1
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Sarkar R, Adhikary K, Banerjee A, Ganguly K, Sarkar R, Mohanty S, Dhua R, Bhattacharya K, Ahuja D, Pal S, Maiti R. Novel targets and improved immunotherapeutic techniques with an emphasis on antimycosal drug resistance for the treatment and management of mycosis. Heliyon 2024; 10:e35835. [PMID: 39224344 PMCID: PMC11367498 DOI: 10.1016/j.heliyon.2024.e35835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Infections due to pathogenic fungi are endemic in particular area with increased morbidity and mortality. More than a thousand people are infected per year and the way of treatment is of high demand having a significant impact on the population health. Medical practitioners confront various troublesome analytic and therapeutical challenges in the administration of immunosuppressed sufferer at high danger of expanding fungal infections. An upgraded antimycosal treatment is fundamental for a fruitful result while treating intrusive mycoses. A collection of antimycosal drugs keeps on developing with their specific antifungal targets including cell membrane, mitochondria, cell wall, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) or protein biosynthesis. Some fundamental classes of ordinarily directed medications are the polyenes, amphotericin B, syringomycin, allylamines, honokiol, azoles, flucytosine, echinocandins etc. However, few immunotherapy processes and vaccinations are being developed to mark this need, although one presently can't seem to arrive at the conclusion. In this review article, there has been a trial to give details upgradation about the current immune therapeutic techniques and vaccination strategies against prevention or treatment of mycosis as well as the difficulties related with their turn of events. There has been also a visualization in the mentioned review paper about the various assorted drugs and their specific target analysis along with therapeutic interventions.
Collapse
Affiliation(s)
- Riya Sarkar
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Adhikary
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Arundhati Banerjee
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology and Biotechnology, Paramedical College Durgapur, West Bengal, 713212, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, Dr. B. C. Roy Academy of Professional Courses, Durgapur, West Bengal, 713206, India
| | - Satyajit Mohanty
- Department of Advanced Pharmacology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Rumpa Dhua
- Department of Nutrition, Bankura Sammilani College, Kenduadihi, Bankura, West Bengal, 722102, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Suchandra Pal
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal, 713209, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, 722101, India
| |
Collapse
|
3
|
Retore YI, Lucini F, Rial RC, Cardoso CAL, Souza PFN, Simionatto S, Rossato L. Antifungal activity of Caryocar brasiliense camb. Alone or along with antifungal agents against multidrug-resistant Candida auris. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118240. [PMID: 38677574 DOI: 10.1016/j.jep.2024.118240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Candida auris poses a severe global health threat, with many strains resistant to antifungal treatments, complicating therapy. Exploring natural compounds alongside conventional drugs offers promising therapeutic avenues. The antifungal potential of the ethanolic extract from Caryocar brasiliense (Cb-EE), a plant native to the Brazilian cerrado and renowned for its medicinal properties, was investigated against C. auris. AIM OF THE STUDY The study examined the chemical composition, antifungal activity, mechanisms of action, and in vivo effects of Cb-EE. MATERIALS AND METHODS Leaves of C. brasiliense were processed to extract ethanolic extract, which was evaluated for phenolic compounds, flavonoids, and tannins. The antifungal capacity was determined through broth microdilution and checkerboard methods, assessing interaction with conventional antifungals. RESULTS Cb-EE demonstrated fungistatic activity against various Candida species and Cryptococcus neoformans. Synergy with fluconazole and additive effects with other drugs were observed. Cb-EE inhibited C. auris growth, with the combination of fluconazole extending inhibition. Mechanistic studies revealed interference with fungal membranes, confirmed by sorbitol protection assays, cellular permeability tests, and scanning electron microscopy (SEM). Hemocompatibility and in vivo toxicity tests on Tenebrio molitor showed safety. CONCLUSION Cb-EE, alone or in combination with fluconazole, effectively treated C. auris infections in vitro and in vivo, suggesting its prospective role as an antifungal agent against this emerging pathogen.
Collapse
Affiliation(s)
- Yasmim Isabel Retore
- Health Sciences Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Fabíola Lucini
- Health Sciences Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Rafael Cardoso Rial
- Federal Institut of Mato Grosso Do Sul - IFMS, Nova Andradina, Mato Grosso do Sul, Brazil
| | - Claudia Andrea Lima Cardoso
- Center of Studies in Natural Resources, State University of Mato Grosso Do Sul, Dourados, Mato Grosso do Sul, Brazil
| | | | - Simone Simionatto
- Health Sciences Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Health Sciences Research Laboratory, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
4
|
Kechi EL, Ubah CB, Runde M, Owen AE, Godfrey OC, Agurokpon DC, Odey MO, Edet UO, Ekpong BO, Iyam SO, Benjamin I, Sampathkumar G. Elucidating the structural basis for the enhanced antifungal activity of amide derivative against Candida albicans: a comprehensive computational investigation. In Silico Pharmacol 2024; 12:48. [PMID: 38828443 PMCID: PMC11139824 DOI: 10.1007/s40203-024-00222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024] Open
Abstract
The continuous search for more effective options against well-known pathogens such as Candida albicans remains the rationale for the search for novel lead compounds from various sources. This study aims to investigate the chemical structure, chemical properties, of 5-(2-((5-(((1S,3R) -3-(5-acetamido-1,3,4-thiadiazolidin-2-yl) cyclopentyl) methyl)-1,3,4-thiadiazolidin-2-yl)amino)-2-oxoethyl)-2-methyl-2,3-dihydro-1H-pyrazol-3-ide designated ATCTP using DFT method ωB97XD/-311 + + g(2d, 2p) and the biological potential of compound ATCTP against Candida albicans using molecular docking and ADMET studies. Geometry optimization was carried out in DMSO, ethanol. gas and water revealing minute discrepancies in bond length and wider differences in bond angles. Frontier molecular orbital investigations reveal HOMO-LUMO energy gap magnitude in decreasing order of ATCTP_Gas > ATCTP_Water > ATCTP_ethanol > ATCTP_DMSO inferring that water influences chemical stability of the compound the most compared to ethanol and DMSO. Density of state investigations have revealed electron density contributions at corresponding energy peaks. In silico pharmacokinetic predicts ATCTP not to be cytotoxic, hepatotoxic, immunotoxic or mutagenic but probable mutagen. Molecular docking investigation of ATCTP against aspartic proteinase of Candida albicans (ID: 2QZX) in comparison with standard drug Fluconazole. Compound ATCTP had higher binding affinity (- 8.1 kcal/mol) compared to that of the standard drug fluconazole (- 5.6 kcal/mol) which records 4 conventional hydrogen interactions compared to 2 formed in the interaction of ATCTP + 2QZX. ATCTP also reports binding affinity of - 7.2 kcal/mol which reportedly surpassed that of 2QZX interaction with fluconazole (- 5.7 kcal/mol). ATCTP binds with lanosterol14-α-demethylase (5v5z) with binding affinity of - 9.7 kcal/mol binding to active site amino acid residues of the protein compared to fluconazole + 5v5z (- 8.0 kcal/mol). ATCTP is therefore recommended to be a lead compound for the possible design of a new and more effective anti-candida therapeutic compound. Graphical abstract
Collapse
Affiliation(s)
- Eban L. Kechi
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
- Department of Pharmacology, University of Calabar, Calabar, Nigeria
| | - Chioma B. Ubah
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
| | - Musa Runde
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
- Department of Chemistry, National Open University of Nigeria, Abuja, Nigeria
| | - Aniekan E. Owen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
- Department of Chemistry, Akwa Ibom State University, Uyo, Nigeria
| | - Obinna C. Godfrey
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Daniel C. Agurokpon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
| | - Michael O. Odey
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Uwem O. Edet
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
| | - Bassey O. Ekpong
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
| | - Solomon O. Iyam
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, University of Calabar, Calabar, Nigeria
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
| | - Gopinath Sampathkumar
- Department of Chemistry, Chettinad College of Engineering and Technology, Karur, Tamilnadu India
- Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria
| |
Collapse
|
5
|
Qian W, Lu J, Gao C, Liu Q, Li Y, Zeng Q, Zhang J, Wang T, Chen S. Deciphering antifungal and antibiofilm mechanisms of isobavachalcone against Cryptococcus neoformans through RNA-seq and functional analyses. Microb Cell Fact 2024; 23:107. [PMID: 38609931 PMCID: PMC11015616 DOI: 10.1186/s12934-024-02369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Cryptococcus neoformans has been designated as critical fungal pathogens by the World Health Organization, mainly due to limited treatment options and the prevalence of antifungal resistance. Consequently, the utilization of novel antifungal agents is crucial for the effective treatment of C. neoformans infections. This study exposed that the minimum inhibitory concentration (MIC) of isobavachalcone (IBC) against C. neoformans H99 was 8 µg/mL, and IBC dispersed 48-h mature biofilms by affecting cell viability at 16 µg/mL. The antifungal efficacy of IBC was further validated through microscopic observations using specific dyes and in vitro assays, which confirmed the disruption of cell wall/membrane integrity. RNA-Seq analysis was employed to decipher the effect of IBC on the C. neoformans H99 transcriptomic profiles. Real-time quantitative reverse transcription PCR (RT-qPCR) analysis was performed to validate the transcriptomic data and identify the differentially expressed genes. The results showed that IBC exhibited various mechanisms to impede the growth, biofilm formation, and virulence of C. neoformans H99 by modulating multiple dysregulated pathways related to cell wall/membrane, drug resistance, apoptosis, and mitochondrial homeostasis. The transcriptomic findings were corroborated by the antioxidant analyses, antifungal drug sensitivity, molecular docking, capsule, and melanin assays. In vivo antifungal activity analysis demonstrated that IBC extended the lifespan of C. neoformans-infected Caenorhabditis elegans. Overall, the current study unveiled that IBC targeted multiple pathways simultaneously to inhibit growth significantly, biofilm formation, and virulence, as well as to disperse mature biofilms of C. neoformans H99 and induce cell death.
Collapse
Affiliation(s)
- Weidong Qian
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Jiaxing Lu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Chang Gao
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qiming Liu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, P. R. China
| | - Qiao Zeng
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ting Wang
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Si Chen
- Department of Immunology, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Benjamin I, Benson CU, Adalikwu SA, Nduoma FA, Akor FO, Odey MO, Ezeani EC, Anyambula IA, Odume MA, Louis H. Investigating the potential of thiazolyl carbohydrazides derivatives as anti-Candida albicans agents: An intuition from molecular modelling, pharmacokinetic evaluation, and molecular docking analysis. CHEMICAL PHYSICS IMPACT 2023; 7:100275. [DOI: 10.1016/j.chphi.2023.100275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
|
7
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
8
|
Silva-Beltrán NP, Boon SA, Ijaz MK, McKinney J, Gerba CP. Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. J Ind Microbiol Biotechnol 2023; 50:kuad036. [PMID: 37951298 PMCID: PMC10710307 DOI: 10.1093/jimb/kuad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants. ONE-SENTENCE SUMMARY This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.
Collapse
Affiliation(s)
- Norma Patricia Silva-Beltrán
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
- Departmento de Ciencias de la Salud, Universidad de Sonora, Ciudad Obregón, CP 85010, México
| | - Stephanie A Boon
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Charles P Gerba
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| |
Collapse
|