S.); (M.N.)
| | - Jörg Pietruszka
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany; (T.C.); (J.P.)
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf Located at Forschungszentrum Jülich, 52426 Jülich, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany; (A.K.); (P.N.); (R.S.); (K.R.)
| |
Collapse
|
19
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
20
|
Rocha RA, Speight RE, Scott C. Engineering Enzyme Properties for Improved Biocatalytic Processes in Batch and Continuous Flow. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Raquel A. Rocha
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- CSIRO Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| | - Robert E. Speight
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, CSIRO Land & Water, Black Mountain Science and Innovation Park, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Nyandoro K, Lamb CMG, Yu H, Shi J, Macmillan D. Investigation of acyl transfer auxiliary-assisted glycoconjugation for glycoprotein semi-synthesis. Org Biomol Chem 2022; 20:8506-8514. [DOI: 10.1039/d2ob01633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We explore reactions between sugar-linked acyl transfer auxiliaries and peptide or protein thioesters, and find that various glycoprotein analogues are accessible.
Collapse
Affiliation(s)
| | | | - Haoran Yu
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jian Shi
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Derek Macmillan
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
22
|
Ospina F, Schülke KH, Hammer SC. Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. Chempluschem 2021; 87:e202100454. [PMID: 34821073 DOI: 10.1002/cplu.202100454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Indexed: 12/28/2022]
Abstract
Biocatalysis has traditionally been viewed as a field that primarily enables access to chiral centers. This includes the synthesis of chiral alcohols, amines and carbonyl compounds, often through functional group interconversion via hydrolytic or oxidation-reduction reactions. This limitation is partly being overcome by the design and evolution of new enzymes. Here, we provide an overview of a recently thriving research field that we summarize as biocatalytic alkylation chemistry. In the past 3-4 years, numerous new enzymes have been developed that catalyze sp3 C-C/N/O/S bond formations. These enzymes utilize different mechanisms to generate molecular complexity by coupling simple fragments with high activity and selectivity. In many cases, the engineered enzymes perform reactions that are difficult or impossible to achieve with current small-molecule catalysts such as organocatalysts and transition-metal complexes. This review further highlights that the design of new enzyme function is particularly successful when off-the-shelf synthetic reagents are utilized to access non-natural reactive intermediates. This underscores how biocatalysis is gradually moving to a field that build molecules through selective bond forming reactions.
Collapse
Affiliation(s)
- Felipe Ospina
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Kai H Schülke
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
23
|
Wang Y, Xiang Q, Zhou Q, Xu J, Pei D. Mini Review: Advances in 2-Haloacid Dehalogenases. Front Microbiol 2021; 12:758886. [PMID: 34721367 PMCID: PMC8554231 DOI: 10.3389/fmicb.2021.758886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The 2-haloacid dehalogenases (EC 3.8.1.X) are industrially important enzymes that catalyze the cleavage of carbon-halogen bonds in 2-haloalkanoic acids, releasing halogen ions and producing corresponding 2-hydroxyl acids. These enzymes are of particular interest in environmental remediation and environmentally friendly synthesis of optically pure chiral compounds due to their ability to degrade a wide range of halogenated compounds with astonishing efficiency for enantiomer resolution. The 2-haloacid dehalogenases have been extensively studied with regard to their biochemical characterization, protein crystal structures, and catalytic mechanisms. This paper comprehensively reviews the source of isolation, classification, protein structures, reaction mechanisms, biochemical properties, and application of 2-haloacid dehalogenases; current trends and avenues for further development have also been included.
Collapse
Affiliation(s)
- Yayue Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qiao Xiang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tuoyang Industrial Co., Ltd., Zhengzhou, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
24
|
Abstract
The Pd-catalyzed carbon-carbon bond formation pioneered by Heck in 1969 has dominated medicinal chemistry development for the ensuing fifty years. As the demand for more complex three-dimensional active pharmaceuticals continues to increase, preparative enzyme-mediated assembly, by virtue of its exquisite selectivity and sustainable nature, is poised to provide a practical and affordable alternative for accessing such compounds. In this minireview, we summarize recent state-of-the-art developments in practical enzyme-mediated assembly of carbocycles. When appropriate, background information on the enzymatic transformation is provided and challenges and/or limitations are also highlighted.
Collapse
Affiliation(s)
- Weijin Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Douglass F Taber
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Hans Renata
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
25
|
Imam HT, Krasňan V, Rebroš M, Marr AC. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis. Molecules 2021; 26:4791. [PMID: 34443378 PMCID: PMC8399596 DOI: 10.3390/molecules26164791] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures. As the ionic liquid state of the art has progressed, concepts of what can be achieved in biocatalysis using ionic liquids have evolved and more beneficial effects have been discovered. In this review ionic liquids for whole-cell and isolated enzyme biocatalysis will be discussed with an emphasis on the latest developments, and a look to the future.
Collapse
Affiliation(s)
- Hasan Tanvir Imam
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| | - Vladimír Krasňan
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Andrew Craig Marr
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| |
Collapse
|
26
|
Xiang C, Wu S, Bornscheuer UT. Directed evolution of an amine transaminase for the synthesis of an Apremilast intermediate via kinetic resolution. Bioorg Med Chem 2021; 43:116271. [PMID: 34171757 DOI: 10.1016/j.bmc.2021.116271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
Apremilast is an important active pharmaceutical ingredient that relies on a resolution to produce the key chiral amine intermediate. To provide a new catalytic and enzymatic process for Apremilast, we performed the directed evolution of the amine transaminase fromVibriofluvialis. Six rounds of evolution resulted in the VF-8M-E variant with > 400-fold increase specific activity over the wildtype enzyme. A homology model of VF-8M-E was built and a molecular docking study was performed to explain the increase in activity. The purified VF-8M-E was successfully applied to produce the key chiral amine intermediate in enantiopure form and 49% conversion via a kinetic resolution, representing a new enzymatic access towards Apremilast.
Collapse
Affiliation(s)
- Chao Xiang
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Shuke Wu
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany; State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| |
Collapse
|