1
|
Woo SW, Kim M, Kang D, Choe YH, Oh SJ, You AS, Lee SL, Kim J. Genome-Wide Characterization of Somatic Mutation Patterns in Cloned Dogs Reveals Implications for Neuronal Function, Tumorigenesis, and Aging. Genes (Basel) 2024; 15:801. [PMID: 38927737 PMCID: PMC11202621 DOI: 10.3390/genes15060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Studies on somatic mutations in cloned animals have revealed slight genetic variances between clones and their originals, but have yet to identify the precise effects of these differences within the organism. Somatic mutations contribute to aging and are implicated in tumor development and other age-related diseases. Thus, we compared whole genome sequencing data from an original dog with that of cloned dogs, identifying candidate somatic mutations that were disproportionately located within genes previously implicated in aging. The substitutional signature of cloning-specific somatic mutations mirrored the uniform distribution characteristic of the signature associated with human aging. Further analysis of genes revealed significant enrichment of traits associated with body size as well as the molecular mechanisms underlying neuronal function and tumorigenesis. Overall, the somatic mutations found in cloned dogs may indicate a conserved mechanism driving aging across species and a broad spectrum of pathway alterations.
Collapse
Affiliation(s)
- Seung-Wan Woo
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-W.W.); (D.K.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Miju Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Dayeon Kang
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-W.W.); (D.K.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Yong-ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.-h.C.); (S.-J.O.); (S.-L.L.)
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.-h.C.); (S.-J.O.); (S.-L.L.)
| | - Are-Sun You
- Division of Animal Diseases & Health, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea;
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.-h.C.); (S.-J.O.); (S.-L.L.)
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.-W.W.); (D.K.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
2
|
Ji K, Park K, Kim D, Kim E, Kil T, Kim M. Accomplishment of canine cloning through in vitro matured oocytes: a pioneering milestone. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:577-586. [PMID: 38975582 PMCID: PMC11222123 DOI: 10.5187/jast.2024.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 07/09/2024]
Abstract
The in vitro maturation (IVM) rate of canine oocytes remains low compared to other mammals due to their unique reproductive characteristics. This study aimed to explore the effect of hormone supplementation during the IVM of canine immature oocytes on nuclear maturation and subsequently assess its potential application in canine somatic cell nuclear transfer (SCNT). Immature oocytes were collected and cultured in an IVM medium supplemented with hormones (follicle-stimulating hormone [FSH] and progesterone [P4]) or without hormones (control) for 24 hours. The maturation rates of oocytes in the hormone-treated group (94.92 ± 3.15%) were significantly higher than those in the control group (61.01 ± 4.23%). Both in vitro and in vivo matured oocytes underwent NT to evaluate their utility, and the fusion rates were higher in the in vitro matured group than those in the vivo matured group, not significant between in vivo and in vitro matured group (73.28% and 82.35%, respectively). As a result, 14 fused embryos from the in vitro matured group were transferred into two surrogates, with one surrogate achieving a successful pregnancy and delivering four puppies. Whereas in the in vivo matured group, 85 fused embryos were transferred to 8 surrogate mothers, leading to three surrogates becoming pregnant and delivering one, four, and two puppies. The pregnancy rates were not significant between both groups (50% and 37.50%), but the number of offspring exhibited a significant difference (28.57% and 8.23%). In conclusion, we achieved a remarkable milestone by successfully producing cloned puppies using in vitro matured oocytes, underscoring the feasibility of canine cloning from in vitro recovered oocytes. It is important to note that this study focused only on immature oocytes after ovulation and only during the estrus stage. Further research targeting other stages of the estrous cycle could potentially enhance canine cloning efficiency.
Collapse
Affiliation(s)
- Kukbin Ji
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | | | - Dongern Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | | | - Taeyoung Kil
- Department of Social Welfare, Joongbu University, Geumsan 32713, Korea
| | - Minkyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
- MK Biotech Co., LTD., Daejeon 34134, Korea
| |
Collapse
|
3
|
Kim DE, Lee JH, Ji KB, Park KS, Kil TY, Koo O, Kim MK. Generation of genome-edited dogs by somatic cell nuclear transfer. BMC Biotechnol 2022; 22:19. [PMID: 35831828 PMCID: PMC9281017 DOI: 10.1186/s12896-022-00749-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Background Canine cloning technology based on somatic cell nuclear transfer (SCNT) combined with genome-editing tools such as CRISPR-Cas9 can be used to correct pathogenic mutations in purebred dogs or to generate animal models of disease. Results We constructed a CRISPR-Cas9 vector targeting canine DJ-1. Genome-edited canine fibroblasts were established using vector transfection and antibiotic selection. We performed canine SCNT using genome-edited fibroblasts and successfully generated two genome-edited dogs. Both genome-edited dogs had insertion-deletion mutations at the target locus, and DJ-1 expression was either downregulated or completely repressed. Conclusion SCNT successfully produced genome-edited dogs by using the CRISPR-Cas9 system for the first time. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00749-3.
Collapse
Affiliation(s)
- Dong-Ern Kim
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea
| | - Ji-Hye Lee
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea
| | - Kuk-Bin Ji
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea
| | | | - Tae-Young Kil
- Department of Social Welfare, Joongbu University, Geumsan, 32713, Korea
| | | | - Min-Kyu Kim
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea. .,MK biotech Inc., Daejeon, 34134, Korea.
| |
Collapse
|
4
|
|
5
|
Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. Int J Mol Sci 2021; 22:ijms22063099. [PMID: 33803567 PMCID: PMC8002851 DOI: 10.3390/ijms22063099] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The effectiveness of somatic cell nuclear transfer (SCNT) in mammals seems to be still characterized by the disappointingly low rates of cloned embryos, fetuses, and progeny generated. These rates are measured in relation to the numbers of nuclear-transferred oocytes and can vary depending on the technique applied to the reconstruction of enucleated oocytes. The SCNT efficiency is also largely affected by the capability of donor nuclei to be epigenetically reprogrammed in a cytoplasm of reconstructed oocytes. The epigenetic reprogrammability of donor nuclei in SCNT-derived embryos appears to be biased, to a great extent, by the extranuclear (cytoplasmic) inheritance of mitochondrial DNA (mtDNA) fractions originating from donor cells. A high frequency of mtDNA heteroplasmy occurrence can lead to disturbances in the intergenomic crosstalk between mitochondrial and nuclear compartments during the early embryogenesis of SCNT-derived embryos. These disturbances can give rise to incorrect and incomplete epigenetic reprogramming of donor nuclei in mammalian cloned embryos. The dwindling reprogrammability of donor nuclei in the blastomeres of SCNT-derived embryos can also be impacted by impaired epigenetic rearrangements within terminal ends of donor cell-descended chromosomes (i.e., telomeres). Therefore, dysfunctions in epigenetic reprogramming of donor nuclei can contribute to the enhanced attrition of telomeres. This accelerates the processes of epigenomic aging and replicative senescence in the cells forming various tissues and organs of cloned fetuses and progeny. For all the above-mentioned reasons, the current paper aims to overview the state of the art in not only molecular mechanisms underlying intergenomic communication between nuclear and mtDNA molecules in cloned embryos but also intrinsic determinants affecting unfaithful epigenetic reprogrammability of telomeres. The latter is related to their abrasion within somatic cell-inherited chromosomes.
Collapse
|
6
|
Mitochondrial metabolism assessment of lycaon-dog fetuses in interspecies somatic cell nuclear transfer. Theriogenology 2021; 165:18-27. [PMID: 33611171 DOI: 10.1016/j.theriogenology.2021.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022]
Abstract
Many studies have reported that interspecies somatic cell nuclear transfer (iSCNT) is considered the prominent method in preserving endangered animals. However, the development rate of iSCNT embryos is low, and there are limited studies on the molecular mechanism of the iSCNT process. This study evaluated the developmental potential of interspecies lycaon (Lycaon pictus)-dog embryos and assessed the mitochondrial content and metabolism of the produced cloned lycaon-dog fetus. Of 678 collected oocytes, 516 were subjected to nuclear transfer, and 419 reconstructed embryos with male lycaon fibroblasts were transferred into 27 surrogates. Of 720 oocytes, 568 were subjected to nuclear transfer and 469 reconstructed embryos with female lycaon fibroblasts were transferred into 31 surrogates. Two recipients who received female reconstructed embryos were identified as pregnant at 30 days. However, fetal retardation with no cardiac activity was observed at 46 days. Microsatellite analysis confirmed that the cloned lycaon-dog fetus was genetically identical to the lycaon donor cell, whereas mitochondrial sequencing analysis revealed that oocyte donor dogs transmitted their mtDNA. We assessed the oxygen consumption rate and mitochondrial content of the aborted lycaon-dog fetus to shed some light on the aborted fetus's cellular metabolism. The oxygen consumption rates in the lycaon-dog fetal fibroblasts were lower than those in adult dog, lycaon and cloned dog fetal fibroblasts. Furthermore, lycaon-dog fetal fibroblasts showed decreased proportions of live and active mitochondria compared with other groups. Overall, we hypothesized that nuclear-mitochondrial incompatibility affects pyruvate metabolism and that these processes cause intrauterine fetal death.
Collapse
|
7
|
Song SH, Lee KL, Xu L, Joo MD, Hwang JY, Oh SH, Kong IK. Production of cloned cats using additional complimentary cytoplasm. Anim Reprod Sci 2019; 208:106125. [PMID: 31405460 DOI: 10.1016/j.anireprosci.2019.106125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is an important technique for producing cloned animals. It, however, is inefficient when there is use of SCNT for cloned animal production. Cytoplasm injection cloning technology (CICT) was developed to overcome the inefficiencies of SCNT use of this purpose. The use of CICT involves additional cytoplasm fusing with enucleated oocytes to restore the cytoplasmic volume, thus improving the in vitro developmental competence and quality of cloned embryos. In this study, there was application of CICT in cats to improve the in vitro developmental competence of cloned embryos, as well as the production of the offspring. The results of this study were that fusion rate of the cloned embryos with use of the CICT method was greater than that with SCNT (80.0 ± 4.8% compared with 67.8 ± 11.3%, respectively), and more blastocysts developed with use of CICT than SCNT (20.0 ± 2.0% compared with 13.5 ± 5.0%, respectively). The 62 cloned embryos that were produced with use of CICT were transferred into five estrous synchronized recipients, and 151 cloned embryos produced using SCNT were transferred to 13 estrous-synchronized recipients. After the embryo transfer, there was birth from surrogate mothers of one live-born kitten that resulted using SCNT compared with three live-born kittens using CICT. The number of CICT-cloned embryos born was greater than that of SCNT-cloned embryos (4.8 ± 2.3% compared with 0.7 ± 1.3%, P < 0.05). These results indicate that the CICT technique can be used to produce cloned kittens, including endangered feline species.
Collapse
Affiliation(s)
- Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Kyeong-Lim Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Ji-Yoon Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
8
|
Lee SH, Oh HJ, Kim MJ, Kim GA, Setyawan EMN, Ra K, Abdillah DA, Lee BC. Dog cloning-no longer science fiction. Reprod Domest Anim 2019; 53 Suppl 3:133-138. [PMID: 30474338 DOI: 10.1111/rda.13358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/21/2018] [Indexed: 01/23/2023]
Abstract
Since the generation of world's first cloned dog, Snuppy, in 2005, somatic cell nuclear transfer (SCNT) in dogs has been widely applied for producing several kinds of dogs with specific objectives. Previous studies have demonstrated that cloned dogs show normal characteristics in growth, blood parameters and behavioural aspect. Also, canine SCNT technique has been applied to propagate working dogs with excellent abilities in fields such as assistance of disabled people, drugs detection and rescue activity. Because dogs have similar habituation properties and share many characteristics including anatomic and physiological aspects with humans, they are also primary candidates for human disease models. Recently, transgenic dogs that express red fluorescent protein gene constitutively and green fluorescent protein gene conditionally have been generated. In addition, transgenic dogs with an overexpression of peroxisome proliferator-activated receptor-alpha in specific muscles were generated to enhance physical performance. In 2017, Snuppy was recloned with markedly increased pregnancy and delivery rates compared to the statistics from when Snuppy was first cloned. Such striking improvements in the cloning of dogs using SCNT procedures suggest that dog cloning could be applied in many fields of biomedical science for human diseases research, and the application of cloning is no longer science fiction.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Erif Maha Nugraha Setyawan
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dimas Arya Abdillah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Kim MJ, Oh HJ, Hwang SY, Hur TY, Lee BC. Health and temperaments of cloned working dogs. J Vet Sci 2018; 19:585-591. [PMID: 29929355 PMCID: PMC6167335 DOI: 10.4142/jvs.2018.19.5.585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Dogs serve human society in various ways by working at tasks that are based on their superior olfactory sensitivity. However, it has been reported that only about half of all trained dogs may qualify as working dogs through conventional breeding management because proper temperament and health are needed in addition to their innate scent detection ability. To overcome this low efficiency of breeding qualified working dogs, and to reduce the enormous costs of maintaining unqualified dogs, somatic cell nuclear transfer has been applied in the propagation of working dogs. Herein, we review the history of cloning working dogs and evaluate the health development, temperaments, and behavioral similarities among the cloned dogs. We also discuss concerns about dog cloning including those related to birth defects, lifespan, and cloning efficiency.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sun Young Hwang
- Haemaru Referral Animal Hospital and Small Animal Clinical Research Institute, Seongnam 13590, Korea
| | - Tai Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju 54875, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Cordova A, King WA, Mastromonaco GF. Choosing a culture medium for SCNT and iSCNT reconstructed embryos: from domestic to wildlife species. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:24. [PMID: 29152322 PMCID: PMC5680814 DOI: 10.1186/s40781-017-0149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Over the past decades, in vitro culture media have been developed to successfully support IVF embryo growth in a variety of species. Advanced reproductive technologies, such as somatic cell nuclear transfer (SCNT), challenge us with a new type of embryo, with special nutritional requirements and altered physiology under in vitro conditions. Numerous studies have successfully reconstructed cloned embryos of domestic animals for biomedical research and livestock production. However, studies evaluating suitable culture conditions for SCNT embryos in wildlife species are scarce (for both intra- and interspecies SCNT). Most of the existing studies derive from previous IVF work done in conventional domestic species. Extrapolation to non-domestic species presents significant challenges since we lack information on reproductive processes and embryo development in most wildlife species. Given the challenges in adapting culture media and conditions from IVF to SCNT embryos, developmental competence of SCNT embryos remains low. This review summarizes research efforts to tailor culture media to SCNT embryos and explore the different outcomes in diverse species. It will also consider how these culture media protocols have been extrapolated to wildlife species, most particularly using SCNT as a cutting-edge technical resource to assist in the preservation of endangered species.
Collapse
Affiliation(s)
- A Cordova
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - G F Mastromonaco
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada.,Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| |
Collapse
|
11
|
Lee JH, Kim GA, Kim RS, Lee JS, Oh HJ, Kim MJ, Hong DK, Lee BC. Reproductive ability of a cloned male detector dog and behavioral traits of its offspring. J Vet Sci 2017; 17:407-11. [PMID: 26435541 PMCID: PMC5037310 DOI: 10.4142/jvs.2016.17.3.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/07/2015] [Accepted: 08/22/2015] [Indexed: 11/20/2022] Open
Abstract
In 2007, seven detector dogs were produced by somatic cell nuclear transfer using one nuclear donor dog, then trained and certified as excellent detector dogs, similar to their donor. In 2011, we crossed a cloned male and normal female by natural breeding and produced ten offspring. In this study, we investigated the puppies' temperaments, which we later compared with those of the cloned parent male. The results show that the cloned male had normal reproductive abilities and produced healthy offspring. All puppies completed narcotic detector dog training with a success rate for selection of 60%. Although the litter of cloned males was small in this study, a cloned male dog bred by natural mating produced puppies that later successfully completed the training course for drug detection. In conclusion, cloning an elite dog with superior genetic factors and breeding of the cloned dog was found to be a useful method to efficiently procure detector dogs.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Customs Detector Dog Training Center, Customs Border Control Training Center, Korea Customs Service, Incheon 22356, Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Rak Seung Kim
- Customs Detector Dog Training Center, Customs Border Control Training Center, Korea Customs Service, Incheon 22356, Korea
| | - Jong Su Lee
- Customs Detector Dog Training Center, Customs Border Control Training Center, Korea Customs Service, Incheon 22356, Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Do Kyo Hong
- Customs Detector Dog Training Center, Customs Border Control Training Center, Korea Customs Service, Incheon 22356, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
HWANG Y, HYUN SH, HWANG WS, KIM G. Normal bone healing in three cloned dogs with long bone fractures. TURKISH JOURNAL OF VETERINARY AND ANIMAL SCIENCES 2017. [DOI: 10.3906/vet-1603-65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Shin CW, Kim GA, Park WJ, Park KY, Jeon JM, Oh HJ, Kim MJ, Lee BC. Learning, memory and exploratory similarities in genetically identical cloned dogs. J Vet Sci 2016; 17:563-567. [PMID: 27030191 PMCID: PMC5204035 DOI: 10.4142/jvs.2016.17.4.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 11/26/2022] Open
Abstract
Somatic cell nuclear transfer allows generation of genetically identical animals using donor cells derived from animals with particular traits. To date, few studies have investigated whether or not these cloned dogs will show identical behavior patterns. To address this question, learning, memory and exploratory patterns were examined using six cloned dogs with identical nuclear genomes. The variance of total incorrect choice number in the Y-maze test among cloned dogs was significantly lower than that of the control dogs. There was also a significant decrease in variance in the level of exploratory activity in the open fields test compared to age-matched control dogs. These results indicate that cloned dogs show similar cognitive and exploratory patterns, suggesting that these behavioral phenotypes are related to the genotypes of the individuals.
Collapse
Affiliation(s)
- Chi Won Shin
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Geon A Kim
- Department of Theriogenology & Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Won Jun Park
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kwan Yong Park
- Department of Physics and Astronomy, Dana and David Dornsife College of Letters, Arts and Science, University of Southern California, Los Angeles, CA90089, USA
| | - Jeong Min Jeon
- Department of Statistics, College of Natural Science, Seoul National University, Seoul 08826, Korea
| | - Hyun Ju Oh
- Department of Theriogenology & Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Min Jung Kim
- Department of Theriogenology & Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Byeong Chun Lee
- Department of Theriogenology & Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
14
|
Jeong YW, Kim JJ, Kim HD, Hwang KC, Hyun SH, Kim NH, Jeung EB, Hwang WS. Preimplantation development of cloned canine embryos recovered by hysterectomy or surgical uterine flushing and subsequent pregnancy outcomes. Theriogenology 2015; 86:1865-1872.e1. [PMID: 27587271 DOI: 10.1016/j.theriogenology.2015.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 11/18/2022]
Abstract
Dog cloning offers a substantial potential because of the advancements in assisted reproductive technology and development of the human disease model in line with the transgenic technique. However, little is known about the development of the canine cloned embryo during the preimplantation period. The aim of this study was to investigate the most efficient method and time for collecting cloned canine preimplantation embryos and to ascertain the developmental timeline of cloned canine embryos. Two hundred cloned embryos were created and transferred into 11 surrogates. The preimplantation stage cloned embryos were then collected on Days 7, 8, and 9 using an ovariohysterectomy or the Foley balloon catheter method. The recovery rate of reconstructed embryos was 63.6% and 60.6% for the ovariohysterectomy and Foley balloon catheter methods, respectively. Although significant differences were observed in the early developmental stages (one-cell and 16-cell stages), no significant difference was observed in the blastocyst stage. Significantly higher blastocyst rate was observed when the embryos were collected on Day 8 (11.4%) than on Day 7 (0.0%; P < 0.05). At the proximal uterine horn on Day 7, no embryos at any stage were found, whereas on Days 8 and 9, blastocysts were found. We have observed a 63% initial pregnancy rate at 25 to 30 days after embryo transfer and a 50% full-term pregnancy rate, whereas 6.3% of the puppies were born, and 5.5% were born live among the total transferred embryos. Our results suggest that cloned embryos can develop to blastocysts by Day 8, and full-term pregnancy can be achieved after embryo transfer in canine.
Collapse
Affiliation(s)
- Yeon Woo Jeong
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Joung Joo Kim
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Hyun Duk Kim
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Kyu Chan Hwang
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Sang Hwan Hyun
- Sooam Biotech Research Foundation, Seoul, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Choi YB, Kim GA, Oh HJ, Kim MJ, Jo YK, Setyawan EMN, Lee SH, Lee BC. Cloning of the short-tailed Gyeongju Donggyeong dog via SCNT: conserving phenotypic inheritance. J Vet Med Sci 2015; 78:329-31. [PMID: 26477541 PMCID: PMC4785129 DOI: 10.1292/jvms.15-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Somatic cell nuclear transfer is a useful tool to maintain genetic information of animals. The Gyeongju
Donggyeong dog is a breed registered as natural monument in Korea. The unique feature of the Donggyeong dog is
its tail, as the Donggyeong dog can be classified as either short tailed or tailless. The aim of this study
was to preserve the Donggyeong dog’s unique feature by cloning. Fibroblasts were obtained from a short-tailed
Donggyeong dog. In vivo matured oocytes were enucleated, microinjected with a donor cell and
fused electrically. Reconstructed embryos were transferred to six recipient dogs. One surrogate became
pregnant, and one short-tailed Donggyeong dog was delivered. This study demonstrated that the phenotype of the
Donggyeong dog could be conserved by somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Yoo Bin Choi
- Department of Theriogenology and Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea, 151-742
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency. Theriogenology 2015; 84:1256-61. [PMID: 26259535 DOI: 10.1016/j.theriogenology.2015.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022]
Abstract
Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos.
Collapse
|
17
|
Oh HJ, Choi J, Kim MJ, Kim GA, Jo YK, Choi YB, Lee BC. Propagation of elite rescue dogs by somatic cell nuclear transfer. Anim Sci J 2015; 87:21-6. [DOI: 10.1111/asj.12402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Jin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Young Kwang Jo
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Yoo Bin Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine; Seoul National University; Seoul Korea
| |
Collapse
|
18
|
Influence of somatic cell donor breed on reproductive performance and comparison of prenatal growth in cloned canines. Theriogenology 2014; 81:1207-13.e1. [PMID: 24613602 DOI: 10.1016/j.theriogenology.2014.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/22/2014] [Accepted: 01/26/2014] [Indexed: 11/20/2022]
Abstract
Using in vivo-flushed oocytes from a homogenous dog population and subsequent embryo transfer after nuclear transfer, we studied the effects of donor cells collected from 10 different breeds on cloning efficiency and perinatal development of resulted cloned puppies. The breeds were categorized into four groups according to their body weight: small (≤9 kg), medium (>9-20 kg), large (>20-40 kg), and ultra large (>40 kg). A total of 1611 cloned embryos were transferred into 454 surrogate bitches for production of cloned puppies. No statistically significant differences were observed for initial pregnancy rates at Day 30 of embryo transfer for the donor cells originated from different breeds. However, full-term pregnancy rates were 16.5%, 11.0%, 10.0%, and 7.1% for the donor cells originated from ultra-large breed, large, medium, and small breeds, respectively, where pregnancy rate in the ultra-large group was significantly higher compared with the small breeds (P < 0.01). Perinatal mortality until weaning was significantly higher in small breeds (33.3%) compared with medium, large, or ultra-large breeds where no mortality was observed. The mean birth weight of cloned pups significantly increased proportional to breed size. The highest litter size was examined in ultra-large breeds. There was no correlation between the number of embryo transferred and litter size. Taken together, the efficiency of somatic cell cloning and fetal survival after embryo transfer may be affected significantly by selecting the appropriate genotype.
Collapse
|
19
|
Reproduction and Advances in Reproductive Studies in Carnivores. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:205-39. [DOI: 10.1007/978-1-4939-0820-2_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Pregnancy and Neonatal Care of SCNT Animals. PRINCIPLES OF CLONING 2014. [PMCID: PMC7149996 DOI: 10.1016/b978-0-12-386541-0.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Kim GA, Oh HJ, Park JE, Kim MJ, Park EJ, Lim SH, Kang SK, Jang G, Lee BC. Employing mated females as recipients for transfer of cloned dog embryos. Reprod Fertil Dev 2013; 25:700-6. [PMID: 22951104 DOI: 10.1071/rd11221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 05/29/2012] [Indexed: 11/23/2022] Open
Abstract
It has been suggested that co-transferring parthenogenetic embryos could improve the pregnancy success rate with cloned embryos in mammals. As an alternative to co-transferring parthenotes, in dogs we employed recipient females that possessed in vivo-fertilised embryos as a result of mating to determine whether mated bitches could be suitable recipients for cloned embryos. The effect of using mated recipients on implantation and pregnancy rates of canine somatic cell nuclear transfer embryos was also determined. Cloned embryos were transferred into the oviducts of naturally synchronous females that had mated with male dogs before ovulation. The pregnancy rate appeared to be similar between mated recipients (50%) and non-mated recipients (28.57%; P>0.05). However, the delivery rate of cloned pups was significantly higher in mated recipients than non-mated recipients (10.53 vs 2.38%; P<0.05). A decrease in progesterone levels in the mated recipients before the due date induced natural delivery. However, cloned pups in non-mated recipients were delivered by Caesarean section because the fall in progesterone concentration in these females did not occur until the due date. The present study demonstrated for the first time that mated female dogs can be used as recipients for cloned embryos.
Collapse
Affiliation(s)
- Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-744, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim GA, Oh HJ, Park JE, Kim MJ, Park EJ, Jo YK, Jang G, Kim MK, Kim HJ, Lee BC. Species-specific challenges in dog cloning. Reprod Domest Anim 2013; 47 Suppl 6:80-3. [PMID: 23279471 DOI: 10.1111/rda.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning.
Collapse
Affiliation(s)
- G A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hall V, Hinrichs K, Lazzari G, Betts DH, Hyttel P. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals. Vet J 2013; 197:128-42. [PMID: 23810186 DOI: 10.1016/j.tvjl.2013.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/01/2023]
Abstract
Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed.
Collapse
Affiliation(s)
- V Hall
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Duration of gestation in pregnant dogs carrying cloned fetuses. Theriogenology 2013; 79:257-60. [DOI: 10.1016/j.theriogenology.2012.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/05/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022]
|
25
|
Kim MJ, Oh HJ, Kim GA, Park JE, Park EJ, Jang G, Ra JC, Kang SK, Lee BC. Lessons Learned from Cloning Dogs. Reprod Domest Anim 2012; 47 Suppl 4:115-9. [DOI: 10.1111/j.1439-0531.2012.02064.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Establishment of a canine model of human type 2 diabetes mellitus by overexpressing phosphoenolypyruvate carboxykinase. Int J Mol Med 2012; 30:321-9. [DOI: 10.3892/ijmm.2012.993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/10/2012] [Indexed: 11/05/2022] Open
|
27
|
Imsoonthornruksa S, Sangmalee A, Srirattana K, Parnpai R, Ketudat-Cairns M. Development of intergeneric and intrageneric somatic cell nuclear transfer (SCNT) cat embryos and the determination of telomere length in cloned offspring. Cell Reprogram 2012; 14:79-87. [PMID: 22217197 DOI: 10.1089/cell.2011.0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) holds potential as a useful tool for agricultural and biomedical applications. In vitro development of marbled cat intergeneric SCNT reconstructed into domestic cat cytoplast revealed that cloned, marbled cat embryo development was blocked at the morula stage. No pregnancies resulted from the transfer of one- to eight-cell stage embryos into domestic cat surrogate mothers. This suggested that abnormalities occurred in the cloned marbled cat embryos, which may be associated with incomplete reprogramming during early embryo development. Two pregnancies were established in surrogate mothers that received cloned domestic cat embryos, but SCNT offspring developed abnormally. Some specific phenotypes that were observed included incomplete abdominal wall disclosure, improper fetal development. In addition, some of the fetuses were mummified or stillbirths. The two live births died within 5 days. Telomere lengths of cloned kittens as determined by qualtitative polymerase chain reaction (qPCR) were inconclusive: some were found to be shorter, longer, or the same as donor control cells. Our findings support the hypothesis that telomere lengths do not govern the health of these cloned animals. A lack of complete reprogramming may lead to developmental failure and the abnormalities observed in cloned offspring.
Collapse
Affiliation(s)
- Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | | | | | | | | |
Collapse
|
28
|
Amstislavsky S, Lindeberg H, Luvoni GC. Reproductive Technologies Relevant to the Genome Resource Bank in Carnivora. Reprod Domest Anim 2011; 47:164-75. [DOI: 10.1111/j.1439-0531.2011.01886.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Kim MJ, Oh HJ, Park JE, Kim GA, Hong SG, Jang G, Kwon MS, Koo BC, Kim T, Kang SK, Ra JC, Ko C, Lee BC. Generation of transgenic dogs that conditionally express green fluorescent protein. Genesis 2011; 49:472-8. [PMID: 21630415 DOI: 10.1002/dvg.20737] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 11/09/2022]
Abstract
We report the creation of a transgenic dog that conditionally expresses eGFP (enhanced green fluorescent protein) under the regulation of doxycycline. Briefly, fetal fibroblasts infected with a Tet-on eGFP vector were used for somatic cell nuclear transfer. Subsequently reconstructed oocytes were transferred to recipients. Three clones having transgenes were born and one dog was alive. The dog showed all features of inducible expression of eGFP upon doxycycline administration, and successful breeding resulted in eGFP-positive puppies, confirming stable insertion of the transgene into the genome. This inducible dog model will be useful for a variety of medical research studies.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 151-744, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer. Theriogenology 2011; 75:777-82. [DOI: 10.1016/j.theriogenology.2010.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/04/2010] [Accepted: 10/10/2010] [Indexed: 11/19/2022]
|
31
|
Jang G, Kim MK, Lee BC. Current status and applications of somatic cell nuclear transfer in dogs. Theriogenology 2010; 74:1311-20. [DOI: 10.1016/j.theriogenology.2010.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 01/21/2023]
|
32
|
Vaziri H, Chapman KB, Guigova A, Teichroeb J, Lacher MD, Sternberg H, Singec I, Briggs L, Wheeler J, Sampathkumar J, Gonzalez R, Larocca D, Murai J, Snyder E, Andrews WH, Funk WD, West MD. Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regen Med 2010; 5:345-63. [PMID: 20230312 DOI: 10.2217/rme.10.21] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To determine whether transcriptional reprogramming is capable of reversing the developmental aging of normal human somatic cells to an embryonic state. MATERIALS & METHODS An isogenic system was utilized to facilitate an accurate assessment of the reprogramming of telomere restriction fragment (TRF) length of aged differentiated cells to that of the human embryonic stem (hES) cell line from which they were originally derived. An hES-derived mortal clonal cell strain EN13 was reprogrammed by SOX2, OCT4 and KLF4. The six resulting induced pluripotent stem (iPS) cell lines were surveyed for telomere length, telomerase activity and telomere-related gene expression. In addition, we measured all these parameters in widely-used hES and iPS cell lines and compared the results to those obtained in the six new isogenic iPS cell lines. RESULTS We observed variable but relatively long TRF lengths in three widely studied hES cell lines (16.09-21.1 kb) but markedly shorter TRF lengths (6.4-12.6 kb) in five similarly widely studied iPS cell lines. Transcriptome analysis comparing these hES and iPS cell lines showed modest variation in a small subset of genes implicated in telomere length regulation. However, iPS cell lines consistently showed reduced levels of telomerase activity compared with hES cell lines. In order to verify these results in an isogenic background, we generated six iPS cell clones from the hES-derived cell line EN13. These iPS cell clones showed initial telomere lengths comparable to the parental EN13 cells, had telomerase activity, expressed embryonic stem cell markers and had a telomere-related transcriptome similar to hES cells. Subsequent culture of five out of six lines generally showed telomere shortening to lengths similar to that observed in the widely distributed iPS lines. However, the clone EH3, with relatively high levels of telomerase activity, progressively increased TRF length over 60 days of serial culture back to that of the parental hES cell line. CONCLUSION Prematurely aged (shortened) telomeres appears to be a common feature of iPS cells created by current pluripotency protocols. However, the spontaneous appearance of lines that express sufficient telomerase activity to extend telomere length may allow the reversal of developmental aging in human cells for use in regenerative medicine.
Collapse
Affiliation(s)
- H Vaziri
- Ontario Cancer Institute/PMH, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Luz MR, de Holanda CC, Pereira JJ, Freitas PMC, Salgado AEP, Di Giorgio Giannotti J, de Oliveira SB, Teixeira NS, de Freitas Guaitolini CR. High Embryonic Recovery Rates with In vivo and Ex vivo Techniques in the Bitch. Reprod Domest Anim 2010; 46:724-7. [DOI: 10.1111/j.1439-0531.2010.01693.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Park JE, Kim MK, Kang JT, Oh HJ, Hong SG, Kim DY, Jang G, Lee BC. Growth and Hematologic Characteristics of Cloned Dogs Derived from Adult Somatic Cell Nuclear Transfer. Cell Reprogram 2010; 12:141-50. [DOI: 10.1089/cell.2009.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jung Eun Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Brain Korean 21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Kyu Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jung Taek Kang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Brain Korean 21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Brain Korean 21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - So Gun Hong
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Young Kim
- Department of Pathology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Brain Korean 21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
- Brain Korean 21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
35
|
Chastant-Maillard S, Chebrout M, Thoumire S, Saint-Dizier M, Chodkiewicz M, Reynaud K. Embryo biotechnology in the dog: a review. Reprod Fertil Dev 2010; 22:1049-56. [DOI: 10.1071/rd09270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/03/2010] [Indexed: 12/12/2022] Open
Abstract
Canine embryos are a scarce biological material because of difficulties in collecting in vivo-produced embryos and the inability, to date, to produce canine embryos in vitro. The procedure for the transfer of in vivo-produced embryos has not been developed adequately, with only six attempts reported in the literature that have resulted in the birth of 45 puppies. In vitro, the fertilisation rate is particularly low (∼10%) and the incidence of polyspermy particularly high. So far, no puppy has been obtained from an in vitro-produced embryo. In contrast, cloning of somatic cells has been used successfully over the past 4 years, with the birth of 41 puppies reported in the literature, a yield that is comparable to that for other mammalian species. Over the same period, canine embryonic stem sells and transgenic cloned dogs have been obtained. Thus, the latest reproductive technologies are further advanced than in vitro embryo production. The lack of fundamental studies on the specific features of reproductive physiology and developmental biology in the canine is regrettable in view of the increasing role of dogs in our society and of the current demand for new biological models in biomedical technology.
Collapse
|
36
|
HONG SG, OH HJ, PARK JE, KANG JT, KIM MJ, YOON JH, CHANG JH, KIM MK, JANG G, LEE BC. Serum Levels of Reproductive Hormones and Ultrasonographic Monitoring of Ovarian Follicles in Female Cloned Dogs. J Vet Med Sci 2010; 72:89-92. [DOI: 10.1292/jvms.09-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- So Gun HONG
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University
| | - Hyun Ju OH
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University
| | - Jung Eun PARK
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University
| | - Jung Taek KANG
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University
| | - Min Jung KIM
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University
| | - Jung Hee YOON
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Seoul National University
| | - Jin Hwa CHANG
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Seoul National University
| | - Min Kyu KIM
- College of Agriculture and Life Sciences, Chungnam National University
| | - Goo JANG
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University
| | - Byeong Chun LEE
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University
| |
Collapse
|
37
|
Oh H, Hong S, Park J, Kang J, Kim M, Kim M, Kang S, Kim D, Jang G, Lee B. Improved efficiency of canine nucleus transfer using roscovitine-treated canine fibroblasts. Theriogenology 2009; 72:461-70. [PMID: 19497615 DOI: 10.1016/j.theriogenology.2009.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/16/2009] [Accepted: 03/29/2009] [Indexed: 12/25/2022]
|
38
|
Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos. Theriogenology 2009; 72:549-59. [DOI: 10.1016/j.theriogenology.2009.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/14/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
|
39
|
Hossein MS, Jeong YW, Park SW, Kim JJ, Lee E, Ko KH, Hyuk P, Hoon SS, Kim YW, Hyun SH, Shin T, Hwang WS. Birth of Beagle dogs by somatic cell nuclear transfer. Anim Reprod Sci 2009; 114:404-14. [DOI: 10.1016/j.anireprosci.2008.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/24/2008] [Accepted: 10/03/2008] [Indexed: 01/28/2023]
|
40
|
Hossein MS, Jeong YW, Park SW, Kim JJ, Lee E, Ko KH, Kim HS, Kim YW, Hyun SH, Shin T, Hawthorne L, Hwang WS. Cloning missy: obtaining multiple offspring of a specific canine genotype by somatic cell nuclear transfer. CLONING AND STEM CELLS 2009; 11:123-30. [PMID: 19226214 DOI: 10.1089/clo.2008.0029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study was undertaken to evaluate two activation methods for somatic cell nuclear transfer (SCNT), namely, fusion and simultaneous activation (FSA, fusion medium contains calcium), versus fusion followed by chemical activation (F+CA, fusion medium does not contain calcium), and to evaluate the effects of parity of recipient dogs on the success of SCNT. Oocytes retrieved from outbred dogs were reconstructed with adult somatic cells collected from an 11-year-old female dog named Missy. In the FSA method, oocytes were fused and activated at the same time using two DC pulses of 1.75 kV/cm for 15 microsec. In the F+CA method, oocytes were fused with two DC pulses of 1.75 kV/cm for 15 microsec, and then activated 1 h after fusion by 10 microM calcium ionophore for 4 m and cultured for 4 h in 1.9 mM 6-dimethylaminopurine for postactivation. Activation method had a significant impact on the production efficiency of cloned dogs. There was a significant difference in full-term pregnancy rate and percentage of live puppies between the two methods (6.3% and 38.5% for FSA and F+CA, respectively). In our study, four out of five live offspring produced by F+CA survived versus FSA, which did not result in any surviving puppies. Overall, as few as 14 dogs and 54 reconstructed embryos were needed to produce a cloned puppy. In addition, the parity of recipient bitches had no effect on the success of SCNT in canine species. Both the nullipara and multipara bitches produced live puppies following SCNT-ET.
Collapse
|
41
|
Abstract
SummaryCycle synchronization of donor cells in the G0/G1stage is a crucial step for successful somatic cell nuclear transfer. In the present report, we evaluated the effects of contact inhibition, serum starvation and the reagents – dimethyl sulphoxide (DMSO), roscovitine and cycloheximide (CHX) – on synchronization of canine fibroblasts at the G0/G1stage. Ear fibroblast cells were collected from a beagle dog, placed into culture and used for analysis at passages three to eight. The population doubling time was 36.5 h. The proportion of G0/G1cells was significantly increased by contact inhibition (77.1%) as compared with cycling cells (70.1%); however, extending the duration of culture did not induce further synchronization. After 24 h of serum starvation, cells were effectively synchronized at G0/G1(77.1%). Although synchronization was further increased gradually after 24 h and even showed significant difference after 72 h (82.8%) of starvation, the proportion of dead cells also significantly increased after 24 h. The percentage of cells at the G0/G1phase was increased (as compared with controls) after 72 h treatment with DMSO (76.1%) and after 48 h treatment with CHX (73.0%) or roscovitine (72.5%). However, the rate of cell death was increased after 24 and 72 h of treatment with DMSO and CHX, respectively. Thus, we recommend the use of roscovitine for cell cycle synchronization of canine ear fibroblasts as a preparatory step for SCNT.
Collapse
|
42
|
JANG G, HONG S, KANG J, PARK J, OH H, PARK C, HA J, KIM D, KIM M, LEE B. Conservation of the Sapsaree (Canis familiaris), a Korean Natural Monument, using Somatic Cell Nuclear Transfer. J Vet Med Sci 2009; 71:1217-20. [DOI: 10.1292/jvms.71.1217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Goo JANG
- Department of Theriogenology & Biotechnology, Seoul National University
| | - SoGun HONG
- Department of Theriogenology & Biotechnology, Seoul National University
| | - JungTaek KANG
- Department of Theriogenology & Biotechnology, Seoul National University
| | - JungEun PARK
- Department of Theriogenology & Biotechnology, Seoul National University
| | - HyunJu OH
- Department of Theriogenology & Biotechnology, Seoul National University
| | - ChanKyu PARK
- Department of Life Sciences, Korea Advanced Institute of Science and Technology
| | - JiHong HA
- School of Life Science and Biotechnology, Kyungpook National University
| | - DaeYong KIM
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University
| | - MinKyu KIM
- Department of Theriogenology & Biotechnology, Seoul National University
| | - ByeongChun LEE
- Department of Theriogenology & Biotechnology, Seoul National University
| |
Collapse
|
43
|
Hong SG, Jang G, Kim MK, Oh HJ, Park JE, Kang JT, Koo OJ, Kim DY, Lee BC. Dogs cloned from fetal fibroblasts by nuclear transfer. Anim Reprod Sci 2008; 115:334-9. [PMID: 19135320 DOI: 10.1016/j.anireprosci.2008.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/19/2008] [Accepted: 12/01/2008] [Indexed: 11/19/2022]
Abstract
Fetal fibroblasts have been considered as the prime candidate donor cells for the canine reproductive cloning by somatic cell nuclear transfer (SCNT) in regard to the future production of transgenic dogs, mainly due to their higher developmental competence and handling advantage in gene targeting. In this study, the cloning efficiency with canine fetal fibroblasts as donor cells was determined. A total of 50 presumptive cloned embryos were reconstructed, activated and transferred into the oviducts of naturally synchronous recipient bitches. While the fusion rate (76.9%) was similar to those of our earlier studies with adult fibroblasts as donor cells (73.9-77.1%), a high cloning efficiency (4.0%; 2 births/50 embryos transferred) was found compared to the previous success rate with adult fibroblasts (0.2-1.8%). The cloned beagles were healthy and genotypically identical to the donor fibroblast cells. This study shows that a fetal fibroblast cell would be an excellent donor for future production of transgenic dogs via gene targeting in this cell followed cloning using SCNT technology.
Collapse
Affiliation(s)
- So Gun Hong
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction 2008; 136:823-31. [PMID: 18768666 DOI: 10.1530/rep-08-0226] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spermatogonial stem cell transplantation (SSCT) offers unique approaches to investigate SSC and to manipulate the male germline. We report here the first successful performance of this technique in the dog, which is an important model of human diseases. First, we investigated an irradiation protocol to deplete endogenous male germ cells in recipient testes. Histologic examination confirmed >95% depletion of endogenous spermatogenesis, but retention of normal testis architecture. Then, 5-month-old recipient dogs (n=5) were focally irradiated on their testes prior to transplantation with mixed seminiferous tubule cells (fresh (n=2) or after 2 weeks of culture (n=3)). The dogs receiving cultured cells showed an immediate allergic response, which subsided quickly with palliative treatment. No such response was seen in the dogs receiving fresh cells, for which a different injection medium was used. Twelve months post-injection recipients were castrated and sperm was collected from epididymides. We performed microsatellite analysis comparing DNA from the epididymal sperm with genomic DNA from both the recipients and the donors. We used six markers to demonstrate the presence of donor alleles in the sperm from one recipient of fresh mixed tubule cells. No evidence of donor alleles was detected in sperm from the other recipients. Using quantitative PCR based on single nucleotide polymorphisms (SNPs), about 19.5% of sperm were shown to be donor derived in the recipient. Our results demonstrate the first successful completion of SSCT in the dog, an important step toward transgenesis through the male germline in this valuable biomedical model.
Collapse
Affiliation(s)
- Yeunhee Kim
- James A Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|