1
|
Pacini ESA, de Paula Moro R, Godinho RO. Extracellular cAMP elicits contraction of rat vas deferens: Involvement of ecto-5'-nucleotidase and adenosine A 1 receptors. Toxicol Appl Pharmacol 2024; 491:117070. [PMID: 39151807 DOI: 10.1016/j.taap.2024.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
AIMS It is well established that intracellular cAMP contributes to the relaxation of vas deferens smooth muscle. In many tissues, intracellular cAMP is actively transported to the extracellular space, where it exerts regulatory functions, via its metabolite adenosine. These actions take place through the cAMP conversion to adenosine by ectoenzymes, a process called "extracellular cAMP-adenosine pathway". Herein, we investigated whether, in addition to ATP, extracellular cAMP might be an alternative source of adenosine, influencing the contraction of vas deferens smooth muscle. MAIN METHODS The effects of cAMP, 8-Br-cAMP and adenosine were analyzed in the isometric contractions of rat vas deferens. cAMP efflux was analyzed by measuring extracellular cAMP levels after exposure of vas deferens segments to isoproterenol and forskolin in the presence or absence of MK-571, an inhibitor of MRP/ABCC transporters. KEY FINDINGS While 8-Br-cAMP, a cell-permeable cAMP analog, induced relaxation of KCl-precontracted vas deferens, the non-permeant cAMP increased the KCl-induced contractile response, which was mimicked by adenosine, but prevented by inhibitors of ecto-5'-nucleotidase or A1 receptors. Our results also showed that isoproterenol and forskolin increases cAMP efflux via an MRP/ABCC transporter-dependent mechanism, since it is inhibited by MK-571. SIGNIFICANCE Our data show that activation of β-adrenoceptors and adenylyl cyclase increases cAMP efflux from vas deferens tissue, which modulates the vas deferens contractile response via activation of adenosine A1 receptors. Assuming that inhibition of vas deferens contractility has been proposed as a strategy for male contraception, the extracellular cAMP-adenosine pathway emerges as a potential pharmacological target that should be considered in studies of male fertility.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Raíssa de Paula Moro
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM/Unifesp), São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
2
|
Xu Z, Yang Z, Bao L, Lu B, Li X, Zhan X, Huang X, Liu Y. Coenzyme Q10 Improves the Post-Thaw Sperm Quality in Dwarf Surfclam Mulinia lateralis. Antioxidants (Basel) 2024; 13:1085. [PMID: 39334744 PMCID: PMC11429170 DOI: 10.3390/antiox13091085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Previous studies have shown that post-thaw sperm performance is affected by multiple stressors during cryopreservation, such as those induced by physical, chemical, mechanical and physiological changes. One of these is the balance disturbance between the antioxidant defense system and reactive oxygen species (ROS) production. This study investigated whether this disturbance could be alleviated by the addition of different antioxidants to cryoprotective solution [8% dimethyl sulfoxide (DMSO) in 1 µm filtered seawater] optimized for the sperm in dwarf surf clam Mulinia lateralis, the model bivalve species used in many different types of studies. Results showed that the addition of 20 μM coenzyme Q10 (Q10) to 8% DMSO achieved a D-stage larval rate similar to that of the fresh control at a sperm-to-egg ratio at least 50% less than the 8% DMSO treatment alone. The addition of other antioxidants (glycine, melatonin and polyvinylpyrrolidone) did not have any positive effects. The improvement in post-thaw sperm quality by Q10 could be due to its ability to significantly decrease ROS production and lipid peroxidation and significantly increase the motility, plasma membrane integrity, mitochondrial membrane potential, acrosome integrity, DNA integrity and activities of catalase and glutatione. In this study, 37 fatty acids (FAs) were quantified in dwarf surf clam sperm, with 21 FAs being significantly impacted by the cryopreservation with 8% DMSO. Thirteen of these 21 FAs were changed due to the addition of 20 μM Q10 to 8% DMSO, with approximately half of them being improved significantly toward the levels of fresh control, while the remaining half extended further from the trends shown with 8% DMSO treatment. However, no significant difference was found in the percentage of each FA category sum and the ratio of unsaturated/saturated FAs between the two treated groups. In conclusion, the antioxidant Q10 has shown the potential to further improve the sperm cryopreservation technique in bivalves.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zujing Yang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Bei Lu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Fang Zongxi Center for Marine EvoDevo, Ocean University of China, Qingdao 266100, China
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, Adelaide 5024, Australia
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xiaoting Huang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yibing Liu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Li M, Wu J, Yang R, Fu Z, Yu G, Ma Z. Effects of Ammonia Concentration on Sperm Vitality, Motility Rates, and Morphology in Three Marine Bivalve Species: A Comparative Study of the Noble Scallop Mimachlamys nobilis, Chinese Pearl Oyster Pinctada fucata martensii, and Small Rock Oyster Saccostrea mordax. BIOLOGY 2024; 13:589. [PMID: 39194527 DOI: 10.3390/biology13080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ammonium (NH4+) plays a crucial role in the reproductive processes of key biotic groups in aquatic ecosystems-bivalves. This study aims to elucidate the effects of three different ammonium ion concentrations on sperm vitality, swimming kinematics, and morphology of Mimachlamys nobilis, Pinctada fucata martensii, and Saccostrea mordax. The results indicate that the sperm vitality and motility rates of M.nobilis and S. mordax are inversely proportional to the ammonium concentration, especially in the treatment group with an ammonium concentration of 3 mmol/L, where the decrease in sperm vitality and motility is most significant. In contrast, the sperm of P. fucata martensii reacted differently to increasing ammonium concentrations. After the addition of 2 mmol/L of ammonium, the sperm vitality and motility of P. fucata martensii reached a peak, showing a significant stimulatory effect. Additionally, as the ammonium concentration increased, the curling of the sperm flagella in M.nobilis and S. mordax increased. However, sperm flagella curling in P. fucata martensii showed no change compared to the control group. This study provides insights into the effects of ammonium concentrations on the sperm vitality and motility of three marine bivalve species and highlights the importance of sperm flagella curling as a factor affecting sperm.
Collapse
Affiliation(s)
- Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiong Wu
- College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| |
Collapse
|
4
|
Fabbri E, Balbi T, Canesi L. Neuroendocrine functions of monoamines in invertebrates: Focus on bivalve molluscs. Mol Cell Endocrinol 2024; 588:112215. [PMID: 38548145 DOI: 10.1016/j.mce.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine. In this review, we summarize available information on MA systems in invertebrates, with focus on bivalve molluscs, that are widespread in different aquatic environments, where they are subjected to a variety of environmental stimuli. Available data are reviewed on the presence of the different MA in bivalve tissues, their metabolism, target cells, signaling pathways, and the physiological functions modulated in larval and adult stages. Research gaps and perspectives are highlighted, in order to enrich the framework of knowledge on MA neuroendocrine functions, and on their role in adaptation to ongoing and future environmental changes.
Collapse
Affiliation(s)
- Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
5
|
Potter AE, White CR, Marshall DJ. Per capita sperm metabolism is density dependent. J Exp Biol 2024; 227:jeb246674. [PMID: 38380562 PMCID: PMC11006396 DOI: 10.1242/jeb.246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
From bacteria to metazoans, higher density populations have lower per capita metabolic rates than lower density populations. The negative covariance between population density and metabolic rate is thought to represent a form of adaptive metabolic plasticity. A relationship between density and metabolism was actually first noted 100 years ago, and was focused on spermatozoa; even then, it was postulated that adaptive plasticity drove this pattern. Since then, contemporary studies of sperm metabolism specifically assume that sperm concentration has no effect on metabolism and that sperm metabolic rates show no adaptive plasticity. We did a systematic review to estimate the relationship between sperm aerobic metabolism and sperm concentration, for 198 estimates spanning 49 species, from protostomes to humans from 88 studies. We found strong evidence that per capita metabolic rates are concentration dependent: both within and among species, sperm have lower metabolisms in dense ejaculates, but increase their metabolism when diluted. On average, a 10-fold decrease in sperm concentration increased per capita metabolic rate by 35%. Metabolic plasticity in sperm appears to be an adaptive response, whereby sperm maximize their chances of encountering eggs.
Collapse
Affiliation(s)
- Ashley E. Potter
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Craig R. White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
6
|
Contino M, Ferruggia G, Indelicato S, Pecoraro R, Scalisi EM, Salvaggio A, Brundo MV. Polystyrene Nanoplastics in Aquatic Microenvironments Affect Sperm Metabolism and Fertilization of Mytilus galloprovincialis (Lamark, 1819). TOXICS 2023; 11:924. [PMID: 37999576 PMCID: PMC10675086 DOI: 10.3390/toxics11110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
The continuous and unregulated discharge of wastes and pollutants into the aquatic environment has required constant monitoring of the risks incurred by aquatic ecosystems. Alarmism arises from plastic pollution as larger artifacts release nanoscale fragments that can contact free-living stages such as gametes, embryos, and larvae. Specifically, the interaction between spermatozoa, released in water in externally fertilizing species, and the surrounding microenvironment is essential for successful fertilization. Activation and kinematics of movement, proper maintenance of ionic balance, and chemotactism are processes highly sensitive to even minimal perturbations caused by pollutants such as polystyrene nanoplastics. Spermatozoa of Mytilus galloprovincialis (M. galloprovincialis), an excellent ecotoxicological model, undergo structural (plasma membrane ruptures, DNA damage) and metabolic (reduced motility, fertilizing capacity) damage upon exposure to 50 nm amino-modified polystyrene nanoplastics (nPS-NH2). Nanoplastics of larger diameter (100 nm) did not affect sperm parameters. The findings highlighted the negative impact that plastic pollution, related to nanoparticle diameter and concentration, could have on sperm quality and reproductive potential of organisms, altering the equilibrium of aquatic ecosystems.
Collapse
Affiliation(s)
- Martina Contino
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Greta Ferruggia
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Stefania Indelicato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| | - Antonio Salvaggio
- Zooprophylactic Institute of Sicily “A. Mirri”, Via Gino Marinuzzi, 3, 90129 Palermo, Italy;
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (G.F.); (S.I.); (R.P.); (E.M.S.); (M.V.B.)
| |
Collapse
|
7
|
Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, Chang SW, Ravindran B, Mannacharaju M, Ghotekar S, Khoo KS. Deleterious effect of gestagens from wastewater effluent on fish reproduction in aquatic environment: A review. ENVIRONMENTAL RESEARCH 2023; 236:116810. [PMID: 37532209 DOI: 10.1016/j.envres.2023.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Collapse
Affiliation(s)
- J S Jenila
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - J Christina Oviya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Mahesh Mannacharaju
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa, 396 230, Dadra and Nagar Haveli (UT), India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
8
|
Fernández-García F, Carvalhais A, Marques A, Oliveira IB, Guilherme S, Oliveira H, Oliveira CCV, Cabrita E, Asturiano JF, Pacheco M, Mieiro C. Silver nanoparticles and silver ions indistinguishably decrease sperm motility in Pacific oysters (Magallana gigas) after short-term direct exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104202. [PMID: 37385394 DOI: 10.1016/j.etap.2023.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The present study aimed to evaluate the reprotoxicity of environmental (0.25μg.L-1) and supra-environmental (25μg.L-1 and 250μg.L-1) levels of silver nanoparticles (Ag NP) on the Pacific oyster (Magallana gigas), by determining sperm quality. For that, we evaluated sperm motility, mitochondrial function and oxidative stress. To determine whether the Ag toxicity was related to the NP or its dissociation into Ag ions (Ag+), we tested the same concentrations of Ag+. We observed no dose-dependent responses for Ag NP and Ag+, and both impaired sperm motility indistinctly without affecting mitochondrial function or inducing membrane damage. We hypothesize that the toxicity of Ag NP is mainly due to adhesion to the sperm membrane. Blockade of membrane ion channels may also be a mechanism by which Ag NP and Ag+ induce toxicity. The presence of Ag in the marine ecosystem is of environmental concern as it may affect reproduction in oysters.
Collapse
Affiliation(s)
- Fátima Fernández-García
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - Ana Carvalhais
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Marques
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Sofia Guilherme
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Elsa Cabrita
- CCMAR, University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
| | - Juan F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Mieiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Sukhan ZP, Hossen S, Cho Y, Lee WK, Kho KH. Hdh-Tektin-4 Regulates Motility of Fresh and Cryopreserved Sperm in Pacific Abalone, Haliotis discus hannai. Front Cell Dev Biol 2022; 10:870743. [PMID: 35547812 PMCID: PMC9081794 DOI: 10.3389/fcell.2022.870743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
As structural components of sperm, tektins are thought to play a fundamental role in sperm flagellar motility. In this study, Tektin-4 (Hdh-TEKT4) gene was successfully cloned and characterized from the testis tissue in Pacific abalone, Haliotis discus hannai. The full-length cDNA of Hdh-TEKT4 was 1,983 bp, with a coding region of 1,350 bp encoding 51.83 kDa putative protein of 449 deduced amino acids. Hdh-TEKT4 contains a tektin domain including a nonapeptide signature motif (RPGVDLCRD). Fluorescence in situ hybridization revealed that Hdh-TEKT4 localized in the spermatids of Pacific abalone testis. qRT-PCR analysis showed that Hdh-TEKT4 was predominantly expressed in testis tissues. Hdh-TEKT4 mRNA expression was upregulated during the fully mature testicular developmental stage in both seasonal development and EAT exposed abalone. Furthermore, mRNA expression of Hdh-TEKT4 was significantly higher in sperm with higher motility than in sperm with lower motility during peak breeding season, induced spawning activity stages, and after cryopreservation in different cryoprotectants. Taken together, these results indicate that the expression of Hdh-TEKT4 in Pacific abalone sperm might have a positive correlation with sperm motility.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Won Kyo Lee
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
10
|
Canesi L, Miglioli A, Balbi T, Fabbri E. Physiological Roles of Serotonin in Bivalves: Possible Interference by Environmental Chemicals Resulting in Neuroendocrine Disruption. Front Endocrinol (Lausanne) 2022; 13:792589. [PMID: 35282445 PMCID: PMC8913902 DOI: 10.3389/fendo.2022.792589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Contaminants of Emerging Concerns (CECs) are defined as chemicals not commonly monitored in aquatic ecosystems, but with the potential to cause adverse effects on biota. CECs include Endocrine Disrupting Chemicals (EDCs) and Neuro-Endocrine disruptors (NEDs) of vertebrates. However, most invertebrates only rely on neuroendocrine systems to maintain homeostatic processes. Although conserved neuroendocrine components have been characterized in ecologically relevant groups, limited knowledge on invertebrate neuroendocrinology makes it difficult to define EDCs and NEDs in most species. The monoamine serotonin (5-hydroxytryptamine, 5-HT) acts both as a neurotransmitter and as a peripheral hormone in mammals. In molluscs, 5-HT is involved in multiple physiological roles and molecular components of the serotonergic system have been identified. This review is focused on the effects of CECs on the serotonergic system of bivalve molluscs. Bivalves are widespread in all aquatic environments, estuarine and coastal areas in particular, where they are exposed to a variety of chemicals. In bivalves, 5-HT is involved in gametogenesis and spawning, oocyte maturation and sperm motility, regulates heart function, gill ciliary beating, mantle/siphon function, the ''catch'' state of smooth muscle and immune responses. Components of 5-HT transduction (receptors and signaling pathways) are being identified in several bivalve species. Different CECs have been shown to affect bivalve serotonergic system. This particularly applies to antidepressants, among the most commonly detected human pharmaceuticals in the aquatic environment. In particular, selective serotonin reuptake inhibitors (SSRIs) are frequently detected in seawater and in bivalve tissues. Information available on the effects and mechanisms of action of SSRIs on the serotonergic system of adult bivalves is summarized. Data are also reported on the effects of CECs on development of neuroendocrine pathways of early larval stages, in particular on the effects of model EDCs in the marine mussel Mytilus galloprovincialis. Overall, available data point at the serotonergic system as a sensitive target for neuroendocrine disruption in bivalves. The results contribute drawing Adverse Outcome Pathways (AOPs) for model EDCs and SSRIs in larvae and adults. However, basic research on neuroendocrine signaling is still needed to evaluate the potential impact of neuroendocrine disruptors in key invertebrate groups of aquatic ecosystems.
Collapse
Affiliation(s)
- Laura Canesi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Laura Canesi,
| | - Angelica Miglioli
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Teresa Balbi
- Environmental Physiology Laboratory, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Ravenna, Italy
| |
Collapse
|
11
|
Molecular mechanisms of sperm motility are conserved in an early-branching metazoan. Proc Natl Acad Sci U S A 2021; 118:2109993118. [PMID: 34810263 PMCID: PMC8640785 DOI: 10.1073/pnas.2109993118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Reef-building corals are the keystone species of the world’s most biodiverse yet threatened marine ecosystems. Coral reproduction, critical for reef resilience, requires that coral sperm swim through the water column to reach the egg. However, little is known about the mechanisms that regulate coral sperm motility. We found here that coral sperm motility is pH dependent and that activation of motility requires signaling via the pH-sensing enzyme soluble adenylyl cyclase. This study reveals the deep conservation of a sperm activation pathway from humans to corals, presenting the first comprehensive examination of the molecular mechanisms regulating sperm motility in an early-diverging animal. These results are critical for understanding the resilience of this sensitive life stage to a changing marine environment. Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na+/H+ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.
Collapse
|
12
|
Anjos C, Santos AL, Duarte D, Matias D, Cabrita E. Effect of Trehalose and Sucrose in Post-thaw Quality of Crassostrea angulata Sperm. Front Physiol 2021; 12:749735. [PMID: 34899383 PMCID: PMC8656223 DOI: 10.3389/fphys.2021.749735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Sperm cryopreservation can be a helpful tool in reproductive management and preservation of biodiversity. However, the freezing methodologies lead to some damage in structure and function of cells that may compromise post-thaw sperm activity. Cryoprotectant supplementation with sugars proved to be a successful strategy to reduce cryodamage in sperm of several species, once allowing to stabilize the plasma membrane constituents. Therefore, this study intends to understand the effects of sugars in the plasma membrane, DNA integrity, and oxidative response during Portuguese oyster sperm cryopreservation. Three cryoprotectants solutions with an initial concentration of 20% dimethyl sulfoxide (DMSO) and 20% DMSO complemented with 0.9 M trehalose or sucrose in artificial seawater were employed. Sperm samples of mature males were individually collected and diluted 1:10 (v/v) in artificial seawater followed by addition of cryoprotectants [1:1 (v/v)]. Thereafter, sperm was loaded into 0.5 ml straws, maintained at 4°C for 10 min, frozen in a programmable biofreezer at -6°C/min from 0 to -70°C, and stored in liquid nitrogen. Samples were thawed in a 37°C bath for 10 s. Several techniques were performed to evaluate post-thaw quality. Sperm motility and DNA integrity were analyzed by using computer-assisted sperm analysis (CASA) software and comet assay. Flow cytometry was employed to determine membrane and acrosome integrity and to detect intracellular reactive oxygen species (ROS) and apoptosis activity. Lipid peroxidation was determined by malondialdehyde (MDA) detection by using spectrophotometry. Sperm antioxidant capacity was evaluated through glutathione peroxidase, glutathione reductase, and superoxide dismutase. Motility was not affected by the extenders containing sugars; these compounds did not reduce the DNA damage. However, both the trehalose and sucrose protected plasma membrane of cells by increasing cell viability and significantly reducing MDA content. The same finding was observed for the ROS, where live cells registered significantly lower levels of ROS in samples cryopreserved with sugars. The activity of antioxidant enzymes was higher in treatments supplemented with sugars, although not significant. In conclusion, the addition of sugars seems to play an important role in protecting the Crassostrea angulata sperm membrane during cryopreservation, showing potential to improve the post-thaw sperm quality and protect the cells from cryoinjuries.
Collapse
Affiliation(s)
- Catarina Anjos
- Centre of Marine Sciences-CCMAR, University of Algarve, Faro, Portugal
- Portuguese Institute for Sea and Atmosphere-IPMA, Olhão, Portugal
| | - Ana Luísa Santos
- Centre of Marine Sciences-CCMAR, University of Algarve, Faro, Portugal
| | - Daniel Duarte
- Centre of Marine Sciences-CCMAR, University of Algarve, Faro, Portugal
| | - Domitília Matias
- Portuguese Institute for Sea and Atmosphere-IPMA, Olhão, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences-CCMAR, University of Algarve, Faro, Portugal
| |
Collapse
|
13
|
Bettinazzi S, Milani L, Blier PU, Breton S. Bioenergetic consequences of sex-specific mitochondrial DNA evolution. Proc Biol Sci 2021; 288:20211585. [PMID: 34403637 PMCID: PMC8370797 DOI: 10.1098/rspb.2021.1585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Doubly uniparental inheritance (DUI) represents a notable exception to the general rule of strict maternal inheritance (SMI) of mitochondria in metazoans. This system entails the coexistence of two mitochondrial lineages (F- and M-type) transmitted separately through oocytes and sperm, thence providing an unprecedented opportunity for the mitochondrial genome to evolve adaptively for male functions. In this study, we explored the impact of a sex-specific mitochondrial evolution upon gamete bioenergetics of DUI and SMI bivalve species, comparing the activity of key enzymes of glycolysis, fermentation, fatty acid metabolism, tricarboxylic acid cycle, oxidative phosphorylation and antioxidant metabolism. Our findings suggest reorganized bioenergetic pathways in DUI gametes compared to SMI gametes. This generally results in a decreased enzymatic capacity in DUI sperm with respect to DUI oocytes, a limitation especially prominent at the terminus of the electron transport system. This bioenergetic remodelling fits a reproductive strategy that does not require high energy input and could potentially link with the preservation of the paternally transmitted mitochondrial genome in DUI species. Whether this phenotype may derive from positive or relaxed selection acting on DUI sperm is still uncertain.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Département de sciences biologiques, Université de Montréal, Montréal, Quebec, Canada H2V 2S9
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna 40126, Italia
| | - Pierre U. Blier
- Département de biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada G5 L 3A1
| | - Sophie Breton
- Département de sciences biologiques, Université de Montréal, Montréal, Quebec, Canada H2V 2S9
| |
Collapse
|
14
|
Nichols ZG, Rikard S, Alavi SMH, Walton WC, Butts IAE. Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity. PLoS One 2021; 16:e0243569. [PMID: 33735238 PMCID: PMC7971463 DOI: 10.1371/journal.pone.0243569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023] Open
Abstract
Oyster aquaculture is expanding worldwide, where many farms rely on seed produced by artificial spawning. As sperm motility and velocity are key determinants for fertilization success, understanding the regulation of sperm motility and identifying optimal environmental conditions can increase fertility and seed production. In the present study, we investigated the physiological mechanisms regulating sperm motility in Eastern oyster, Crassostrea virginica. Sperm motility was activated in ambient seawater with salinity 4-32 PSU with highest motility and velocity observed at 12-24 PSU. In artificial seawater (ASW) with salinity of 20 PSU, sperm motility was activated at pH 6.5-10.5 with the highest motility and velocity recorded at pH 7.5-10.0. Sperm motility was inhibited or totally suppressed in Na+, K+, Ca2+, and Mg2+-free ASW at 20 PSU. Applications of K+ (500 μM glybenclamide and 10-50 mM 4-aminopyridine), Ca2+ (1-50 μM mibefradil and 10-200 μM verapamil), or Na+ (0.2-2.0 mM amiloride) channel blockers into ASW at 20 PSU inhibited or suppressed sperm motility and velocity. Chelating extracellular Ca2+ ions by 3.0 and 3.5 mM EGTA resulted in a significant reduction and full suppression of sperm motility by 4 to 6 min post-activation. These results suggest that extracellular K+, Ca2+, and Na+ ions are involved in regulation of ionic-dependent sperm motility in Eastern oyster. A comparison with other bivalve species typically spawning at higher salinities or in full-strength seawater shows that ionic regulation of sperm motility is physiologically conserved in bivalves. Elucidating sperm regulation in C. virginica has implications to develop artificial reproduction, sperm short-term storage, or cryopreservation protocols, and to better predict how changes in the ocean will impact oyster spawning dynamics.
Collapse
Affiliation(s)
- Zoe G. Nichols
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Scott Rikard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
- Auburn University Shellfish Lab, Dauphin Island, Alabama, United States of America
| | | | - William C. Walton
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
- Auburn University Shellfish Lab, Dauphin Island, Alabama, United States of America
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
15
|
Beirão J, Boulais M, Gallego V, O'Brien JK, Peixoto S, Robeck TR, Cabrita E. Sperm handling in aquatic animals for artificial reproduction. Theriogenology 2019; 133:161-178. [PMID: 31108371 DOI: 10.1016/j.theriogenology.2019.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
Artificial reproduction involves collection and handling of gametes in a way that secures their quality and maximizes the fertilization outcome. In addition to initial sperm quality, numerous steps can affect the final result of fertilization, from the sperm collection process until gamete mixing (or co-incubation) when the spermatozoon enters or fuses with the oocyte. In this review, we summarize the whole process of sperm handling, from collection until fertilization for fish, penaeid shrimp, bivalve mollusks and marine mammals. To obtain sperm from captive animals, techniques vary widely across taxa, and include stripping by abdominal massage or testis surgical removal in fish, spermatophore collection in penaeid shrimps, gonadal scarification or temperature shock in bivalve mollusks, and voluntary collection via positive reinforcement in mammals. In most cases, special care is needed to avoid contamination by mucus, seawater, urine, or feces that can either activate sperm motility and/or decrease its quality. We also review techniques and extender solutions used for refrigerated storage of sperm across the aforementioned taxa. Finally, we give an overview of the different protocols for in vivo and in vitro fertilization including activation of sperm motility and methods for gamete co-incubation. The present study provides valuable information regarding breeder management either for animal production or species conservation.
Collapse
Affiliation(s)
- José Beirão
- Faculty of Biosciences and Aquaculture, Nord University, NO - 8049, Bodø, Norway.
| | - Myrina Boulais
- University of Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont d'Urville, F-29280, Plouzané, France
| | - Victor Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society, Bradleys Head Rd, Mosman NSW, 2088, Australia
| | - Silvio Peixoto
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | - Todd R Robeck
- SeaWorld Species Preservation Lab, SeaWorld Parks and Entertainment, 2595 Ingraham Road, San Diego, CA, 92019, USA
| | - Elsa Cabrita
- CCMAR, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|