1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Liu S, Guo F, Zhang T, Zhu Y, Lu M, Wu X, He F, Yu R, Yan D, Ming Z, Shu D. Iron deficiency anemia and platelet dysfunction: A comprehensive analysis of the underlying mechanisms. Life Sci 2024; 351:122848. [PMID: 38885879 DOI: 10.1016/j.lfs.2024.122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
AIMS This research aimed to study the changes in platelet function and their underlying mechanisms in iron deficiency anemia. MAIN METHODS Initially, we evaluated platelet function in an IDA mice model. Due to the inability to accurately reduce intracellular Fe2+ concentrations, we investigated the impact of Fe2+ on platelet function by introducing varying concentrations of Fe2+. To probe the underlying mechanism, we simultaneously examined the dynamics of calcium in the cytosol, and integrin αIIbβ3 activation in Fe2+-treated platelets. Ferroptosis inhibitors Lip-1 and Fer-1 were applied to determine whether ferroptosis was involved in this process. KEY FINDINGS Our study revealed that platelet function was suppressed in IDA mice. Fe2+ concentration-dependently facilitated platelet activation and function in vitro. Mechanistically, Fe2+ promoted calcium mobilization, integrin αIIbβ3 activation, and its downstream outside-in signaling. Additionally, we also demonstrated that ferroptosis might play a role in this process. SIGNIFICANCE Our data suggest an association between iron and platelet activation, with iron deficiency resulting in impaired platelet function, while high concentrations of Fe2+ contribute to platelet activation and function by promoting calcium mobilization, αIIbβ3 activation, and ferroptosis.
Collapse
Affiliation(s)
- Sijia Liu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fang Guo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tianli Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhu
- Wuhan No.1 Hospital, Wuhan 430071, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiayu Wu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Fuqin He
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruiying Yu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Dan Yan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zhangyin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College of Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Dan Shu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Fuentes E, Arauna D, Araya-Maturana R. Regulation of mitochondrial function by hydroquinone derivatives as prevention of platelet activation. Thromb Res 2023; 230:55-63. [PMID: 37639783 DOI: 10.1016/j.thromres.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile.
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
4
|
Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res 2023; 13:716-737. [PMID: 36417162 PMCID: PMC9684886 DOI: 10.1007/s13346-022-01252-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/24/2022]
Abstract
Recently, nanoparticle-based drug delivery systems have been widely used for the treatment, prevention, and detection of diseases. Improving the targeted delivery ability of nanoparticles has emerged as a critical issue that must be addressed as soon as possible. The bionic cell membrane coating technology has become a novel concept for the design of nanoparticles. The diverse biological roles of cell membrane surface proteins endow nanoparticles with several functions, such as immune escape, long circulation time, and targeted delivery; therefore, these proteins are being extensively studied in the fields of drug delivery, detoxification, and cancer treatment. Furthermore, hybrid cell membrane-coated nanoparticles enhance the beneficial effects of monotypic cell membranes, resulting in multifunctional and efficient delivery carriers. This review focuses on the synthesis, development, and application of the cell membrane coating technology and discusses the function and mechanism of monotypic/hybrid cell membrane-modified nanoparticles in detail. Moreover, it summarizes the applications of cell membranes from different sources and discusses the challenges that may be faced during the clinical application of bionic carriers, including their production, mechanism, and quality control. We hope this review will attract more scholars toward bionic cell membrane carriers and provide certain ideas and directions for solving the existing problems.
Collapse
Affiliation(s)
- Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Yu-Yan Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xin-Chi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
| | - Jian-Qing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People's Republic of China.
| |
Collapse
|
5
|
Salikhova TY, Pushin DM, Nesterenko IV, Biryukova LS, Guria GT. Patient specific approach to analysis of shear-induced platelet activation in haemodialysis arteriovenous fistula. PLoS One 2022; 17:e0272342. [PMID: 36191008 PMCID: PMC9529124 DOI: 10.1371/journal.pone.0272342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Shear-induced platelet activation (SIPAct) is an important mechanism of thrombosis initiation under high blood flow. This mechanism relies on the interaction of platelets with the von Willebrand factor (VWF) capable of unfolding under high shear stress. High shear stress occurs in the arteriovenous fistula (AVF) commonly used for haemodialysis. A novel patient-specific approach for the modelling of SIPAct in the AVF was proposed. This enabled us to estimate the SIPAct level via computational fluid dynamics. The suggested approach was applied for the SIPAct analysis in AVF geometries reconstructed from medical images. The approach facilitates the determination of the SIPAct level dependence on both biomechanical (AVF flow rate) and biochemical factors (VWF multimer size). It was found that the dependence of the SIPAct level on the AVF flow rate can be approximated by a power law. The critical flow rate was a decreasing function of the VWF multimer size. Moreover, the critical AVF flow rate highly depended on patient-specific factors, e.g., the vessel geometry. This indicates that the approach may be adopted to elucidate patient-specific thrombosis risk factors in haemodialysis patients.
Collapse
Affiliation(s)
- Tatiana Yu Salikhova
- National Medical Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis M. Pushin
- National Medical Research Center for Hematology, Moscow, Russia
| | | | | | - Georgy Th Guria
- National Medical Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- * E-mail:
| |
Collapse
|
6
|
Binder V, Chruścicka-Smaga B, Bergum B, Jaisson S, Gillery P, Sivertsen J, Hervig T, Kaminska M, Tilvawala R, Nemmara VV, Thompson PR, Potempa J, Marti HP, Mydel P. Carbamylation of Integrin α IIb β 3: The Mechanistic Link to Platelet Dysfunction in ESKD. J Am Soc Nephrol 2022; 33:1841-1856. [PMID: 36038265 PMCID: PMC9528322 DOI: 10.1681/asn.2022010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/05/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb β 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb β 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb β 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the β 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb β 3 activity in vitro. CONCLUSIONS Carbamylation of α IIb β 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb β 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.
Collapse
Affiliation(s)
- Veronika Binder
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | | | - Brith Bergum
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Joar Sivertsen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tor Hervig
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marta Kaminska
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Ronak Tilvawala
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Venkatesh V. Nemmara
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Paul R. Thompson
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Piotr Mydel
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Human Platelets Contain, Translate, and Secrete Azurocidin; A Novel Effect on Hemostasis. Int J Mol Sci 2022; 23:ijms23105667. [PMID: 35628475 PMCID: PMC9144465 DOI: 10.3390/ijms23105667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets play a significant role in hemostasis and perform essential immune functions, evidenced by the extensive repertoire of antimicrobial molecules. Currently, there is no clear description of the presence of azurocidin in human platelets. Azurocidin is a 37 kDa cationic protein abundant in neutrophils, with microbicidal, opsonizing, and vascular permeability-inducing activity. Therefore, this work aimed to characterize the content, secretion, translation, and functions of azurocidin in platelets. Our results show the presence of azurocidin mRNA and protein in α-granules of platelet and megakaryoblasts, and stimulation with thrombin, ADP, and LPS leads to the secretion of free azurocidin as well as within extracellular vesicles. In addition, platelets can translate azurocidin in a basal or thrombin-induced manner. Finally, we found that the addition of low concentrations of azurocidin prevents platelet aggregation and activation. In conclusion, we demonstrate that platelets contain, secrete, and translate azurocidin, and this protein may have important implications for hemostasis.
Collapse
|
8
|
Abdin R, Zhang Y, Jimenez JJ. Treatment of Androgenetic Alopecia Using PRP to Target Dysregulated Mechanisms and Pathways. Front Med (Lausanne) 2022; 9:843127. [PMID: 35372424 PMCID: PMC8965895 DOI: 10.3389/fmed.2022.843127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Androgenetic alopecia (“AGA”) is the most prevalent type of progressive hair loss, causing tremendous psychological and social stress in patients. However, AGA treatment remains limited in scope. The pathogenesis of androgenetic alopecia is not completely understood but is known to involve a hair follicle miniaturization process in which terminal hair is transformed into thinner, softer vellus-like hair. This process is related to the dysregulation of the Wnt/β-catenin signaling pathway, which causes premature termination of the anagen growth phase in hair follicles. Historically used for wound healing, platelet rich plasma (“PRP”) has recently been at the forefront of potential AGA treatment. PRP is an autologous preparation of plasma that contains a high number of platelets and their associated growth factors such as EGF, IGF-1, and VEGF. These factors are known to individually play important roles in regulating hair follicle growth. However, the clinical effectiveness of PRP is often difficult to characterize and summarize as there are wide variabilities in the PRP preparation and administration protocols with no consensus on which protocol provides the best results. This study follows the previous review from our group in 2018 by Cervantes et al. to analyze and discuss recent clinical trials using PRP for the treatment of AGA. In contrast to our previous publication, we include recent clinical trials that assessed PRP in combination or in direct comparison with standard of care procedures for AGA such as topical minoxidil and/or oral finasteride. Overall, this study aims to provide an in-depth analysis of PRP in the treatment of AGA based on the evaluation of 17 recent clinical trials published between 2018 and October 2021. By closely examining the methodologies of each clinical trial included in our study, we additionally aim to provide an overall consensus on how PRP can be best utilized for the treatment of AGA.
Collapse
Affiliation(s)
- Rama Abdin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Platelet Function, Role in Thrombosis, Inflammation, and Consequences in Chronic Myeloproliferative Disorders. Cells 2021; 10:cells10113034. [PMID: 34831257 PMCID: PMC8616365 DOI: 10.3390/cells10113034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Platelets are conventionally defined as playing a vital role in homeostasis and thrombosis. This role has over the years transformed as knowledge regarding platelets has expanded to include inflammation, cancer progression, and metastasis. Upon platelet activation and subsequent aggregation, platelets release a host of various factors, including numerous pro-inflammatory factors. These pro-inflammatory factors are recruiters and activators of leukocytes, aiding in platelets’ immune regulating function and inflammatory function. These various platelet functions are interrelated; activation of the inflammatory function results in thrombosis and, moreover, in various disease conditions, can result in worsened or chronic pathogenesis, including cancer. The role and contribution of platelets in a multitude of pathophysiological events during hemostasis, thrombosis, inflammation, cancer progression, and metastasis is an important focus for ongoing research. Platelet activation as discussed here is present in all platelet functionalities and can result in a multitude of factors and signaling pathways being activated. The cross-talk between inflammation, cancer, and platelets is therefore an ideal target for research and treatment strategies through antiplatelet therapy. Despite the knowledge implicating platelets in these mentioned processes, there is, nevertheless, limited literature available on the involvement and impact of platelets in many diseases, including myeloproliferative neoplasms. The extensive role platelets play in the processes discussed here is irrefutable, yet we do not fully understand the complete interrelation and extent of these processes.
Collapse
|
10
|
Horioka K, Tanaka H, Okaba K, Yamada S, Ishii N, Motomura A, Inoue H, Alkass K, Druid H, Yajima D. Hypothermia causes platelet activation in the human spleen. Thromb Res 2021; 205:47-55. [PMID: 34247097 DOI: 10.1016/j.thromres.2021.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Accidental hypothermia results in various dysfunctions in the human body. Additionally, coagulation disorder can lead to a life-threatening condition. We previously demonstrated that platelets stored in the spleen were activated and thus triggered coagulation disorder in a mouse model of hypothermia. In the present study, we wanted to investigate if this phenomenon in mice also occurs in humans as a reaction to hypothermia. METHODS We analyzed splenic tissue collected from 22 deceased subjects who have died from hypothermia. These samples were compared with 22 control cases not exposed to cold environment. We performed immunohistochemical staining for CD61 (a marker of all platelets) and CD62P (a marker of activated platelets). We also evaluated the morphology of platelets in the spleen with scanning electron microscopy. RESULTS Immunohistochemical analysis revealed no significant changes in the amounts of CD61-positive platelets between the hypothermia and control cases. However, the hypothermia cases contained abundant CD62P-positive platelets compared with those of the control cases. Immunohistochemical analysis also revealed that the activated platelets formed aggregates and adhered to splenic sinusoidal endothelial cells in the hypothermia cases. However, we observed no significant fibrin formation around the activated platelets. CONCLUSIONS Hypothermia resulted in splenic platelet activation, which may be used as a postmortem marker of hypothermia. The release of activated platelets from the spleen into to circulation upon rewarming may promote coagulation disturbances.
Collapse
Affiliation(s)
- Kie Horioka
- Department of Legal Medicine, International University of Health and Welfare, Japan; Department of Oncology-Pathology, Karolinska Institutet, Sweden.
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Japan
| | - Keisuke Okaba
- Department of Legal Medicine, International University of Health and Welfare, Japan
| | - Shinnosuke Yamada
- Department of Anatomy, International University of Health and Welfare, Japan
| | - Namiko Ishii
- Department of Legal Medicine, International University of Health and Welfare, Japan
| | - Ayumi Motomura
- Department of Legal Medicine, International University of Health and Welfare, Japan
| | - Hiroyuki Inoue
- Department of Legal Medicine, International University of Health and Welfare, Japan
| | - Kanar Alkass
- Department of Oncology-Pathology, Karolinska Institutet, Sweden
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, Sweden
| | - Daisuke Yajima
- Department of Legal Medicine, International University of Health and Welfare, Japan
| |
Collapse
|
11
|
Wang L, Liang Q, Zhang Y, Liu F, Sun Y, Wang S, Cao H, Meng J. iTRAQ-based quantitative proteomics and network pharmacology revealing hemostatic mechanism mediated by Zingiberis Rhizome Carbonisata in deficiency-cold and Hemorrhagic Syndrome rat models. Chem Biol Interact 2021; 343:109465. [PMID: 33831383 DOI: 10.1016/j.cbi.2021.109465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Zingiberis Rhizome Carbonisata (ZRC) has been used as a hemostatic agent in traditional Chinese medicine (TCM). However, the underlying molecular mechanism remains unclear. In this study, network pharmacology method was used to predict the potential mechanism of ZRC on hemostasis, based on the structures of the main compounds. Then, iTRAQ-based quantitative proteomics analysis was used for verification of the candidate target proteins and pathways to illustrate the underlying mechanisms. Furthermore, the differentially expressed proteins (DEPs) in the enriched pathways were validated by Enzyme-linked immunosorbent assay. The results showed that the hemostasis mechanism of ZRC may be related to Platelet activation, Rap1 signaling pathway and Complement and coagulation cascades. And 10 proteins (Fermt3, ACTB, Talin, αIIbβ3, Fga, Fgb, Fgg, FXIIIb, Kng and PLC-β were identified as the target DEPs) are considered as the key factors related to hemostatic efficacy of ZRC. Thus, integrated network pharmacology and quantitative proteomics technology were applied for the effective illuminating the molecular mechanisms of Chinese material medica.
Collapse
Affiliation(s)
- Lyuhong Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China
| | - Qingguang Liang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China
| | - Ying Zhang
- College of Pharmacy, Jinan University / Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, 510632, China
| | - Fei Liu
- Guangdong Hexiang Pharmaceutical Co., Ltd, Guangzhou, 510385, China
| | - Yue Sun
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China
| | - Shumei Wang
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China.
| | - Hui Cao
- College of Pharmacy, Jinan University / Research Center for Traditional Chinese Medicine of Lingnan (Southern China), Jinan University, National Engineering Research Center for Modernization of Traditional Chinese Medicine Lingnan Resources Branch, Guangzhou, 510632, China.
| | - Jiang Meng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, The Key Unit of Chinese Medicine Digitalization Quality Evaluation of State Administration of Traditional Chinese Medicine, The Research Center for Quality Engineering Technology of Traditional Chinese Medicine, Panyu District, No. 280, Waihuan East Road, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
12
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Cebo M, Fu X, Gawaz M, Chatterjee M, Lämmerhofer M. Enantioselective ultra-high performance liquid chromatography-tandem mass spectrometry method based on sub-2µm particle polysaccharide column for chiral separation of oxylipins and its application for the analysis of autoxidized fatty acids and platelet releasates. J Chromatogr A 2020; 1624:461206. [DOI: 10.1016/j.chroma.2020.461206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
14
|
Wang C, Wang Y, Deng Q, Liu X. Synthesis of 4-Methoxy-1, 3-Benzenediolylhydrazones and Evaluation of Their Anti-Platelet Aggregation Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1803-1815. [PMID: 32184847 PMCID: PMC7059039 DOI: 10.22037/ijpr.2019.1100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In our present investigation, a series of novel 4-methoxy-1,3-benzenediolyl-hydrazones were designed and synthesized, and their ability to inhibit platelet aggregation was evaluated by adenosine diphosphate (ADP) and arachidonic acid (AA). The structures of the synthesized compounds were confirmed by spectral data. Results demonstrated that the activities of all compounds excelled the positive drug Picotamide (25.1% inhibition rate) and seven compounds (PNN01, PNN03, PNN05, PNN07, PNN09, PNN12, and PNN14) have efficiently inhibited platelet aggregation even higher than Clopidogrel (37.6% inhibition rate) induced by AA. Among them, PNN07 (39.8% inhibition rate) was considered as the most potent analogue. Evaluation of cytotoxic activity of the compounds against L929 cell line revealed that none of the compounds have significant cytotoxicity. Thus, diolylhydrazones derives are potential to be antiplatelet aggregation inhibitors and maybe working in AA-induced selectively.
Collapse
Affiliation(s)
- Chaoqing Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.,Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingsong Deng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiujie Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.,Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and
| |
Collapse
|
15
|
Takahashi K, Liang C, Oda T, Ohkohchi N. Platelet and liver regeneration after liver surgery. Surg Today 2019; 50:974-983. [PMID: 31720801 DOI: 10.1007/s00595-019-01890-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/03/2019] [Indexed: 02/06/2023]
Abstract
The success of liver surgery, including resection and transplantation, is largely dependent on the ability of the liver to regenerate. Despite substantial improvement in surgical techniques and perioperative care, one of the main concerns is post-hepatectomy liver failure and early allograft dysfunction, both of which are associated with impaired liver regeneration. Recent studies have demonstrated the positive role of platelets in promoting liver regeneration and protecting hepatocytes; however, the underlying mechanisms responsible for these effects are not fully understood. In this review, we updated the accumulated evidence of the role of platelets in promoting liver regeneration, with a focus on liver resection and liver transplantation. The goal of these studies was to support the clinical implementation of platelet agents, such as thrombopoietin receptor agonists, to augment liver regeneration after liver surgery. This "platelet therapy" may become a treatment choice for post-hepatectomy liver failure and early allograft dysfunction.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan
| | - Chen Liang
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan
| | - Tatsuya Oda
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan. .,Department of Surgery, Mito Central Hospital, 1136-1, Rokutanda-cho, Mito, 311-1135, Japan.
| |
Collapse
|
16
|
Hemoperfusion leads to impairment in hemostasis and coagulation process in patients with acute pesticide intoxication. Sci Rep 2019; 9:13325. [PMID: 31527808 PMCID: PMC6746762 DOI: 10.1038/s41598-019-49738-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/15/2019] [Indexed: 11/08/2022] Open
Abstract
Hemoperfusion (HP) is one of the important treatment modalities in extracorporeal therapy for patients with acute intoxication. Its use has declined during the past 20 years despite its efficacy, because of its side effects, especially an increased risk of bleeding. Mechanisms of hemostasis impairment have not been clearly elucidated and studies demonstrating the mechanism are lacking. It is not clear which step of the hemostatic process is impaired during HP, and whether it leads to an increased risk of bleeding. We performed both in vivo and in vitro studies to elucidate the mechanism of impairment in the hemostatic process. In patients with acute pesticide intoxication who underwent HP, the platelet count decreased rapidly during the first 30 minutes from 242.4 ± 57.7 × 103/μL to 184.8 ± 49.6 × 103/μL, then gradually decreased even lower to 145.4 ± 61.2 × 103/μL over time (p < 0.001). As markers of platelet activation, platelet distribution width increased continuously during HP from 41.98 ± 9.28% to 47.69 ± 11.18% (p < 0.05), however, mean platelet volume did not show significant change. In scanning electron microscopy, activated platelets adhered to modified charcoal were observed, and delayed closure time after HP in PFA-100 test suggested platelet dysfunction occurred during HP. To confirm these conflicting results, changes of glycoprotein expression on the platelet surface were evaluated when platelets were exposed to modified charcoal in vitro. Platelet expression of CD61, fibrinogen receptor, significantly decreased from 95.2 ± 0.9% to 73.9 ± 1.6%, while those expressing CD42b, von Willebrand factor receptor, did not show significant change. However, platelet expression of CD49b, collagen receptor, significantly increased from 24.6 ± 0.7% to 51.9 ± 2.3%. Thrombin-antithrombin complex, a marker for thrombin generation, appeared to decrease, however, it was not statistically significant. Fibrin degradation products and d-dimers, markers for fibrinolysis, increased significantly during HP. Taken together, our data suggests that hemoperfusion leads to impairment of platelet aggregation with incomplete platelet activation, which was associated with reduced thrombin generation, accompanied by increased fibrinolysis.
Collapse
|
17
|
Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi AM. Inflammation Induced by Platelet-Activating Viperid Snake Venoms: Perspectives on Thromboinflammation. Front Immunol 2019; 10:2082. [PMID: 31572356 PMCID: PMC6737392 DOI: 10.3389/fimmu.2019.02082] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023] Open
Abstract
Envenomation by viperid snakes is characterized by systemic thrombotic syndrome and prominent local inflammation. To date, the mechanisms underlying inflammation and blood coagulation induced by Viperidae venoms have been viewed as distinct processes. However, studies on the mechanisms involved in these processes have revealed several factors and signaling molecules that simultaneously act in both the innate immune and hemostatic systems, suggesting an overlap between both systems during viper envenomation. Moreover, distinct classes of venom toxins involved in these effects have also been identified. However, the interplay between inflammation and hemostatic alterations, referred as to thromboinflammation, has never been addressed in the investigation of viper envenomation. Considering that platelets are important targets of viper snake venoms and are critical for the process of thromboinflammation, in this review, we summarize the inflammatory effects and mechanisms induced by viper snake venoms, particularly from the Bothrops genus, which strongly activate platelet functions and highlight selected venom components (metalloproteases and C-type lectins) that both stimulate platelet functions and exhibit pro-inflammatory activities, thus providing insights into the possible role(s) of thromboinflammation in viper envenomation.
Collapse
Affiliation(s)
- Catarina Teixeira
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Cristina Maria Fernandes
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Elbio Leiguez
- Laboratory of Pharmacology, Butantan Institute, São Paulo, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Laboratory of Molecular Biology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
18
|
Hoop CL, Kemraj AP, Wang B, Gahlawat S, Godesky M, Zhu J, Warren HR, Case DA, Shreiber DI, Baum J. Molecular underpinnings of integrin binding to collagen-mimetic peptides containing vascular Ehlers-Danlos syndrome-associated substitutions. J Biol Chem 2019; 294:14442-14453. [PMID: 31406019 DOI: 10.1074/jbc.ra119.009685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers-Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin α2β1 are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin α2β1-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III-integrin α2β1 interaction. Using a multitiered approach combining biological adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α2-inserted (α2I) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP-integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupt the CMP-α2I interaction. The Gly → Arg substitution destabilized CMP-α2I side-chain interactions, and the Gly → Val change broke the essential Mg2+ coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Allysa P Kemraj
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Baifan Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Madison Godesky
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Haley R Warren
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
19
|
Lin S, AL-Wraikat M, Niu L, Zhou F, Zhang Y, Wang M, Ren J, Fan J, Zhang B, Wang L. Degradation enhances the anticoagulant and antiplatelet activities of polysaccharides from Lycium barbarum L. leaves. Int J Biol Macromol 2019; 133:674-682. [DOI: 10.1016/j.ijbiomac.2019.04.147] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 11/27/2022]
|
20
|
Bhalekar SB, Shelke SN. Significant Discovery of Tetrahydrothieno[3,2‐
c
]pyridine‐2‐carboxamide Analogs as Potent P2Y12 Receptor Antagonists. Chem Biodivers 2019; 16:e1800550. [DOI: 10.1002/cbdv.201800550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Sujit B. Bhalekar
- Department of ChemistryS.S.G.M. College Kopargaon, Dist-Ahmednagar (MH) 423601 India
| | - Sharad N. Shelke
- Department of ChemistryDada Patil Mahavidyalaya Karjat, Ahmednagar 414402 India
| |
Collapse
|
21
|
Qiu J, Lingna W, Jinghong H, Yongqing Z. Oral administration of leeches (Shuizhi): A review of the mechanisms of action on antiplatelet aggregation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:103-109. [PMID: 30543914 DOI: 10.1016/j.jep.2018.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leeches (Shuizhi) comprise approximately 680 species distributed throughout the world. As recorded, they have been used as traditional Chinese medicines since the Eastern Han Dynasty, where they were claimed for promote blood circulation and eliminate blood stasis. And have been used to prevent CVDs by exerting multiple effects when orally administered, one of which is the significant inhibition of platelet aggregation. Its ability to exert this effect has been extensively investigated in vivo and in clinical practice. AIM OF STUDY The aim of this review is to summarize and analyse the antiplatelet aggregation mechanisms of leeches by oral administration, support their therapeutic potential and uncover opportunities for future research. MATERIALS AND METHODS Relevant studies from 1980 to 2018 on leeches and platelet aggregation were collected from ancient books, pharmacopoeia, reports and theses via library and internet databases (PubMed, CNKI, Google Scholar, Web of science, SciFinder, Springer and Elsevier). RESULTS Leeches is a unique animal medicine, they can prevent platelet aggregation by inhibiting ADP-induced platelet aggregation, increasing PGI2, decreasing TXA2 and Ca2+, and possibly recovering endothelial cell dysfunction. Leeches also exhibit a strong ability to activate eNOS, leading to an increase in platelet-derived NO. Additionally, the pteridine compounds obtained and identified from leeches have sulfur structure similar to those of other antiplatelet aggregation agents, such as ticlopidine, clopidogrel and ticagrelor. CONCLUSION The present review has focused on the related antiplatelet aggregation mechanisms, dipyridine compounds and toxicological information of leeches. According to the reported data, leeches have emerged as a good source of natural medicine for the treatment of antiplatelet aggregation agents and also make educated guesses for material basis of effects on antiplatelet aggregation. This review can help provide new insights for further studies in association with the development of effective antiplatelet aggregation drugs from natural medicines, especially leeches.
Collapse
Affiliation(s)
- Jiang Qiu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wang Lingna
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Hu Jinghong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhang Yongqing
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
22
|
Eble JA. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins (Basel) 2019; 11:toxins11030136. [PMID: 30823637 PMCID: PMC6468738 DOI: 10.3390/toxins11030136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms contain an astounding variety of different proteins. Among them are numerous C-type lectin family members, which are grouped into classical Ca2+- and sugar-binding lectins and the non-sugar-binding snake venom C-type lectin-related proteins (SV-CLRPs), also called snaclecs. Both groups share the robust C-type lectin domain (CTLD) fold but differ in a long loop, which either contributes to a sugar-binding site or is expanded into a loop-swapping heterodimerization domain between two CLRP subunits. Most C-type lectin (-related) proteins assemble in ordered supramolecular complexes with a high versatility of subunit numbers and geometric arrays. Similarly versatile is their ability to inhibit or block their target molecules as well as to agonistically stimulate or antagonistically blunt a cellular reaction triggered by their target receptor. By utilizing distinct interaction sites differentially, SV-CLRPs target a plethora of molecules, such as distinct coagulation factors and receptors of platelets and endothelial cells that are involved in hemostasis, thrombus formation, inflammation and hematogenous metastasis. Because of their robust structure and their high affinity towards their clinically relevant targets, SV-CLRPs are and will potentially be valuable prototypes to develop new diagnostic and therapeutic tools in medicine, provided that the molecular mechanisms underlying their versatility are disclosed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
23
|
Kosiorowska K, Lukaszewski M, Jakubaszko J, Kościelska-Kasprzak K, Bielicki G, Gozdzik W, Jasinski M. Platelets function assessment in patients qualified for cardiac surgery - clinical problems and a newer diagnostic possibilities. J Cardiothorac Surg 2018; 13:131. [PMID: 30577843 PMCID: PMC6303902 DOI: 10.1186/s13019-018-0820-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Background As the incidence of cardiovascular diseases increases, the use of antiplatelet therapy is widely recognized. This presents clinicians with the challenge of balancing the risk of thrombotic and bleeding complications. Platelet dysfunction is one of the causes of postoperative bleedings and their etiology is not fully understood. Platelets receptors point-of-care investigation is of a remarkable value in assessing patients risk of bleeding. Reliable assessment of platelet function can improve treatment. The aim of this study was to evaluate the activity of platelet receptors in patients qualified for cardiac surgery, taking into account organ dysfunctions and pharmacological therapy applied in these patients. Methods Seventy-one cardiac surgical patients were analyzed before surgery using multiple electrode aggregometry with the use of the ADP test and ASPI test. The cut-off values were determined based on the manufacturer’s recommendations. Patients were divided into four groups: Group I (33/71 patients, without platelet dysfunctions), Group II (6/71 patients, ADP < 710 AU x min), Group III (13/71 patients, ASPI < 570 AU x min) and Group IV (19 / 71 patients, ADP < 710 AU x min and ASPI < 570 AU x min). Biochemical data defining the efficiency of the liver and kidneys, the list of preoperative drugs used and the requirement for transfusion throughout the study group were collected. Results The study group included 41 males (57.7%) and 30 females (42.3%), mean age 66 years. The majority of patients (94.4%) had platelet counts within the normal range, but platelet function was impaired in more than half of the studied patients (53.5%). No relationship was found between the biochemical markers of the kidneys and liver and the function of the ADP and ASPI receptors, while receptors activities were related (rs = 0.72, p < 0.001), and both associated with platelet count (rs = 0.55, p < 0.001 and rs = 0.42, p < 0.001, respectively). Platelet receptors activity was not related to the postoperative need for any type of transfusion as well as the applied preoperative pharmacological therapy. Conclusions Early identification of patients at high risk of bleeding, using point-of-care platelet function assessment tests, enables a targeted therapeutic pathway. Due to the variety of factors affecting the activity of platelets, finding a specific cause of this pathology is extremely difficult. According to our study, the correlation between platelet receptor disorders and mild to moderate liver and kidney injury has not been demonstrated. However, platelet receptors dysfunction has been shown to be associated with a decreased number of platelets.
Collapse
Affiliation(s)
- Kinga Kosiorowska
- Department of Cardiac Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Marceli Lukaszewski
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland.
| | - Jacek Jakubaszko
- Department of Cardiac Surgery, Wroclaw Medical University, Wroclaw, Poland
| | | | - Grzegorz Bielicki
- Department of Cardiac Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Waldemar Gozdzik
- Department of Anaesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Marek Jasinski
- Department of Cardiac Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
24
|
van Elk M, van den Dikkenberg JB, Storm G, Hennink WE, Vermonden T, Heger M. Preclinical evaluation of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-grafted liposomes for cancer thermochemotherapy. Int J Pharm 2018; 550:190-199. [PMID: 30130606 DOI: 10.1016/j.ijpharm.2018.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 01/15/2023]
Abstract
Thermosensitive liposomes grafted with cholesterol-conjugated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) (chol-pHPMAlac) have been developed for heat-induced release of doxorubicin (DOX). These liposomes release DOX completely during mild hyperthermia, but their interaction with blood cells and cancer cells has not been studied. Following intravenous administration, liposomes may interact with plasma proteins and various types of cells (e.g., endothelial cells, platelets, and macrophages), which would reduce their disposition in the tumor stroma. Interaction between liposomes and platelets may further cause platelet activation and thrombosis, which could lead to vascular occlusion and thromboembolic complications. The aim was to investigate DOX release kinetics in the presence of serum, stability, in vitro uptake by and toxicity to cancer cells and somatic cells, and platelet activating potential of the chol-pHPMAlac liposomes. DOX release was determined spectrofluorometrically. Liposome stability was determined in buffer and serum by dynamic light scattering and nanoparticle tracking analysis. Association with/uptake by and toxicity of empty liposomes to AML-12, HepG2 (both hepatocyte-derived cancer cells), RAW 264.7 (macrophages), and HUVEC (endothelial) cells was assayed in vitro. Platelet activation was determined by analysis of P-selectin expression and fibrinogen binding. DOPE:EPC liposomes (diameter = 135 nm) grafted with 5% chol-pHPMAlac (cloud point (CP) = 16 °C; Mn = 8.5 kDa) released less than 10% DOX at 37 °C in 30 min, whereas complete release took place at 47 °C or higher within 10 min. The size of these liposomes remained stable in buffer and serum during 24 h at 37 °C. Fluorescently labeled but DOX-lacking chol-pHPMAlac-liposomes exhibited poor association with/uptake by all cells under investigation, were not cytotoxic, and did not activate platelets in both buffered solution and whole blood. In conclusion, thermosensitive chol-pHPMAlac-grafted liposomes rapidly release DOX during mild hyperthermia. The liposomes are stable in a physiological milieu, are not taken up by cells that are encountered in an in vivo setting, and are non-antagonistic towards platelets. Chol-pHPMAlac-grafted liposomes are therefore good candidates for DOX delivery to tumors and temperature-triggered release in tumor stroma.
Collapse
Affiliation(s)
- Merel van Elk
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Szydzik C, Brazilek RJ, Khoshmanesh K, Akbaridoust F, Knoerzer M, Thurgood P, Muir I, Marusic I, Nandurkar H, Mitchell A, Nesbitt WS. Elastomeric microvalve geometry affects haemocompatibility. LAB ON A CHIP 2018; 18:1778-1792. [PMID: 29789838 DOI: 10.1039/c7lc01320e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports on the parameters that determine the haemocompatibility of elastomeric microvalves for blood handling in microfluidic systems. Using a comprehensive investigation of blood function, we describe a hierarchy of haemocompatibility as a function of microvalve geometry and identify a "normally-closed" v-gate pneumatic microvalve design that minimally affects blood plasma fibrinogen and von Willebrand factor composition, minimises effects on erythrocyte structure and function, and limits effects on platelet activation and aggregation, while facilitating rapid switching control for blood sample delivery. We propose that the haemodynamic profile of valve gate geometries is a significant determinant of platelet-dependent biofouling and haemocompatibility. Overall our findings suggest that modification of microvalve gate geometry and consequently haemodynamic profile can improve haemocompatibility, while minimising the requirement for chemical or protein modification of microfluidic surfaces. This biological insight and approach may be harnessed to inform future haemocompatible microfluidic valve and component design, and is an advance towards lab-on-chip automation for blood based diagnostic systems.
Collapse
Affiliation(s)
- Crispin Szydzik
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takahashi K, Nagai S, Safwan M, Liang C, Ohkohchi N. Thrombocytopenia after liver transplantation: Should we care? World J Gastroenterol 2018; 24:1386-1397. [PMID: 29632420 PMCID: PMC5889819 DOI: 10.3748/wjg.v24.i13.1386] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/06/2018] [Accepted: 03/18/2018] [Indexed: 02/06/2023] Open
Abstract
Transient thrombocytopenia is a common phenomenon after liver transplantation. After liver transplantation (LT), platelet count decreases and reaches a nadir on postoperative days 3-5, with an average reduction in platelet counts of 60%; platelet count recovers to preoperative levels approximately two weeks after LT. The putative mechanisms include haemodilution, decreased platelet production, increased sequestration, medications, infections, thrombosis, or combination of these processes. However, the precise mechanisms remain unclear. The role of platelets in liver transplantation has been highlighted in recent years, and particular attention has been given to their effects beyond hemostasis and thrombosis. Previous studies have demonstrated that perioperative thrombocytopenia causes poor graft regeneration, increases the incidence of postoperative morbidity, and deteriorates the graft and decreases patient survival in both the short and long term after liver transplantation. Platelet therapies to increase perioperative platelet counts, such as thrombopoietin, thrombopoietin receptor agonist, platelet transfusion, splenectomy, and intravenous immunoglobulin treatment might have a potential for improving graft survival, however clinical trials are lacking. Further studies are warranted to detect direct evidence on whether thrombocytopenia is the cause or result of poor-graft function and postoperative complications, and to determine who needs platelet therapies in order to prevent postoperative complications and thus improve post-transplant outcomes.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan
| | - Shunji Nagai
- Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, ML 48202, United States
| | - Mohamed Safwan
- Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, ML 48202, United States
| | - Chen Liang
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Division of Gastroenterological and Hepatobiliary Surgery, and Organ Transplantation, University of Tsukuba, Tsukuba, Ibaraki 3058575, Japan
| |
Collapse
|
27
|
Lima AM, Wegner SV, Martins Cavaco AC, Estevão-Costa MI, Sanz-Soler R, Niland S, Nosov G, Klingauf J, Spatz JP, Eble JA. The spatial molecular pattern of integrin recognition sites and their immobilization to colloidal nanobeads determine α2β1 integrin-dependent platelet activation. Biomaterials 2018; 167:107-120. [PMID: 29567387 DOI: 10.1016/j.biomaterials.2018.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 11/15/2022]
Abstract
Collagen, a strong platelet activator, is recognized by integrin α2β1 and GPVI. It induces aggregation, if added to suspended platelets, or platelet adhesion if immobilized to a surface. The recombinant non-prolylhydroxylated mini-collagen FC3 triple helix containing one α2β1 integrin binding site is a tool to specifically study how α2β1 integrin activates platelet. Whereas soluble FC3 monomers antagonistically block collagen-induced platelet activation, immobilization of several FC3 molecules to an interface or to colloidal nanobeads determines the agonistic action of FC3. Nanopatterning of FC3 reveals that intermolecular distances below 64 nm between α2β1 integrin binding sites trigger signaling through dot-like clusters of α2β1 integrin, which are visible in high resolution microscopy with dSTORM. Upon signaling, these integrin clusters increase in numbers per platelet, but retain their individual size. Immobilization of several FC3 to 100 nm-sized nanobeads identifies α2β1 integrin-triggered signaling in platelets to occur at a twentyfold slower rate than collagen, which activates platelet in a fast integrative signaling via different platelet receptors. As compared to collagen stimulation, FC3-nanobead-triggered signaling cause a significant stronger activation of the protein kinase BTK, a weak and dispensable activation of PDK1, as well as a distinct phosphorylation pattern of PDB/Akt.
Collapse
Affiliation(s)
- Augusto Martins Lima
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Seraphine V Wegner
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany, and Max Plank-Institute for Polymer Research, Mainz, Germany
| | - Ana C Martins Cavaco
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Maria Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany
| | - Georgii Nosov
- Institute for Physical Medicine and Biophysics, University of Muenster, Muenster, Germany
| | - Jürgen Klingauf
- Institute for Physical Medicine and Biophysics, University of Muenster, Muenster, Germany
| | - Joachim P Spatz
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany, and Max Planck-Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstr. 15, 48149 Muenster, Germany.
| |
Collapse
|
28
|
Hetmann A, Wujak M, Bolibok P, Zięba W, Wiśniewski M, Roszek K. Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:130-139. [PMID: 29636128 DOI: 10.1016/j.msec.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 11/25/2022]
Abstract
In this study graphene oxide (GO), carbon quantum dots (CQD) and carbon nanoonions (CNO) have been characterized and applied for the first time as a matrix for recombinant adenylate kinase (AK, EC 2.7.4.3) immobilization. AK is an enzyme fulfilling a key role in metabolic processes. This phosphotransferase catalyzes the interconversion of adenine nucleotides (ATP, ADP and AMP) and thereby participates in nucleotide homeostasis, monitors a cellular energy charge as well as acts as a component of purinergic signaling system. The AK activity in all obtained biocatalytic systems was higher as compared to the free enzyme. We have found that the immobilization on carbon nanostructures increased both activity and stability of AK. Moreover, the biocatalytic systems consisting of AK immobilized on carbon nanostructures can be easily and efficiently lyophilized without risk of desorption or decrease in the catalytic activity of the investigated enzyme. The positive action of AK-GO biocatalytic system in maintaining the nucleotide balance in in vitro cell culture was proved.
Collapse
Affiliation(s)
- Anna Hetmann
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland.
| | - Magdalena Wujak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland
| | - Paulina Bolibok
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland
| | - Wojciech Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland; INVEST-TECH R&D Center, 32-34 Płaska St., 87-100 Toruń, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland
| |
Collapse
|
29
|
Enko D, Mangge H, Münch A, Niedrist T, Mahla E, Metzler H, Prüller F. Pneumatic tube system transport does not alter platelet function in optical and whole blood aggregometry, prothrombin time, activated partial thromboplastin time, platelet count and fibrinogen in patients on anti-platelet drug therapy. Biochem Med (Zagreb) 2017; 27:217-224. [PMID: 28392742 PMCID: PMC5382865 DOI: 10.11613/bm.2017.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/14/2017] [Indexed: 01/09/2023] Open
Abstract
Introduction The aim of this study was to assess pneumatic tube system (PTS) alteration on platelet function by the light transmission aggregometry (LTA) and whole blood aggregometry (WBA) method, and on the results of platelet count, prothrombin time (PT), activated partial thromboplastin time (APTT), and fibrinogen. Materials and methods Venous blood was collected into six 4.5 mL VACUETTE® 9NC coagulation sodium citrate 3.8% tubes (Greiner Bio-One International GmbH, Kremsmünster, Austria) from 49 intensive care unit (ICU) patients on dual anti-platelet therapy and immediately hand carried to the central laboratory. Blood samples were divided into 2 Groups: Group 1 samples (N = 49) underwent PTS (4 m/s) transport from the central laboratory to the distant laboratory and back to the central laboratory, whereas Group 2 samples (N = 49) were excluded from PTS forces. In both groups, LTA and WBA stimulated with collagen, adenosine-5’-diphosphate (ADP), arachidonic acid (AA) and thrombin-receptor-activated-peptide 6 (TRAP-6) as well as platelet count, PT, APTT, and fibrinogen were performed. Results No statistically significant differences were observed between blood samples with (Group 1) and without (Group 2) PTS transport (P values from 0.064 – 0.968). The AA-induced LTA (bias: 68.57%) exceeded the bias acceptance limit of ≤ 25%. Conclusions Blood sample transportation with computer controlled PTS in our hospital had no statistically significant effects on platelet aggregation determined in patients with anti-platelet therapy. Although AA induced LTA showed a significant bias, the diagnostic accuracy was not influenced.
Collapse
Affiliation(s)
- Dietmar Enko
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Steyr, Steyr, Austria; Clinical Institute of Medical and Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Andreas Münch
- Department of Anesthesiology and Intensive Care Medicine, Medical University Graz, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute of Medical and Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Elisabeth Mahla
- Department of Anesthesiology and Intensive Care Medicine, Medical University Graz, Graz, Austria; Research Unit "Perioperative Platelet Function", Medical University of Graz, Graz, Austria
| | - Helfried Metzler
- Department of Anesthesiology and Intensive Care Medicine, Medical University Graz, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Laboratory Diagnostics, Medical University Graz, Graz, Austria; Research Unit "Perioperative Platelet Function", Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Kuo CY, Wang HC, Kung PH, Lu CY, Liao CY, Wu MT, Wu CC. Identification of CalDAG-GEFI as an intracellular target for the vicinal dithiol binding agent phenylarsine oxide in human platelets. Thromb Haemost 2017; 111:892-901. [DOI: 10.1160/th13-07-0629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/22/2013] [Indexed: 11/05/2022]
Abstract
SummaryCalDAG-GEFI, a guanine nucleotide exchange factor activating Rap1, is known to play a key role in Ca2+-dependent glycoprotein (GP)IIb/IIIa activation and platelet aggregation. Although inhibition of CalDAG-GEFI could be a potential strategy for antiplatelet therapy, no inhibitor of this protein has been identified. In the present study, phenylarsine oxide (PAO), a vicinal dithiol blocker, potently prevented Rap1 activation in thrombin-stimulated human platelets without significantly inhibiting intracellular Ca2+ mobilisation and protein kinase C activation. PAO also prevented the Ca2+ ionophore-induced Rap1 activation and platelet aggregation, which are dependent on CalDAG-GEFI. In the biotin-streptavidin pull-down assay, CalDAG-GEFI was efficiently pull-downed by streptavidin beads from the lysates of biotin-conjugated PAO-treated platelets, suggesting that PAO binds to intracellular CalDAG-GEFI with high affinity. The above effects of PAO were reversed by a vicinal dithiol compound 2,3-dimercaptopropanol. In addition, CalDAG-GEFI formed disulfide-linked oligomers in platelets treated with the thiol-oxidant diamide, indicating that CalDAG-GEFI contains redox-sensitive thiols. In a purified recombinant protein system, PAO directly inhibited CalDAG-GEFI-stimulated GTP binding to Rap1. Using CalDAG-GEFI and Rap1-overexpressed human embryonic kidney 293T cells, we further confirmed that PAO abolished Ca2+-mediated Rap1 activation. Taken together, these results have demonstrated that CalDAG-GEFI is one of the targets of action of PAO, and propose an important role of vicinal cysteines for the functions of CalDAG-GEFI.
Collapse
|
31
|
Lourenço AL, Salvador RRS, Silva LA, Saito MS, Mello JFR, Cabral LM, Rodrigues CR, Vera MAF, Muri EMF, de Souza AMT, Craik CS, Dias LRS, Castro HC, Sathler PC. Synthesis and mechanistic evaluation of novel N'-benzylidene-carbohydrazide-1H-pyrazolo[3,4-b]pyridine derivatives as non-anionic antiplatelet agents. Eur J Med Chem 2017; 135:213-229. [PMID: 28453995 DOI: 10.1016/j.ejmech.2017.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases (CVDs) account for over 17 million deaths globally each year, with atherosclerosis as the underlying cause of most CVDs. Herein we describe the synthesis and in vitro mechanistic evaluation of novel N'-benzylidene-carbohydrazide-1H-pyrazolo[3,4-b]pyridines (3-22) designed as non-anionic antiplatelet agents and presenting a 30-fold increase in potency compared to aspirin. The mechanism underlying their antiplatelet activity was elucidated by eliminating potential targets through a series of in vitro assays including light transmission aggregometry, clot retraction, and quantitative ELISA, further identifying the reduction in biosynthesis of thromboxane B2 as their main mechanism of action. The intrinsic fluorescence of the compounds permits their binding to platelet membranes to be readily monitored. In silico structure-activity relationship, molecular docking and dynamics studies support the biological profile of the series revealing the molecular basis of their activity and their potential as future molecular therapeutic agents.
Collapse
Affiliation(s)
- André L Lourenço
- Programa de Pós-Graduação em Patologia - Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Raquel R S Salvador
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde (PPG-CAPS) - Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Leonardo A Silva
- Programa de Pós-Graduação em Ciências e Biotecnologia (PPBI) - Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Max S Saito
- Programa de Pós-Graduação em Patologia - Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Juliana F R Mello
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF) - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Lúcio M Cabral
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF) - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Carlos R Rodrigues
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF) - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Maria A F Vera
- Laboratório de Química Medicinal (LQMed) - Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Estela M F Muri
- Laboratório de Química Medicinal (LQMed) - Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Alessandra M T de Souza
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde (PPG-CAPS) - Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Luiza R S Dias
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde (PPG-CAPS) - Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Laboratório de Química Medicinal (LQMed) - Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Helena C Castro
- Programa de Pós-Graduação em Patologia - Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-Graduação em Ciências e Biotecnologia (PPBI) - Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Plínio C Sathler
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF) - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
Mihaylova Z, Mitev V, Stanimirov P, Isaeva A, Gateva N, Ishkitiev N. Use of platelet concentrates in oral and maxillofacial surgery: an overview. Acta Odontol Scand 2017; 75:1-11. [PMID: 27669885 DOI: 10.1080/00016357.2016.1236985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To describe and provide a comprehensive overview on the development, use and efficacy of autologous platelet concentrates in different in vitro and in vivo studies focusing on oral and maxillofacial pathologies. MATERIALS AND METHODS Present work employs an extensive critical overview of the literature on the development and application of platelet concentrates. RESULTS Platelet concentrates are innovative endogenous therapeutic agents which gained a lot of interest in different medical and dental disciplines due to their potential ability to stimulate and increase regeneration of soft and hard tissues. The effect of platelet-derived products is considered to be a result of the high number of platelets which contain a wide range of growth factors. They are not just therapeutic products but autologous blood concentrates containing active molecules. The quality of platelet concentrates may vary according to the individual physical state of donors making it difficult to to compare the outcomes of their application. Although, there are many studies analyzing the properties of these biomaterials both in vivo and in vitro, a consensus regarding their efficacy still has to be reached. CONCLUSION Evidences described in the literature on the efficacy of platelet concentrates in procedures in oral and maxillofacial region are controversial and limited. In order to clarify the real advantages and priorities for the patients, when the blood-derived products are applied, further in vitro and in vivo research about the activity of PRP and PRF on the dental cells biology should be conducted.
Collapse
|
33
|
Flavonolignans inhibit ADP induced blood platelets activation and aggregation in whole blood. Int J Biol Macromol 2016; 95:682-688. [PMID: 27923566 DOI: 10.1016/j.ijbiomac.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/26/2016] [Accepted: 12/03/2016] [Indexed: 02/03/2023]
Abstract
Flavonolignans are a group of active chemical compounds presented in the silymarin - a standardized extract obtained from fruits and seeds of Milk thistle (Silybum marianum L. Gaernt.). Since the 70s of the last century, flavonolignans have been regarded to the official medicine as a substances having hepatoprotective properties. However many researches performed in recent years have demonstrated that flavonolignans posses many other healthy properties including modulation of variety cell-signaling pathways. The aim of our study was to examine the effects of three major flavonolignans (silybin, silychristin and silydianin) on ADP-induced blood platelet activation using the flow cytometry analysis as well as determine the mechanism of this interaction by bioinformatic ligand docking method. We observed that all tested flavonolignans in dose-dependent manner inhibit formation of blood platelet aggregates and microparticles as well as decrease expression of P-selectin and activation of integrin αIIbβ3. Our computer-generated models confirm the flow cytometry analysis. We observed that all tested flavonolignans have conformations which are able to bind to the extracellular domain of P2Y12 receptor and probably block interaction with ADP. Our studies may help in the development of a new potential anti-platelet agent, which might be an alternative to the current using drugs.
Collapse
|
34
|
Platelets miRNA as a Prediction Marker of Thrombotic Episodes. DISEASE MARKERS 2016; 2016:2872507. [PMID: 28042196 PMCID: PMC5155104 DOI: 10.1155/2016/2872507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022]
Abstract
The blood platelets are crucial for the coagulation physiology to maintain haemostatic balance and are involved in various pathologies such as atherosclerosis and thrombosis. The studies of recent years have shown that anucleated platelets are able to succeed protein synthesis. Additionally, mRNA translation in blood platelets is regulated by miRNA molecules. Recent works postulate the possibility of using miRNAs as biomarkers of atherosclerosis and ischemic episodes. This review article describes clinical studies that presented blood platelets miRNAs expression profile changes in different thrombotic states, which suggest use of these molecules as predictive biomarkers.
Collapse
|
35
|
Wu YW, Goubran H, Seghatchian J, Burnouf T. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfus Apher Sci 2016; 54:309-18. [PMID: 27179926 DOI: 10.1016/j.transci.2016.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
36
|
Lai BMH, Shum JSF, Chu CY, Lo SSW, Lau KY. Predictors of the success and failure of emergency pelvic artery embolisation for primary postpartum haemorrhage: a 12-year review. Singapore Med J 2016; 58:272-278. [PMID: 27090601 DOI: 10.11622/smedj.2016079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION This study aimed to identify predictors of the outcome and clinical efficacy of emergency pelvic artery embolisation (PAE) for primary postpartum haemorrhage (PPH) and to assess the post-embolisation fertility of PAE patients in a regional hospital setting. METHODS A 12-year retrospective study of patients undergoing emergency PAE was conducted at a regional acute general hospital. Clinical and procedural parameters, clinical outcomes and post-embolisation pregnancy success rates were analysed. RESULTS There were 47,221 deliveries at the hospital during the study period, of which 33 patients required urgent PAE for primary PPH. The technical success rate of embolisation was 97.0% (n = 32). Clinically adequate haemostasis was achieved by a single embolisation procedure in 24 (72.7%) patients; the remaining eight eventually required surgery to achieve cessation of bleeding. Among the parameters studied, multivariate logistic regression analysis showed that pre-embolisation platelet count (p = 0.036) and maternal age (p = 0.019) were the only significant independent predictors of embolisation failure. Only two patients successfully conceived after PAE, although one of them had an ectopic pregnancy. CONCLUSION Emergency PAE is an effective measure to arrest life-threatening bleeding in patients with primary PPH. As low pre-embolisation platelet count and advanced maternal age are associated with higher odds of embolisation failure, careful post-embolisation monitoring may be required for such patients. Embolisation also allows subsequent pregnancy. However, further studies are required to assess the outcomes of post-embolisation pregnancies.
Collapse
Affiliation(s)
- Billy Ming Hei Lai
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - John Sing Fai Shum
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Chi Yeung Chu
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | | | - Kam Ying Lau
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| |
Collapse
|
37
|
van Golen RF, Stevens KM, Colarusso P, Jaeschke H, Heger M. Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease. J Clin Transl Res 2015; 1:107-115. [PMID: 26925465 DOI: 10.18053/jctres.201502.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. However, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has never been clearly demonstrated in I/R-subjected livers. AIMS To determine whether platelets become activated and degranulate in the acute phase of liver I/R and whether the platelets interact with neutrophils. METHODS Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Platelets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-blocking antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min of reperfusion. Image analysis and quantification was performed with dedicated software. RESULTS Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and neutrophils. CONCLUSIONS Platelets aggregate but do not become activated and do not degranulate in post-ischemic livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this setting warrant further investigation. RELEVANCE FOR PATIENTS I/R in surgical liver patients may compromise outcome due to post-ischemic oxidative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding platelet function during I/R is key to developing effective interventions for I/R injury and improving clinical outcomes.
Collapse
Affiliation(s)
- Rowan F van Golen
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katarzyna M Stevens
- Live Cell Imaging Facility, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pina Colarusso
- Live Cell Imaging Facility, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Kostos L, Burbury K, Srivastava G, Prince HM. Gastrointestinal bleeding in a chronic myeloid leukaemia patient precipitated by dasatinib-induced platelet dysfunction: Case report. Platelets 2015; 26:809-11. [PMID: 26029798 DOI: 10.3109/09537104.2015.1049138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bleeding in patients with chronic myeloid leukaemia (CML) receiving the second-line tyrosine kinase inhibitor (TKI) dasatinib is a well-documented side effect, occurring in up to 24% of patients. In most cases, it is attributed directly to a secondary grade 3 or 4 thrombocytopaenia. Platelet dysfunction precipitated by dasatinib has been demonstrated in multiple in vitro and in vivo studies; however, there is currently no correlative data that definitively associates this with clinically significant bleeding. In this case, we report a patient with chronic-phase CML receiving dasatinib who developed significant gastrointestinal bleeding secondary to angiodysplasia in the absence of a severe thrombocytopaenia or coagulopathy. Platelet function testing on the PFA-100 assay and formal platelet aggregometry demonstrated impaired platelet aggregation, however, upon cessation of dasatinib, platelet function normalised and the bleeding resolved without further intervention. This case demonstrates that dasatinib-induced platelet dysfunction can cause clinically significant bleeding and highlights the need for physicians to be aware of this adverse effect.
Collapse
Affiliation(s)
- Louise Kostos
- a Division of Cancer, Department of Haematology , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Kate Burbury
- a Division of Cancer, Department of Haematology , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Gaurav Srivastava
- a Division of Cancer, Department of Haematology , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - H Miles Prince
- a Division of Cancer, Department of Haematology , Peter MacCallum Cancer Centre , Melbourne , Australia
| |
Collapse
|
39
|
Chen C, Yang FQ, Zhang Q, Wang FQ, Hu YJ, Xia ZN. Natural Products for Antithrombosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:876426. [PMID: 26075003 PMCID: PMC4449941 DOI: 10.1155/2015/876426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022]
Abstract
Thrombosis is considered to be closely related to several diseases such as atherosclerosis, ischemic heart disease and stroke, as well as rheumatoid arthritis, hyperuricemia, and various inflammatory conditions. More and more studies have been focused on understanding the mechanism of molecular and cellular basis of thrombus formation as well as preventing thrombosis for the treatment of thrombotic diseases. In reality, there is considerable interest in the role of natural products and their bioactive components in the prevention and treatment of thrombosis related disorders. This paper briefly describes the mechanisms of thrombus formation on three aspects, including coagulation system, platelet activation, and aggregation, and change of blood flow conditions. Furthermore, the natural products for antithrombosis by anticoagulation, antiplatelet aggregation, and fibrinolysis were summarized, respectively.
Collapse
Affiliation(s)
- Cen Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Feng-Qin Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
40
|
Inamdar V, Patel A, Manne BK, Dangelmaier C, Kunapuli SP. Characterization of UBO-QIC as a Gαq inhibitor in platelets. Platelets 2015; 26:771-8. [PMID: 25734215 DOI: 10.3109/09537104.2014.998993] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gαq plays an important role in platelet activation by agonists such as thrombin, adenosine diphosphate (ADP) and thromboxane. The significance of Gαq signaling in platelets was established using YM254890, a Gαq/11-specific inhibitor and Gαq knockout murine platelets. However, YM-254890 is no longer available for investigators and there is a need to characterize other Gαq inhibitors. The aim of this study is to characterize the specificity of a compound, {L-threonine,(3R)-N-acetyl-3-hydroxy-L-leucyl-(aR)-a-hydroxybenzenepropanoyl-2,3-idehydro-N-methylalanyl-L-alanyl-N-methyl-L-alanyl-(3R)-3-[[(2S,3R)-3-hydroxy-4-methyl-1-oxo-2-[(1-oxopropyl)amino]pentyl]oxy]-L-leucyl-N,O-dimethyl-,(7 → 1)-lactone (9CI)} (UBO-QIC), as a Gαq inhibitor in platelets. Human platelets treated with UBO-QIC showed a concentration-dependent inhibition of platelet aggregation and secretion by protease-activated receptors (PAR) agonists, U46619 and ADP. UBO-QIC also abolished Gαq pathway signaling events such as calcium mobilization and pleckstrin phosphorylation. UBO-QIC had no nonspecific effects on the Gα12/13 pathway since platelet shape change was intact in Gαq knockout murine platelets stimulated with PAR agonists in the presence of the inhibitor. In addition, UBO-QIC-treated platelets did not affect collagen-related peptide-induced platelet activation suggesting that this inhibitor had no non-specific effects on the GPVI pathway. Furthermore, Akt phosphorylation downstream of the Gαi and Gαz pathways, and vasodilator-stimulated phosphoprotein phosphorylation downstream of the Gαs pathway were not inhibited in UBO-QIC-treated platelets. UBO-QIC is a specific inhibitor for Gαq, which can be a useful tool for investigating Gαq-coupled receptor signaling pathways in platelets.
Collapse
Affiliation(s)
- Vaishali Inamdar
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Akruti Patel
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Bhanu Kanth Manne
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Carol Dangelmaier
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| | - Satya P Kunapuli
- a Sol Sherry Thrombosis Research Center and Department of Physiology , Temple University School of Medicine , Philadelphia , PA , USA
| |
Collapse
|
41
|
Jing L, Yanyan Z, Junfeng F. Acetic acid in aged vinegar affects molecular targets for thrombus disease management. Food Funct 2015; 6:2845-53. [DOI: 10.1039/c5fo00327j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To elucidate the mechanism underlying the action of dietary vinegar on antithrombotic activity, acetic acid, the main acidic component of dietary vinegar, was used to determine antiplatelet and fibrinolytic activity.
Collapse
Affiliation(s)
- Li Jing
- College of Bioscience and Biotechnology
- Beijing Forestry University
- China
| | - Zhang Yanyan
- Food Science and Engineering College
- Beijing University of Agriculture
- Beijing
- China
| | - Fan Junfeng
- College of Bioscience and Biotechnology
- Beijing Forestry University
- China
- Beijing Key Laboratory of Forest Food Processing and Safety
- Beijing Forestry University
| |
Collapse
|
42
|
‘Click’ glycosylation of peptides through cysteine propargylation and CuAAC. Bioorg Med Chem 2014; 22:6672-6683. [DOI: 10.1016/j.bmc.2014.09.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 01/26/2023]
|
43
|
Vadivel K, Ponnuraj SM, Kumar Y, Zaiss AK, Bunce MW, Camire RM, Wu L, Evseenko D, Herschman HR, Bajaj MS, Bajaj SP. Platelets contain tissue factor pathway inhibitor-2 derived from megakaryocytes and inhibits fibrinolysis. J Biol Chem 2014; 289:31647-61. [PMID: 25262870 DOI: 10.1074/jbc.m114.569665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pM) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with K(d) ~9 nM and binds FVa with K(d) ~100 nM. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with K(d) ~36-48 nM and bind FVa with K(d) ~252-456 nM. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (~7 nM) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis.
Collapse
Affiliation(s)
| | | | - Yogesh Kumar
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Anne K Zaiss
- the Department of Molecular and Medical Pharmacology
| | - Matthew W Bunce
- the Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rodney M Camire
- the Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ling Wu
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Denis Evseenko
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Harvey R Herschman
- the Department of Molecular and Medical Pharmacology, the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Madhu S Bajaj
- the Department of Medicine, Division of Pulmonology and Critical Care, and
| | - S Paul Bajaj
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
44
|
Protection of glycocalyx decreases platelet adhesion after ischaemia/reperfusion. Eur J Anaesthesiol 2014; 31:474-81. [DOI: 10.1097/eja.0000000000000085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Collagen can selectively trigger a platelet secretory phenotype via glycoprotein VI. PLoS One 2014; 9:e104712. [PMID: 25116206 PMCID: PMC4130581 DOI: 10.1371/journal.pone.0104712] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/11/2014] [Indexed: 11/22/2022] Open
Abstract
Platelets are not only central actors of hemostasis and thrombosis but also of other processes including inflammation, angiogenesis, and tissue regeneration. Accumulating evidence indicates that these “non classical” functions of platelets do not necessarily rely on their well-known ability to form thrombi upon activation. This suggests the existence of non-thrombotic alternative states of platelets activation. We investigated this possibility through dose-response analysis of thrombin- and collagen-induced changes in platelet phenotype, with regards to morphological and functional markers of platelet activation including shape change, aggregation, P-selectin and phosphatidylserine surface expression, integrin activation, and release of soluble factors. We show that collagen at low dose (0.25 µg/mL) selectively triggers a platelet secretory phenotype characterized by the release of dense- and alpha granule-derived soluble factors without causing any of the other major platelet changes that usually accompany thrombus formation. Using a blocking antibody to glycoprotein VI (GPVI), we further show that this response is mediated by GPVI. Taken together, our results show that platelet activation goes beyond the mechanisms leading to platelet aggregation and also includes alternative platelet phenotypes that might contribute to their thrombus-independent functions.
Collapse
|
46
|
Li J, Yu G, Fan J. Alditols and monosaccharides from sorghum vinegar can attenuate platelet aggregation by inhibiting cyclooxygenase-1 and thromboxane-A2 synthase. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:285-292. [PMID: 24877847 DOI: 10.1016/j.jep.2014.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vinegar has been used as both a common seasoning and a traditional Chinese medicine. Sorghum vinegar is an excellent source of physiological substances with multiple health benefits. AIM OF THIS STUDY To evaluate the antiplatelet aggregation activity of alditols and monosaccharides extracted from sorghum vinegar and analysis its mechanism. MATERIALS AND METHODS Alditol and monosaccharide extract (AME) from sorghum vinegar was first evaluated for antiplatelet activity using the turbidimetric method. Blood was collected from healthy volunteer donors. The platelet aggregation was induced by arachidonic acid (AA), collagen, adenosine diphosphate (ADP) and thrombin in vitro. AME was divided into three experimental groups with the concentration were 0.10, 0.25 and 0.50 mg/mL. In order to determine the inhibitory activity of AME on COX1, TXS and TXA2 production experiments were conducted using the COX1, TXS and TXB2 EIA kit. Computational docking was used to find the docking pose of monosaccharides and alditols with COX1. RESULTS AME showed significant induction of antiplatelet activity by arachidonic acid (AA), collagen, adenosine diphosphate (ADP) and thrombin in a concentration-dependent manner (p<0.05). AME (0.50 mg/mL) reduced the AA-induced aggregation rate to 10.35%±0.46%, which was comparable to acetylsalicylic acid (aspirin, ASA) (0.50 mg/mL, 6.35%±0.58%), a medical standard. Furthermore, AME strongly inhibited cyclooxygenase-1 (COX1) and thromboxane-A2 synthase (TXS), and subsequently attenuated thromboxane-A2 (TXA2) production. These findings indicated that AME attenuates platelet aggregation through the AA metabolism pathway. Computational docking showed that alditols (L-erythritol, L-arabitol, xylitol and D-sorbitol), monosaccharides (D-glucopyranose, D-fructofuranonse, D-xylopyranose, D-galactopyranose and D-ribose), ethyl glucoside and 3,4-(methylenedioxy) mandelic acid could dock directly into the active site of COX1. CONCLUSION Alditols and monosaccharides from sorghum vinegar inhibit multiple steps in the platelet aggregation pathway, and may be beneficial for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Li
- Department of Food Science and Engineering, College of Bioscience and Biotechnology, Beijing Forestry University, P.O.112, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Guoyong Yu
- Department of Food Science and Engineering, College of Bioscience and Biotechnology, Beijing Forestry University, P.O.112, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junfeng Fan
- Department of Food Science and Engineering, College of Bioscience and Biotechnology, Beijing Forestry University, P.O.112, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
47
|
Pietraforte D, Vona R, Marchesi A, de Jacobis IT, Villani A, Del Principe D, Straface E. Redox control of platelet functions in physiology and pathophysiology. Antioxid Redox Signal 2014; 21:177-93. [PMID: 24597688 DOI: 10.1089/ars.2013.5532] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE An imbalance between the production and the detoxification of reactive oxygen species and reactive nitrogen species (ROS/RNS) can be implicated in many pathological processes. Platelets are best known as primary mediators of hemostasis and can be either targets of ROS/RNS or generate radicals during cell activation. These conditions can dramatically affect platelet physiology, leading even, as an ultimate event, to the cell number modification. In this case, pathological conditions such as thrombocytosis (promoted by increased cell number) or thrombocytopenia and myelodysplasia (promoted by cell decrease mediated by accelerated apoptosis) can occur. RECENT ADVANCES Usually, in peripheral blood, ROS/RNS production is balanced by the rate of oxidant elimination. Under this condition, platelets are in a nonadherent "resting" state. During endothelial dysfunction or under pathological conditions, ROS/RNS production increases and the platelets respond with specific biochemical and morphologic changes. Mitochondria are at the center of these processes, being able to both generate ROS/RNS, that drive redox-sensitive events, and respond to ROS/RNS-mediated changes of the cellular redox state. Irregular function of platelets and enhanced interaction with leukocytes and endothelial cells can contribute to pathogenesis of atherosclerotic and thrombotic events. CRITICAL ISSUES The relationship between oxidative stress, platelet death, and the activation-dependent pathways that drive platelet pro-coagulant activity is unclear and deserves to be explored. FUTURE DIRECTIONS Expanding knowledge about how platelets can mediate hemostasis and modulate inflammation may lead to novel and effective therapeutic strategies for the long and growing list of pathological conditions that involve both thrombosis and inflammation.
Collapse
Affiliation(s)
- Donatella Pietraforte
- 1 Department of Cell Biology and Neurosciences, Section of Cell Aging and Gender Medicine, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Prudent M, D’Alessandro A, Cazenave JP, Devine DV, Gachet C, Greinacher A, Lion N, Schubert P, Steil L, Thiele T, Tissot JD, Völker U, Zolla L. Proteome Changes in Platelets After Pathogen Inactivation—An Interlaboratory Consensus. Transfus Med Rev 2014; 28:72-83. [DOI: 10.1016/j.tmrv.2014.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
|
49
|
Zeddies S, De Cuyper IM, van der Meer PF, Daal BB, de Korte D, Gutiérrez L, Thijssen-Timmer DC. Pathogen reduction treatment using riboflavin and ultraviolet light impairs platelet reactivity toward specific agonists in vitro. Transfusion 2014; 54:2292-300. [DOI: 10.1111/trf.12636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Sabrina Zeddies
- Department of Hematopoiesis; University of Amsterdam; Amsterdam the Netherlands
| | - Iris M. De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | - Pieter F. van der Meer
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam the Netherlands
| | - Brunette B. Daal
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam the Netherlands
| | - Dirk de Korte
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam the Netherlands
| | - Laura Gutiérrez
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre; University of Amsterdam; Amsterdam the Netherlands
| | | |
Collapse
|
50
|
Wang L, Soe NN, Sowden M, Xu Y, Modjeski K, Baskaran P, Kim Y, Smolock EM, Morrell CN, Berk BC. Cyclophilin A is an important mediator of platelet function by regulating integrin αIIbβ3 bidirectional signalling. Thromb Haemost 2014; 111:873-82. [PMID: 24429998 DOI: 10.1160/th13-09-0738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/22/2013] [Indexed: 01/08/2023]
Abstract
Cyclophilin A (CyPA) is an important mediator in cardiovascular diseases. It possesses peptidyl-prolyl cis-trans isomerase activity (PPIase) and chaperone functions, which regulate protein folding, intracellular trafficking and reactive oxygen species (ROS) production. Platelet glycoprotein receptor αIIbβ3 integrin activation is the common pathway for platelet activation. It was our objective to understand the mechanism by which CyPA-regulates αIIbβ3 activation in platelets. Mice deficient for CyPA (CyPA-/-) had prolonged tail bleeding time compared to wild-type (WT) controls despite equivalent platelet numbers. In vitro studies revealed that CyPA-/- platelets exhibited dramatically decreased thrombin-induced platelet aggregation. In vivo, formation of occlusive thrombi following FeCl3 injury was also significantly impaired in CyPA-/- mice compared with WT-controls. Furthermore, CyPA deficiency inhibited flow-induced thrombus formation in vitro. Flow cytometry demonstrated that thrombin-induced ROS production and αIIbβ3 activation were reduced in CyPA-/- platelets. Coimmunoprecipitation studies showed ROS-dependent increased association of CyPA and αIIbβ3. This association was dependent upon the PPIase activity of CyPA. Significantly, fibrinogen-platelet binding, platelet spreading and cytoskeleton reorganisation were also altered in CyPA-/- platelets. Moreover, CyPA deficiency prevented thrombin-induced αIIbβ3 and cytoskeleton association. In conclusion, CyPA is an important mediator in platelet function by regulation of αIIbβ3 bidirectionalsignalling through increased ROS production and facilitating interaction between αIIbβ3 and the cell cytoskeleton.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bradford C Berk
- Bradford C. Berk, MD, PhD, Aab Cardiovascular Research Institute, University of Rochester, Box CVRI, 601 Elmwood Avenue, Rochester, NY 14642, USA, Tel.: +1 585 275 3407, Fax: +1 585 273 1059, E-mail:
| |
Collapse
|