1
|
Ovdiichuk O, Lahdenpohja S, Béen Q, Tanguy L, Kuhnast B, Collet-Defossez C. [ 18F]fluoride Activation and 18F-Labelling in Hydrous Conditions-Towards a Microfluidic Synthesis of PET Radiopharmaceuticals. Molecules 2023; 29:147. [PMID: 38202730 PMCID: PMC10779751 DOI: 10.3390/molecules29010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
18F-labelled radiopharmaceuticals are indispensable in positron emission tomography. The critical step in the preparation of 18F-labelled tracers is the anhydrous F-18 nucleophilic substitution reaction, which involves [18F]F- anions generated in aqueous media by the cyclotron. For this, azeotropic drying by distillation is widely used in standard synthesisers, but microfluidic systems are often not compatible with such a process. To avoid this step, several methods compatible with aqueous media have been developed. We summarised the existing approaches and two of them have been studied in detail. [18F]fluoride elution efficiencies have been investigated under different conditions showing high 18F-recovery. Finally, a large scope of precursors has been assessed for radiochemical conversion, and these hydrous labelling techniques have shown their potential for tracer production using a microfluidic approach, more particularly compatible with iMiDEV™ cassette volumes.
Collapse
Affiliation(s)
- Olga Ovdiichuk
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
| | - Salla Lahdenpohja
- Université Paris Saclay, CEA Inserm, CNRS, BioMaps, 91401 Orsay, France
| | - Quentin Béen
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
| | | | - Bertrand Kuhnast
- Université Paris Saclay, CEA Inserm, CNRS, BioMaps, 91401 Orsay, France
| | - Charlotte Collet-Defossez
- Nancyclotep, Molecular Imaging Platform, 54500 Vandoeuvre-les-Nancy, France
- Université de Lorraine, Inserm, IADI, 54000 Nancy, France
| |
Collapse
|
2
|
Inkster JAH, Sromek AW, Akurathi V, Neumeyer JL, Packard AB. The Non-Anhydrous, Minimally Basic Synthesis of the Dopamine D 2 Agonist [18F]MCL-524. CHEMISTRY (BASEL, SWITZERLAND) 2021; 3:1047-1056. [PMID: 37830058 PMCID: PMC10569134 DOI: 10.3390/chemistry3030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The dopamine D2 agonist MCL-524 is selective for the D2 receptor in the high-affinity state (D2high), and, therefore, the PET analogue, [18F]MCL-524, may facilitate the elucidation of the role of D2high in disorders such as schizophrenia. However, the previously reported synthesis of [18F]MCL-524 proved difficult to replicate and was lacking experimental details. We therefore developed a new synthesis of [18F]MCL-524 using a "non-anhydrous, minimally basic" (NAMB) approach. In this method, [18F]F- is eluted from a small (10-12 mg) trap-and-release column with tetraethylammonium tosylate (2.37 mg) in 7:3 MeCN:H2O (0.1 mL), rather than the basic carbonate or bicarbonate solution that is most often used for [18F]F- recovery. The tosylated precursor (1 mg) in 0.9 mL anhydrous acetonitrile was added directly to the eluate, without azeotropic drying, and the solution was heated (150 °C/15 min). The catechol was then deprotected with the Lewis acid In(OTf)3 (10 equiv.; 150 °C/20 min). In contrast to deprotection with protic acids, Lewis-acid-based deprotection facilitated the efficient removal of byproducts by HPLC and eliminated the need for SPE extraction prior to HPLC purification. Using the NAMB approach, [18F]MCL-524 was obtained in 5-9% RCY (decay-corrected, n = 3), confirming the utility of this improved method for the multistep synthesis of [18F]MCL-524 and suggesting that it may applicable to the synthesis of other 18F-labeled radiotracers.
Collapse
Affiliation(s)
- James A. H. Inkster
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Anna W. Sromek
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Vamsidhar Akurathi
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - John L. Neumeyer
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Alan B. Packard
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
3
|
Inkster JAH, Akurathi V, Sromek AW, Chen Y, Neumeyer JL, Packard AB. A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18F-fluorination chemistry. Sci Rep 2020; 10:6818. [PMID: 32321927 PMCID: PMC7176689 DOI: 10.1038/s41598-020-61845-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/03/2020] [Indexed: 11/30/2022] Open
Abstract
Fluorine-18 radiolabeling typically includes several conserved steps including elution of the [18F]fluoride from an anion exchange cartridge with a basic solution of K2CO3 or KHCO3 and Kryptofix 2.2.2. in mixture of acetonitrile and water followed by rigorous azeotropic drying to remove the water. In this work we describe an alternative "non-anhydrous, minimally basic" ("NAMB") technique that simplifies the process and avoids the basic conditions that can sometimes limit the scope and efficiency of [18F]fluoride incorporation chemistry. In this approach, [18F]F- is eluted from small (10-12 mg) anion-exchange cartridges with solutions of tetraethylammonium bicarbonate, perchlorate or tosylate in polar aprotic solvents containing 10-50% water. After dilution with additional aprotic solvent, these solutions are used directly in nucleophilic aromatic and aliphatic 18F-fluorination reactions, obviating the need for azeotropic drying. Perchlorate and tosylate are minimally basic anions that are nevertheless suitable for removal of [18F]F- from the anion-exchange cartridge. As proof-of-principle, "NAMB" chemistry was utilized for the synthesis of the dopamine D2/D3 antagonist [18F]fallypride.
Collapse
Affiliation(s)
- J A H Inkster
- Division of Nuclear Medicine and Molecular Imaging, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - V Akurathi
- Division of Nuclear Medicine and Molecular Imaging, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - A W Sromek
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Y Chen
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - J L Neumeyer
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - A B Packard
- Division of Nuclear Medicine and Molecular Imaging, Boston Children's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|