1
|
Song YY, Liang D, Liu DK, Lin L, Zhang L, Yang WQ. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases. Front Cell Dev Biol 2023; 11:1164166. [PMID: 37427386 PMCID: PMC10325625 DOI: 10.3389/fcell.2023.1164166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The main treatment strategy for ischemic diseases caused by conditions such as poor blood vessel formation or abnormal blood vessels involves repairing vascular damage and encouraging angiogenesis. One of the mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase (ERK) pathway, is followed by a tertiary enzymatic cascade of MAPKs that promotes angiogenesis, cell growth, and proliferation through a phosphorylation response. The mechanism by which ERK alleviates the ischemic state is not fully understood. Significant evidence suggests that the ERK signaling pathway plays a critical role in the occurrence and development of ischemic diseases. This review briefly describes the mechanisms underlying ERK-mediated angiogenesis in the treatment of ischemic diseases. Studies have shown that many drugs treat ischemic diseases by regulating the ERK signaling pathway to promote angiogenesis. The prospect of regulating the ERK signaling pathway in ischemic disorders is promising, and the development of drugs that specifically act on the ERK pathway may be a key target for promoting angiogenesis in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yue-Yue Song
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Liang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Kun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qing Yang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Province Cardiovascular Disease Chinese Medicine Precision Diagnosis Engineering Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Loinard C, Benadjaoud MA, Lhomme B, Flamant S, Baijer J, Tamarat R. Inflammatory cells dynamics control neovascularization and tissue healing after localized radiation induced injury in mice. Commun Biol 2023; 6:571. [PMID: 37248293 DOI: 10.1038/s42003-023-04939-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Local overexposure to ionizing radiation leads to chronic inflammation, vascular damage and cachexia. Here we investigate the kinetics of inflammatory cells from day (D)1 to D180 after mouse hindlimb irradiation and analyze the role of monocyte (Mo) subsets in tissue revascularization. At D1, we find that Mo and T cells are mobilized from spleen and bone marrow to the blood. New vessel formation during early phase, as demonstrated by ~1.4- and 2-fold increased angiographic score and capillary density, respectively, correlates with an increase of circulating T cells, and Mohi and type 1-like macrophages in irradiated muscle. At D90 vascular rarefaction and cachexia are observed, associated with decreased numbers of circulating Molo and Type 2-like macrophages in irradiated tissue. Moreover, CCR2- and CX3CR1-deficency negatively influences neovascularization. However adoptive transfer of Mohi enhances vessel growth. Our data demonstrate the radiation-induced dynamic inflammatory waves and the major role of inflammatory cells in neovascularization.
Collapse
Affiliation(s)
- Céline Loinard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France.
| | | | - Bruno Lhomme
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Stéphane Flamant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Zhu Y, Wang S, Chen X. Extracellular Vesicles and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:57-68. [PMID: 37603272 DOI: 10.1007/978-981-99-1443-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Characterized by coronary artery obstruction or stenosis, ischemic cardiovascular diseases as advanced stages of coronary heart diseases commonly lead to left ventricular aneurysm, ventricular septal defect, and mitral insufficiency. Extracellular vesicles (EVs) secreted by diverse cells in the body exert roles in cell-cell interactions and intrinsic cellular regulations. With a lipid double-layer membrane and biological components such as DNA, protein, mRNA, microRNAs (miRNA), and siRNA inside, the EVs function as paracrine signaling for the pathophysiology of ischemic cardiovascular diseases and maintenance of the cardiac homeostasis. Unlike stem cell transplantation with the potential tumorigenicity and immunogenicity, the EV-based therapeutic strategy is proposed to satisfy the demand for cardiac repair and regeneration while the circulating EVs detected by a noninvasive approach can act as precious biomarkers. In this chapter, we extensively summarize the cardioprotective functions of native EVs and bioengineered EVs released from stem cells, cardiomyocytes, cardiac progenitor cells (CPCs), endothelial cells, fibroblast, smooth muscle cells, and immune cells. In addition, the potential of EVs as robust molecule biomarkers is discussed for clinical diagnosis of ischemic cardiovascular disease, attributed to the same pathology of EVs as that of their origin. Finally, we highlight EV-based therapy as a biocompatible alternative to direct cell-based therapy for ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xuerui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Chen J, Wang Y, Wang S, Zhao X, Zhao L, Wang Y. Salvianolic acid B and ferulic acid synergistically promote angiogenesis in HUVECs and zebrafish via regulating VEGF signaling. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114667. [PMID: 34597652 DOI: 10.1016/j.jep.2021.114667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Induced vascular growth in the myocardium has been widely acknowledged as a promising intervention strategy for patients with ischemic coronary artery disease. Yet despite long-term efforts on gene, protein or cell-based pro-angiogenic therapies, the clinical translation remains challenging. Noticeably, multiple medicinal herbs have long-term documented effects in promoting blood circulation. Salvia miltiorrhiza and Ligusticum stratum are two representative traditional Chinese medicine herbs with suggested roles in enhancing organ blood supply, and Guanxinning Tablet (GXNT), a botanical drug which is formulated with these two herbs, exhibited significant efficacy against angina pectoris in clinical practices. AIM OF THE STUDY This study aimed to examine the pro-angiogenic activity of GXNT and its major components, as well as to explore their pharmacological mechanism in promoting angiogenesis. MATERIALS AND METHODS In vitro, the pro-angiogenic effects of GXNT and its major components were examined on human umbilical vein endothelial cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), scratch assay, and endothelial cell tube formation assay. In vivo, the pro-angiogenic effects were examined on the ponatinib-induced angiogenesis defective zebrafish model. The active compounds were identified through phenotype-based screening in zebrafish, and their pharmacological mechanism was explored in both in vitro and in vivo models by immunofluorescent staining, cell cycle analysis, quantitative PCR and whole embryo in-situ hybridization. RESULTS We demonstrated strong pro-angiogenic effects of GXNT in both human umbilical vein endothelial cells and zebrafish model. Moreover, through phenotype-based screening in zebrafish for active compounds, pro-angiogenic effects was discovered for salvianolic acid B (Sal B), a major component of Salvia miltiorrhiza, and its activity was further enhanced when co-administered with ferulic acid (FA), which is contained in Ligusticum stratum. On the cellular level, Sal B and FA cotreatment increased endothelial cell proliferation of sprouting arterial intersomitic vessels in zebrafish, as well as largely restored G1-S cell cycle progression and cyclin D1 expression in angiogenic defective HUVECs. Through quantitative transcriptional analysis, increased expression of vegfr2 (kdr, kdrl) and vegfr1 was detected after GXNT or SalB/FA treatment, together with upregulated transcription of their ligands including vegf-a, vegf-b, and pgfb. Bevacizumab, an anti-human VEGF-A monoclonal antibody, was able to significantly, but not completely, block the pro-angiogenic effects of GXNT or SalB/FA, suggesting their multi-targeting properties. CONCLUSIONS In conclusion, from a traditional Chinese medicine with effects in enhancing blood circulation, we demonstrated the synergistic pro-angiogenic effects of Sal B and FA via both in vitro and in vivo models, which function at least partially through regulating the expression of VEGF receptors and ligands. Future studies are warranted to further elaborate the molecular interaction between these two compounds and the key regulators in the process of neovascularization.
Collapse
Affiliation(s)
- Jing Chen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shufang Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoping Zhao
- College of Preclinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, China.
| |
Collapse
|
5
|
Xiao Y, Zhang Y, Li Y, Peng N, Liu Q, Qiu D, Cho J, Borlongan CV, Yu G. Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1. Cell Transplant 2022; 31:9636897221102898. [PMID: 35726847 PMCID: PMC9218457 DOI: 10.1177/09636897221102898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been shown to promote angiogenesis. Treating MSCs with ischemic rat brain extracts was sufficient to augment their benefits in stroke. However, no similar analyses of ischemic heart extracts have been performed to date. We aim to determine whether MSC-Exos derived from MSCs pretreated with ischemic rat heart extract were able to promote angiogenesis and to clarify underlying mechanisms. ELISA (enzyme-linked immunosorbent assay) of heart extracts revealed a significant increase of vascular endothelial growth factor (VEGF) at 24 h post-MI (myocardial infarction) modeling, and time-dependent decreases in hypoxia inducible factor-1α (HIF-1α). MTT and wound healing assays revealed human umbilical vein endothelial cells (HUVECs) migration and proliferation increased following MSCE-Exo treatment (exosomes derived from MSC pretreated with ischemic heart extracts of 24 h post-MI) relative to MSCN-Exo treatment (exosomes derived from MSC pretreated with normal heart extracts). Proteomic analyses of MSCE-Exo and MSCN-Exo were conducted to screen for cargo proteins promoting angiogenesis. Result revealed several angiogenesis-related proteins were upregulated in MSCE-Exo, including DMBT1 (deleted in malignant brain tumors 1). When DMBT1 was silenced in MSCs, HUVECs with MSCDMBT1 RNAi-Exo treatment exhibited impaired proliferative and migratory activity and reductions of DMBT1, p-Akt, β-catenin, and VEGF. To explore how ischemic heart extracts took effects, ELISA was conducted showing a significant increase of IL-22 at 24 h post-MI modeling. P-STAT3, IL22RA1, DMBT1, and VEGF proteins were increased in MSCE relative to MSCN, and VEGF and DMBT1 were increased in MSCE-Exos. Together, these suggest that IL-22 upregulation in ischemic heart extracts can increase DMBT1 in MSCs. Exosomes derived from those MSCs deliver DMBT1 to HUVECs, thereby enhancing their migratory and proliferative activity.
Collapse
Affiliation(s)
- Yi Xiao
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhang Li
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Nanyin Peng
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Liu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Danyang Qiu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Justin Cho
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Guolong Yu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
7
|
Stine SJ, Popowski KD, Su T, Cheng K. Exosome and Biomimetic Nanoparticle Therapies for Cardiac Regenerative Medicine. Curr Stem Cell Res Ther 2020; 15:674-684. [PMID: 32148200 PMCID: PMC7805022 DOI: 10.2174/1574888x15666200309143924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Exosomes and biomimetic nanoparticles have great potential to develop into a wide-scale therapeutic platform within the regenerative medicine industry. Exosomes, a subgroup of EVs with diameter ranging from 30-100 nm, have recently gained attention as an innovative approach for the treatment of various diseases, including heart disease. Their beneficial factors and regenerative properties can be contrasted with various cell types. Various biomimetic nanoparticles have also emerged as a unique platform in regenerative medicine. Biomimetic nanoparticles are a drug delivery platform, which have the ability to contain both biological and fabricated components to improve therapeutic efficiency and targeting. The novelty of these platforms holds promise for future clinical translation upon further investigation. In order for both exosome therapeutics and biomimetic nanoparticles to translate into large-scale clinical treatment, numerous factors must first be considered and improved. Standardization of different protocols, from exosome isolation to storage conditions, must be optimized to ensure batches are pure. Standardization is also important to ensure no variability in this process across studies, thus making it easier to interpret data across different disease models and treatments. Expansion of clinical trials incorporating both biomimetic nanoparticles and exosomes will require a standardization of fabrication and isolation techniques, as well as stricter regulations to ensure reproducibility across various studies and disease models. This review will summarize current research on exosome therapeutics and the application of biomimetic nanoparticles in cardiac regenerative medicine, as well as applications for exosome expansion and delivery on a large clinical scale.
Collapse
Affiliation(s)
- Sydney J. Stine
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
8
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
9
|
Brakenhielm E, Richard V. Therapeutic vascular growth in the heart. VASCULAR BIOLOGY 2019; 1:H9-H15. [PMID: 32923948 PMCID: PMC7439849 DOI: 10.1530/vb-19-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/03/2022]
Abstract
Despite tremendous efforts in preclinical research over the last decades, the clinical translation of therapeutic angiogenesis to grow stable and functional blood vessels in patients with ischemic diseases continues to prove challenging. In this mini review, we briefly present the current main approaches applied to improve pro-angiogenic therapies. Specific examples from research on therapeutic cardiac angiogenesis and arteriogenesis will be discussed, and finally some suggestions for future therapeutic developments will be presented.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France
| | - Vincent Richard
- Normandy University, UniRouen, Inserm (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France
| |
Collapse
|
10
|
Li X, Sun Y, Huang S, Chen Y, Chen X, Li M, Si X, He X, Zheng H, Zhong L, Yang Y, Liao W, Liao Y, Chen G, Bin J. Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. EBioMedicine 2018; 39:69-82. [PMID: 30545799 PMCID: PMC6355659 DOI: 10.1016/j.ebiom.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND We previously found that loss of lncRNA-AZIN2 splice variant (AZIN2-sv) increases cardiomyocyte (CM) proliferation and attenuates adverse ventricular remodelling post-myocardial infarction (MI). However, whether inhibition of AZIN2-sv can simultaneously induce angiogenesis and thus improve prognosis after MI is unclear. METHODS We used in situ hybridization and quantitative PCR to determine AZIN2-sv expression in endothelial cells. Knockdown and overexpression were performed to detect the role of AZIN2-sv in endothelial cell function, angiogenesis and prognosis after MI. RNA pulldown, RNA immunoprecipitation and luciferase reporter assays were used to determine the interaction with talin1 (Tln1) protein and miRNA-214 (miR-214). DNA pulldown and chromatin immunoprecipitation (ChIP) assays were used to study AZIN2-sv binding to upstream transcription factors. FINDINGS AZIN2-sv was enriched in cardiac endothelial cells. The loss of AZIN2-sv reduced endothelial cell apoptosis and promoted endothelial sprouting and capillary network formation in vitro. Moreover, in vivo, the loss of AZIN2-sv induced angiogenesis and improved cardiac function after MI. Mechanistically, AZIN2-sv reduced Tln1 and integrin β1 (ITGB1) protein levels to inhibit neovascularization. AZIN2-sv activated the ubiquitination-dependent degradation of Tln1 mediated by proteasome 26S subunit ATPase 5 (PSMC5). In addition, AZIN2-sv could bind to miR-214 and suppress the phosphatase and tensin homologue (PTEN)/Akt pathway to inhibit angiogenesis. With regard to the upstream mechanism, Bach1, a negative regulator of angiogenesis, bound to the promoter of AZIN2-sv and increased its expression. INTERPRETATION Bach1-activated AZIN2-sv could participate in angiogenesis by promoting the PSMC5-mediated ubiquitination-dependent degradation of Tln1 and blocking the miR-214/PTEN/Akt pathway. Inhibition of AZIN2-sv induced angiogenesis and myocardial regeneration simultaneously, thus, AZIN2-sv could be an ideal therapeutic target for improving myocardial repair after MI. FUND: National Natural Science Foundations of China.
Collapse
Affiliation(s)
- Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqiang Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyun Si
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| |
Collapse
|
11
|
Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, Millard RW, Xiao DS, Ashraf M, Xu M. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2018; 8:45200-45212. [PMID: 28423355 PMCID: PMC5542178 DOI: 10.18632/oncotarget.16778] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been found to benefit patients with a variety of ischemic diseases via promoting angiogenesis. It is also well established that exosomes secreted from MSCs deliver bioactive molecules, including microRNAs (miRs) to recipient cells. Therefore, we hypothesized that exosomes secreted from MSCs deliver miRs into endothelial cells and mediate angiogenesis. The pro-angiogenic stimulatory capacity of exosomes was investigated using tube-like structure formation and spheroid-based sprouting of human umbilical vein endothelial cells (HUVECs), and in vivo Matrigel plug assay. The secretion of pro-angiogenic miRs (pro-angiomiRs) from MSCs into culture medium and transfer of the miRs to HUVECs were confirmed using real-time quantitative PCR. Supplementation of the exosome secretion blocker GW4869 (10 μM) reduced the pro-angiomiRs in the MSC-derived conditioned medium (CdMMSC). Addition of exosomes isolated from CdMMSC could directly 1) promote HUVEC tube-like structure formation in vitro; 2) mobilize endothelial cells into Matrigel plug subcutaneously transplanted into mice; and 3) increase blood flow inside Matrigel plug. Fluorescence tracking showed that the exosomes were internalized rapidly by HUVECs causing an upregulated expression of pro-angiomiRs in HUVECs. Loss-and-gain function of the pro-angiomiRs (e.g., miR-30b) in MSCs significantly altered the pro-angiogenic properties of these MSC-derived exosomes, which could be associated with the regulation of their targets in HUVECs. These results suggest that exosomal transfer of pro-angiogenic miRs plays an important role in MSC mediated angiogenesis and stem cell-to-endothelial cell communication.
Collapse
Affiliation(s)
- Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.,Children's Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Jingcai Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Ronald W Millard
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.,Department of Pharmacology and Cell Biophysics, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - De-Sheng Xiao
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.,Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Kordbacheh F, Carruthers TJ, Bezos A, Oakes M, Du Fall L, Hocart CH, Parish CR, Djordjevic MA. Promotion of mammalian angiogenesis by neolignans derived from soybean extracellular fluids. PLoS One 2018; 13:e0196843. [PMID: 29738532 PMCID: PMC5940235 DOI: 10.1371/journal.pone.0196843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/20/2018] [Indexed: 01/04/2023] Open
Abstract
Excessive or insufficient angiogenesis is associated with major classes of chronic disease. Although less studied, small molecules which can promote angiogenesis are being sought as potential therapeutics for cardiovascular and peripheral arterial disease and stroke. Here we describe a bioassay-directed discovery approach utilising size exclusion and liquid chromatography to purify components of soybean xylem sap that have pro-angiogenic activity. Using high resolution accurate mass spectrometry and nuclear magnetic resonance spectroscopy, the structure of two pro-angiogenic molecules (FK1 and FK2) were identified as erythro-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (eGGCE), and threo-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (tGGCE). These two molecules, which are coniferyl neolignan stereoisomers, promoted in vitro angiogenesis in the μM to nM range. Independently sourced samples of eGGCE and tGGCE exhibited comparable pro-angiogenic activity to the soybean derived molecules. The cellular mode of action of these molecules was investigated by studying their effect on endothelial cell proliferation, migration, tube formation and adhesion to the extracellular matrix (ECM) components, fibronectin and vitronectin. They were found to enhance endothelial cell proliferation and endothelial cell tube formation on Matrigel, but did not affect endothelial cell migration or adhesion to fibronectin and vitronectin. Thus, this study has identified two coniferyl neolignan stereoisomers, eGGCE and tGGCE, as pro-angiogenic molecules, with eGGCE being less active than tGGCE.
Collapse
Affiliation(s)
- Farzaneh Kordbacheh
- Department of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Thomas J. Carruthers
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anna Bezos
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Marie Oakes
- Department of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lauren Du Fall
- Department of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Charles H. Hocart
- Department of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Christopher R. Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael A. Djordjevic
- Department of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Fadini GP, Ciciliot S, Albiero M. Concise Review: Perspectives and Clinical Implications of Bone Marrow and Circulating Stem Cell Defects in Diabetes. Stem Cells 2016; 35:106-116. [PMID: 27401837 DOI: 10.1002/stem.2445] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a complex systemic disease characterized by severe morbidity and excess mortality. The burden of its multiorgan complications relies on an imbalance between hyperglycemic cell damage and defective endogenous reparative mechanisms. Inflammation and abnormalities in several hematopoietic components are typically found in diabetes. The discovery that diabetes reduces circulating stem/progenitor cells and impairs their function has opened an entire new field of study where diabetology comes into contact with hematology and regenerative medicine. It is being progressively recognized that such rare circulating cell populations mirror finely regulated processes involved in hematopoiesis, immunosurveillance, and peripheral tissue homeostasis. From a clinical perspective, pauperization of circulating stem cells predicts adverse outcomes and death. Furthermore, studies in murine models and humans have identified the bone marrow (BM) as a previously neglected site of diabetic end-organ damage, characterized by microangiopathy, neuropathy, fat deposition, and inflammation. As a result, diabetes impairs the mobilization of BM stem/progenitor cells, a defect known as mobilopathy or myelokathexis, with negative consequences for physiologic hematopoiesis, immune regulation, and tissue regeneration. A better understanding of the molecular and cellular processes that govern the BM stem cell niche, cell mobilization, and kinetics in peripheral tissues may uncover new therapeutic strategies for patients with diabetes. This concise review summarizes the current knowledge on the interplay between the BM, circulating stem cells, and diabetes, and sets the stages for future developments in the field. Stem Cells 2017;35:106-116.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| | - Stefano Ciciliot
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| |
Collapse
|
14
|
Cheng HS, Fish JE. Neovascularization Driven by MicroRNA Delivery to the Endothelium. Arterioscler Thromb Vasc Biol 2016; 35:2263-5. [PMID: 26490274 DOI: 10.1161/atvbaha.115.306558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Henry S Cheng
- From the Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada
| | - Jason E Fish
- From the Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; and Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Kwok HH, Chan LS, Poon PY, Yue PYK, Wong RNS. Ginsenoside-Rg1 induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. Toxicol Appl Pharmacol 2015; 287:276-83. [PMID: 26115870 DOI: 10.1016/j.taap.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg1 (Rg1), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg1-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg1 could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3'-UTR. Intriguingly, ginsenoside-Rg1 was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg1-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg1 could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg1, and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lai-Sheung Chan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Po-Ying Poon
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Patrick Ying-Kit Yue
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ricky Ngok-Shun Wong
- Dr. Gilbert Hung Ginseng Laboratory, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
16
|
Engineering Angiogenesis for Myocardial Infarction Repair: Recent Developments, Challenges, and Future Directions. Cardiovasc Eng Technol 2014. [DOI: 10.1007/s13239-014-0193-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Igarashi J, Hashimoto T, Kubota Y, Shoji K, Maruyama T, Sakakibara N, Takuwa Y, Ujihara Y, Katanosaka Y, Mohri S, Naruse K, Yamashita T, Okamoto R, Hirano K, Kosaka H, Takata M, Konishi R, Tsukamoto I. Involvement of S1P1 receptor pathway in angiogenic effects of a novel adenosine-like nucleic acid analog COA-Cl in cultured human vascular endothelial cells. Pharmacol Res Perspect 2014; 2:e00068. [PMID: 25505610 PMCID: PMC4186426 DOI: 10.1002/prp2.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/13/2022] Open
Abstract
COA-Cl (2Cl-C.OXT-A) is a recently developed adenosine-like nucleic acid analog that promotes angiogenesis via the mitogen-activated protein (MAP) kinases ERK1/2. Endothelial S1P1 receptor plays indispensable roles in developmental angiogenesis. In this study, we examined the functions of S1P1 in COA-Cl-induced angiogenic responses. Antagonists for S1P1, W146, and VPC23019, substantially but still partly inhibited the effects of COA-Cl with regard to ERK1/2 activation and tube formation in cultured human umbilical vein endothelial cells (HUVEC). Antagonists for adenosine A1 receptor and purinergic P2Y1 receptor were without effect. Genetic knockdown of S1P1 with siRNA, but not that of S1P3, attenuated COA-Cl-elicited ERK1/2 responses. The signaling properties of COA-Cl showed significant similarities to those of sphingosine 1-phosphate, an endogenous S1P1 ligand, in that both induced responses sensitive to pertussis toxin (Gα i/o inhibitor), 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), (calcium chelator), and PP2 (c-Src tyrosine kinase inhibitor). COA-Cl elevated intracellular Ca2+ concentration and induced tyrosine phosphorylation of p130Cas, a substrate of c-Src, in HUVEC. COA-Cl displaced [3H]S1P in a radioligand-binding competition assay in chem-1 cells overexpressing S1P1. However, COA-Cl activated ERK1/2 in CHO-K1 cells that lack functional S1P1 receptor, suggesting the presence of additional yet-to-be-defined COA-Cl target in these cells. The results thus suggest the major contribution of S1P1 in the angiogenic effects of COA-Cl. However, other mechanism such as that seen in CHO-K1 cells may also be partly involved. Collectively, these findings may lead to refinement of the design of this nucleic acid analog and ultimately to development of small molecule-based therapeutic angiogenesis.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Yasuo Kubota
- Department of Dermatology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Kazuyo Shoji
- Department of Dermatology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Tokumi Maruyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Norikazu Sakakibara
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Yoh Takuwa
- Department of Cardiovascular Physiology, Kanazawa University School of Medicine 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yoshihiro Ujihara
- Department of Physiology, Kawasaki Medical School 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuki Katanosaka
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Shitada-Cho 2-5-1, Kita-Ku, Okayama, 700-0914, Japan
| | - Satoshi Mohri
- Department of Physiology, Kawasaki Medical School 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Shitada-Cho 2-5-1, Kita-Ku, Okayama, 700-0914, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ryuji Okamoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hiroaki Kosaka
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Maki Takata
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan
| |
Collapse
|
18
|
Analysis of possible factors relating to prognosis in autologous peripheral blood mononuclear cell transplantation for critical limb ischemia. Cytotherapy 2014; 16:1110-6. [DOI: 10.1016/j.jcyt.2014.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/25/2014] [Accepted: 03/20/2014] [Indexed: 12/17/2022]
|
19
|
EGF-induced adipose tissue mesothelial cells undergo functional vascular smooth muscle differentiation. Cell Death Dis 2014; 5:e1304. [PMID: 24967966 PMCID: PMC4611741 DOI: 10.1038/cddis.2014.271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/01/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Recent studies suggested that the post-natal mesothelium retain differentiative potential of the embryonic mesothelium, which generates fibroblasts and vascular smooth muscle cells (VSMCs), in developing coelomic organs via epithelial-to-mesenchymal transition (EMT). Whether adult mesothelial cells (MCs) are able to give rise to functional VSMCs in vitro and which are the factors and mechanisms directing this process remain largely unknown. Here, we isolated adipose tissue MCs (ATMCs) from adult mice, and demonstrated that ATMCs cultured in a serum-containing media supplemented with epidermal growth factor (EGF) efficiently increased both their proliferation and EMT above levels found in only serum-containing media cultures. EGF-induced ATMCs gained phosphorylation of the EGF receptor and activated simultaneously ILK/Erk1/2, PI3K/Akt and Smad2/3-dependent pathways. Sequential subculture onto collagen-I surface efficiently improved their vasculogenic EMT towards cells featuring VSMCs (α-SMA, calponin, caldesmon, SM22α, desmin, SM-MHC, smoothelin-B and PDGFR-β) that could actively contract in response to receptor and non-receptor-mediated vasoactive agonists. Overall, our results indentify EGF signalling as a robust vasculogenic inductive pathway for ATMCs, leading to their transdifferentiation into functional VSMC-like cells.
Collapse
|
20
|
Affiliation(s)
- Yosif Manavski
- From the Institute of Cardiovascular Regeneration, Centre of Molecular Medicine, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
21
|
Cervio M, Scudeller L, Viarengo G, Monti M, Del Fante C, Arici V, Perotti C. γ-Irradiated cord blood MNCs: different paracrine effects on mature and progenitor endothelial cells. Microvasc Res 2014; 94:9-16. [PMID: 24788073 DOI: 10.1016/j.mvr.2014.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022]
Abstract
Cell-based therapies have been employed to promote neovascularization mainly through the release of paracrine factors inhibiting apoptosis and supporting migration and proliferation of resident differentiated cells. We tested in vitro pro-angiogenic effects of apoptotic cord blood-derived mononuclear cells (CB-MNCs) and their conditioned medium (CM) on mature endothelial cells (HUVECs) and peripheral blood-derived endothelial progenitor cells (ECFCs). CB-MNCs were γ-irradiated to induce apoptosis and cultured for 72 h to obtain the release of CM. MNCs viability, evaluated by flow cytometry, decreased progressively after γ-irradiation reaching 41% at 72 h. γ-Irradiated MNCs (γMNCs) released increasing amounts of EGF, PDGF-AB and VEGF in their CM over time, as assessed by ELISA. γ-MNCs and their CM enhanced capillary-like network formation (in a dose-dependent and time-persistent manner), proliferation and migration of HUVECs in vitro, while they primed capillary-like network formation (dose-independent and not time-persistent) and induced migration but did not support proliferation of ECFCs. Our data support the hypothesis of paracrine mechanism as prevalent in regenerative medicine and demonstrate the efficacy of MNCs secretome in inducing neovascularization. To our knowledge, this is the first paper highlighting differential pro-angiogenic effects of CM on mature and progenitor endothelial cells, adding a tile in the understanding of mechanisms involved in neovascularization.
Collapse
Affiliation(s)
- Marila Cervio
- Immunohematology and Transfusion Service, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy.
| | - Luigia Scudeller
- Service of Biometry and Statistics, Scientific Direction, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Gianluca Viarengo
- Immunohematology and Transfusion Service, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Manuela Monti
- Research Center for Regenerative Medicine, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Claudia Del Fante
- Immunohematology and Transfusion Service, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Vittorio Arici
- Vascular Surgery Unit, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Cesare Perotti
- Immunohematology and Transfusion Service, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| |
Collapse
|