1
|
Haqani MI, Nakano M, Nagano AJ, Nakamura Y, Tsudzuki M. Association analysis of production traits of Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Sci Rep 2023; 13:21307. [PMID: 38042890 PMCID: PMC10693557 DOI: 10.1038/s41598-023-48293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
This study was designed to perform an association analysis and identify SNP markers associated with production traits of Japanese quail using restriction-site-associated DNA sequencing. Weekly body weight data from 805 quail were collected from hatching to 16 weeks of age. A total number of 3990 eggs obtained from 399 female quail were used to assess egg quality traits. Egg-related traits were measured at the beginning of egg production (first stage) and at 12 weeks of age (second stage). Five eggs were analyzed at each stage. Traits, such as egg weight, egg length and short axes, eggshell strength and weight, egg equator thickness, yolk weight, diameter, and colour, albumen weight, age of first egg, total number of laid eggs, and egg production rate, were assessed. A total of 383 SNPs and 1151 associations as well as 734 SNPs and 1442 associations were identified in relation to quail production traits using general linear model (GLM) and mixed linear model (MLM) approaches, respectively. The GLM-identified SNPs were located on chromosomes 1-13, 15, 17-20, 24, 26-28, and Z, underlying phenotypic traits, except for egg and albumen weight at the first stage and yolk yellowness at the second stage. The MLM-identified SNPs were positioned on defined chromosomes associated with phenotypic traits except for the egg long axis at the second stage of egg production. Finally, 35 speculated genes were identified as candidate genes for the targeted traits based on their nearest positions. Our findings provide a deeper understanding and allow a more precise genetic improvement of production traits of Galliformes, particularly in Japanese quail.
Collapse
Affiliation(s)
- Mohammad Ibrahim Haqani
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| | - Michiharu Nakano
- Faculty of Agriculture and Marine Sciences, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Yoshiaki Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan
| | - Masaoki Tsudzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8525, Japan.
| |
Collapse
|
2
|
Guo M, Xia Z, Hong Y, Ji H, Li F, Liu W, Li S, Xin H, Tan K, Lian Z. The TFPI2-PPARγ axis induces M2 polarization and inhibits fibroblast activation to promote recovery from post-myocardial infarction in diabetic mice. J Inflamm (Lond) 2023; 20:35. [PMID: 37915070 PMCID: PMC10621166 DOI: 10.1186/s12950-023-00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Diabetes mellitus is one of the causes of poor ventricular remodelling and poor cardiac recovery after myocardial infarction (MI). We previously reported that tissue factor pathway inhibitor-2 (TFPI2) was downregulated in response to hyperglycaemia and that it played a pivotal role in extracellular matrix (ECM) degradation and cell migration. Nonetheless, the function and mechanism of TFPI2 in post-MI remodelling under diabetic conditions remain unclear. Therefore, in the present study, we investigated the role of TFPI2 in post-MI effects in a diabetic mouse model. RESULTS TFPI2 expression was markedly decreased in the infarcted myocardium of diabetic MI mice compared with that in non-diabetic mice. TFPI2 knockdown in the MI mouse model promoted fibroblast activation and migration as well as matrix metalloproteinase (MMP) expression, leading to disproportionate fibrosis remodelling and poor cardiac recovery. TFPI2 silencing promoted pro-inflammatory M1 macrophage polarization, which is consistent with the results of TFPI2 downregulation and M1 polarization under diabetic conditions. In contrast, TFPI2 overexpression in diabetic MI mice protected against adverse cardiac remodelling and functional deterioration. TFPI2 overexpression also inhibited MMP2 and MMP9 expression and attenuated fibroblast activation and migration, as well as excessive collagen production, in the infarcted myocardium of diabetic mice. TFPI2 promoted an earlier phenotype transition of pro-inflammatory M1 macrophages to reparative M2 macrophages via activation of peroxisome proliferator-activated receptor gamma. CONCLUSIONS This study highlights TFPI2 as a promising therapeutic target for early resolution of post-MI inflammation and disproportionate ECM remodelling under diabetic conditions.
Collapse
Affiliation(s)
- Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Zongyi Xia
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Yefeng Hong
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Hongwei Ji
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Fuhai Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Wenheng Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Shaohua Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Kai Tan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| | - Zhexun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
3
|
Selective deficiency of UCP-1 and adropin may lead to different subtypes of anti-neutrophil cytoplasmic antibody-associated vasculitis. Genes Immun 2023; 24:39-45. [PMID: 36670189 DOI: 10.1038/s41435-023-00195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that is prone to respiratory and renal failures. Its major target antigens are serine protease 3 (PR3) and myeloperoxidase (MPO), but the determinants of PR3 and MPO subtypes are still unclear. Uncoupling protein-1 (UCP-1) and adropin (Adr) regulate mutually and play an important role in endothelial cell injury. In this study, adropin and UCP-1 knockout (AdrKO and UCP-1-KO) models were established on the basis of C57BL/6 J mice. The results showed that UCP-1-KO and AdrKO mice similar to AAV: significant inflammatory cell infiltration, vascular wall damage, and erythrocyte extravasation. The pathological basis of AdrKO was that endothelial cells adhered and activated neutrophils to release MPO, and the core gene was peroxisome proliferator-activated receptor gamma (PPARG). However, UCP-1-KO induced PR3 release, and the accumulation and expression of tissue factor on the vascular wall, and the core gene was peroxisome proliferator-activated receptor delta (PPARD). The present study verified that the subtypes of AAV may be genetically different diseases and it also provide novel experimental evidence for clinical differentiation of the two subtypes.
Collapse
|
4
|
Wang ZY, Guo MQ, Cui QK, Yuan H, Shan-Ji Fu, Liu B, Xie F, Qiao W, Cheng J, Wang Y, Zhang MX. PARP1 deficiency protects against hyperglycemia-induced neointimal hyperplasia by upregulating TFPI2 activity in diabetic mice. Redox Biol 2021; 46:102084. [PMID: 34364219 PMCID: PMC8353360 DOI: 10.1016/j.redox.2021.102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/09/2022] Open
Abstract
Diabetes mellitus (DM) promotes neointimal hyperplasia, characterized by dysregulated proliferation and accumulation of vascular smooth muscle cells (VSMCs), leading to occlusive disorders, such as atherosclerosis and stenosis. Poly (ADP-ribose) polymerase 1 (PARP1), reported as a crucial mediator in tumor proliferation and transformation, has a pivotal role in DM. Nonetheless, the function and potential mechanism of PARP1 in diabetic neointimal hyperplasia remain unclear. In this study, we constructed PARP1 conventional knockout (PARP1−/−) mice, and ligation of the left common carotid artery was performed to induce neointimal hyperplasia in Type I diabetes mellitus (T1DM) mouse models. PARP1 expression in the aorta arteries of T1DM mice increased significantly and genetic deletion of PARP1 showed an inhibitory effect on the neointimal hyperplasia. Furthermore, our results revealed that PARP1 enhanced diabetic neointimal hyperplasia via downregulating tissue factor pathway inhibitor (TFPI2), a suppressor of vascular smooth muscle cell proliferation and migration, in which PARP1 acts as a negative transcription factor augmenting TFPI2 promoter DNA methylation. In conclusion, these results suggested that PARP1 accelerates the process of hyperglycemia-induced neointimal hyperplasia via promoting VSMCs proliferation and migration in a TFPI2 dependent manner.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Meng-Qi Guo
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing-Ke Cui
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shan-Ji Fu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bin Liu
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Xie
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wen Qiao
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Cheng
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming-Xiang Zhang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Kobayashi H, Imanaka S. Toward an understanding of tissue factor pathway inhibitor-2 as a novel serodiagnostic marker for clear cell carcinoma of the ovary. J Obstet Gynaecol Res 2021; 47:2978-2989. [PMID: 34184357 DOI: 10.1111/jog.14916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
AIMS Tissue factor pathway inhibitor (TFPI)-2 has recently emerged as a serodiagnostic marker for patients with epithelial ovarian cancer (EOC), especially clear cell carcinoma (CCC). This review discusses the biological properties of TFPI-2 and why serum levels are elevated in CCC patients. METHODS A comprehensive literature search was conducted in PubMed up until March, 2021. RESULTS TFPI-2 is a Kunitz-type protease inhibitor and negatively regulates the enzymatic activities, such as plasmin. TFPI-2 has been characterized as a tumor suppressor gene and was frequently downregulated through promoter hypermethylation in various human cancers. In contrast, TFPI-2 was overexpressed only in CCC. TFPI-2 may be involved in the pathophysiology of CCC, possibly through regulation of coagulation system, stabilization of extracellular matrix (ECM), and induction of intracellular signal transduction. TFPI-2 suppresses tissue factor-induced hypercoagulation in a hypoxic environment. TFPI-2, secreted by CCC cells, platelets, and adjacent vascular endothelial cells, may suppress tumor growth and invasion through ECM remodeling. Nuclear TFPI-2 may suppress matrix metalloproteinase production via transcription factors and modulate caspase-mediated cell apoptosis. CCC cells may upregulate the TFPI-2 expression to adapt to survival in the demanding environment. TFPI-2 is secreted by CCC cells and enters the systemic circulation, resulting in elevated blood levels. DISCUSSION Serum TFPI-2 reflects the overexpression of TFPI-2 in CCC tissues and is a potential serodiagnostic marker. Further research is needed to explore the expression, clinical significance, biological function, and potential mechanism of TFPI-2 in CCC.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms. Clinic MayOne, Kashihara, Nara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan.,Ms. Clinic MayOne, Kashihara, Nara, Japan
| |
Collapse
|
6
|
Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R, Yin C, Li J, Xie Y, Hu S, Wang Q. Genome-Wide Association Study-Based Identification of SNPs and Haplotypes Associated With Goose Reproductive Performance and Egg Quality. Front Genet 2021; 12:602583. [PMID: 33777090 PMCID: PMC7994508 DOI: 10.3389/fgene.2021.602583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Geese are one of the most economically important waterfowl. However, the low reproductive performance and egg quality of geese hinder the development of the goose industry. The identification and application of genetic markers may improve the accuracy of beneficial trait selection. To identify the genetic markers associated with goose reproductive performance and egg quality traits, we performed a genome-wide association study (GWAS) for body weight at birth (BBW), the number of eggs at 48 weeks of age (EN48), the number of eggs at 60 weeks of age (EN60) and egg yolk color (EYC). The GWAS acquired 2.896 Tb of raw sequencing data with an average depth of 12.44× and identified 9,279,339 SNPs. The results of GWAS showed that 26 SNPs were significantly associated with BBW, EN48, EN60, and EYC. Moreover, five of these SNPs significantly associated with EN48 and EN60 were in a haplotype block on chromosome 35 from 4,512,855 to 4,541,709 bp, oriented to TMEM161A and another five SNPs significantly correlated to EYC were constructed in haplotype block on chromosome 5 from 21,069,009 to 21,363,580, which annotated by TMEM161A, CALCR, TFPI2, and GLP1R. Those genes were enriched in epidermal growth factor-activated receptor activity, regulation of epidermal growth factor receptor signaling pathway. The SNPs, haplotype markers, and candidate genes identified in this study can be used to improve the accuracy of marker-assisted selection for the reproductive performance and egg quality traits of geese. In addition, the candidate genes significantly associated with these traits may provide a foundation for better understanding the mechanisms underlying reproduction and egg quality in geese.
Collapse
Affiliation(s)
- Guangliang Gao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Xianzhi Zhao
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | | | - Keshan Zhang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Rui Wu
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Chunhui Yin
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Jing Li
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Youhui Xie
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qigui Wang
- Institute of Poultry Science, Chongqing Academy of Animal Science, Chongqing, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Chongqing, China
| |
Collapse
|
7
|
Li Q, Hu L, Li J, Yu P, Hu F, Wan B, Xu M, Cheng H, Yu W, Jiang L, Shi Y, Li J, Duan M, Long Y, Liu WT. Hydrogen Attenuates Endotoxin-Induced Lung Injury by Activating Thioredoxin 1 and Decreasing Tissue Factor Expression. Front Immunol 2021; 12:625957. [PMID: 33767697 PMCID: PMC7985449 DOI: 10.3389/fimmu.2021.625957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Endotoxin-induced lung injury is one of the major causes of death induced by endotoxemia, however, few effective therapeutic options exist. Hydrogen inhalation has recently been shown to be an effective treatment for inflammatory lung injury, but the underlying mechanism is unknown. In the current study we aim to investigate how hydrogen attenuates endotoxin-induced lung injury and provide reference values for the clinical application of hydrogen. LPS was used to establish an endotoxin-induced lung injury mouse model. The survival rate and pulmonary pathologic changes were evaluated. THP-1 and HUVECC cells were cultured in vitro. The thioredoxin 1 (Trx1) inhibitor was used to evaluate the anti-inflammatory effects of hydrogen. Hydrogen significantly improved the survival rate of mice, reduced pulmonary edema and hemorrhage, infiltration of neutrophils, and IL-6 secretion. Inhalation of hydrogen decreased tissue factor (TF) expression and MMP-9 activity, while Trx1 expression was increased in the lungs and serum of endotoxemia mice. LPS-stimulated THP-1 and HUVEC-C cells in vitro and showed that hydrogen decreases TF expression and MMP-9 activity, which were abolished by the Trx1 inhibitor, PX12. Hydrogen attenuates endotoxin-induced lung injury by decreasing TF expression and MMP-9 activity via activating Trx1. Targeting Trx1 by hydrogen may be a potential treatment for endotoxin-induced lung injury.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Juan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bing Wan
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Miaomiao Xu
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
| | - Huixian Cheng
- Department of Anesthesiology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Wanyou Yu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Liping Jiang
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jincan Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling College Affiliated to Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- Department of Anesthesiology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Grover SP, Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 2020; 307:80-86. [PMID: 32674807 DOI: 10.1016/j.atherosclerosis.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the formation of lipid rich plaques in the wall of medium to large sized arteries. Atherothrombosis represents the terminal manifestation of this pathology in which atherosclerotic plaque rupture or erosion triggers the formation of occlusive thrombi. Occlusion of arteries and resultant tissue ischemia in the heart and brain causes myocardial infarction and stroke, respectively. Tissue factor (TF) is the receptor for the coagulation protease factor VIIa, and formation of the TF:factor VIIa complex triggers blood coagulation. TF is expressed at high levels in atherosclerotic plaques by both macrophage-derived foam cells and vascular smooth muscle cells, as well as extracellular vesicles derived from these cells. Importantly, TF mediated activation of coagulation is critically important for arterial thrombosis in the setting of atherosclerotic disease. The major endogenous inhibitor of the TF:factor VIIa complex is TF pathway inhibitor 1 (TFPI-1), which is also present in atherosclerotic plaques. In mouse models, increased or decreased expression of TFPI-1 has been found to alter atherosclerosis. This review highlights the contribution of TF-dependent activation of coagulation to atherthrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Wang J, Niu N, Xu S, Jin ZG. A simple protocol for isolating mouse lung endothelial cells. Sci Rep 2019; 9:1458. [PMID: 30728372 PMCID: PMC6365507 DOI: 10.1038/s41598-018-37130-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Endothelial dysfunction is the common molecular basis of multiple human diseases, such as atherosclerosis, diabetes, hypertension, and acute lung injury. Therefore, primary isolation of high-purity endothelial cells (ECs) is crucial to study the mechanisms of endothelial function and disease pathogenesis. Mouse lung ECs (MLECs) are widely used in vascular biology and lung cell biology studies such as pulmonary inflammation, angiogenesis, vessel permeability, leukocyte/EC interaction, nitric oxide production, and mechanotransduction. Thus, in this paper, we describe a simple, and reproducible protocol for the isolation and culture of MLECs from adult mice using collagenase I-based enzymatic digestion, followed by sequential sorting with PECAM1 (also known as CD31)- and ICAM2 (also known as CD102)-coated microbeads. The morphology of isolated MLECs were observed with phase contrast microscope. MLECs were authenticated by CD31 immunoblotting, and immunofluorescent staining of established EC markers VE-cadherin and von Willebrand factor (vWF). Cultured MLECs also showed functional characteristics of ECs, evidenced by DiI-oxLDL uptake assay and THP-1 monocyte adhesion assay. Finally, we used MLECs from endothelium-specific enhancer of zeste homolog 2 (EZH2) knockout mice to show the general applicability of our protocol. To conclude, we describe here a simple and reproducible protocol to isolate highly pure and functional ECs from adult mouse lungs. Isolation of ECs from genetically engineered mice is important for downstream phenotypic, genetic, or proteomic studies.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA
- Department of Pharmacy, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Niu Niu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA
| | - Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA
| | - Zheng Gen Jin
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, 14623, USA.
| |
Collapse
|
10
|
Yuan HQ, Hao YM, Ren Z, Gu HF, Liu FT, Yan BJ, Qu SL, Tang ZH, Liu LS, Chen DX, Jiang ZS. Tissue factor pathway inhibitor in atherosclerosis. Clin Chim Acta 2019; 491:97-102. [PMID: 30695687 DOI: 10.1016/j.cca.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) reduces the development of atherosclerosis by regulating tissue factor (TF) mediated coagulation pathway. In this review, we focus on recent findings on the inhibitory effects of TFPI on endothelial cell activation, vascular smooth muscle cell (VSMC) proliferation and migration, inflammatory cell recruitment and extracellular matrix which are associated with the development of atherosclerosis. Meanwhile, we are also concerned about the impact of TFPI levels and genetic polymorphisms on clinical atherogenesis. This article aims to explain the mechanism in inhibiting the development of atherosclerosis and clinical effects of TFPI, and provide new ideas for the clinical researches and mechanism studies of atherothrombosis.
Collapse
Affiliation(s)
- Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hong-Feng Gu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Feng-Tao Liu
- Center of Functional Laboratory, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 42100, PR China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Da-Xing Chen
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
11
|
Seifert R, Kuhlmann MT, Eligehausen S, Kiefer F, Hermann S, Schäfers M. Molecular imaging of MMP activity discriminates unstable from stable plaque phenotypes in shear-stress induced murine atherosclerosis. PLoS One 2018; 13:e0204305. [PMID: 30304051 PMCID: PMC6179381 DOI: 10.1371/journal.pone.0204305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose As atherosclerotic plaque ruptures are the primary cause of ischaemic events, their preventive identification by imaging remains a clinical challenge. Matrix metalloproteinases (MMP) are involved in plaque progression and destabilisation and are therefore promising targets to characterize rupture-prone unstable plaques. This study aims at evaluating MMP imaging to discriminate unstable from stable plaque phenotypes. Methods ApoE deficient mice (ApoE-/-) on a high cholesterol diet underwent implantation of a tapered cuff around the right common carotid artery (CCA) inducing a highly inflamed atherosclerotic plaque upstream (US) and a more stable plaque phenotype downstream (DS) of the cuff. 8 weeks after surgery, the MMP inhibitor-based photoprobe Cy5.5-AF443 was administered i.v. 3h prior to in situ and ex vivo fluorescence reflectance imaging of the CCAs. Thereafter, CCAs were analysed regarding plaque size, presence of macrophages, and MMP-2 and MMP-9 concentrations by immunohistochemistry and ELISA. Results We found a significantly higher uptake of Cy5.5-AF443 in US as compared to DS plaques in situ (1.29 vs. 1.06 plaque-to-background ratio; p<0.001), which was confirmed by ex vivo measurements. Immunohistochemistry revealed a higher presence of macrophages, MMP-2 and MMP-9 in US compared to DS plaques. Accordingly, MMP-2 concentrations were significantly higher in US plaques (47.2±7.6 vs. 29.6±4.6 ng/mg; p<0.05). Conclusions In the ApoE-/- cuff model MMP-2 and MMP-9 activities are significantly higher in upstream low shear stress-induced unstable atherosclerotic plaques as compared to downstream more stable plaque phenotypes. MMP inhibitor-based fluorescence molecular imaging allows visualization of these differences in shear stress-induced atherosclerosis.
Collapse
Affiliation(s)
- Robert Seifert
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- * E-mail:
| | - Michael T. Kuhlmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Sarah Eligehausen
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence ‘Cells in Motion’, University of Münster, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence ‘Cells in Motion’, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence ‘Cells in Motion’, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Ali MN, Kasetty G, Elvén M, Alyafei S, Jovic S, Egesten A, Herwald H, Schmidtchen A, Papareddy P. TFPI-2 Protects Against Gram-Negative Bacterial Infection. Front Immunol 2018; 9:2072. [PMID: 30254643 PMCID: PMC6141739 DOI: 10.3389/fimmu.2018.02072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) has previously been characterized as an endogenous anticoagulant. TFPI-2 is expressed in the vast majority of cells, mainly secreted into the extracellular matrix. Recently we reported that EDC34, a C-terminal peptide derived from TFPI-2, exerts a broad antimicrobial activity. In the present study, we describe a previously unknown antimicrobial mode of action for the human TFPI-2 C-terminal peptide EDC34, mediated via binding to immunoglobulins of the classes IgG, IgA, IgE, and IgM. In particular the interaction of EDC34 with the Fc part of IgG is of importance since this boosts interaction between the immunoglobulin and complement factor C1q. Moreover, we find that the binding increases the C1q engagement of the antigen-antibody interaction, leading to enhanced activation of the classical complement pathway during bacterial infection. In experimental murine models of infection and endotoxin challenge, we show that TFPI-2 is up-regulated in several organs, including the lung. Correspondingly, TFPI-2−/− mice are more susceptible to pulmonary Pseudomonas aeruginosa bacterial infection. No anti-coagulant role of TFPI-2 was observed in these models in vivo. Furthermore, in vivo, the mouse TFPI-2-derived C-terminal peptide VKG24, a homolog to human EDC34 is protective against systemic Escherichia coli bacterial infection. Moreover, in sputum from cystic fibrosis patients TFPI-2 C-terminal fragments are generated and found associated with immunoglobulins. Together our data describe a previously unknown host defense mechanism and therapeutic importance of TFPI-2 against invading Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Mohamad N Ali
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gopinath Kasetty
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Elvén
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Saud Alyafei
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sandra Jovic
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Arne Egesten
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Dermatology, LKCMedicine, Nanyang Technological University, Singapore, Singapore.,Department of Biomedical Sciences, Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Praveen Papareddy
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Gao F, Wang FG, Liu RR, Xue F, Zhang J, Xu GQ, Bi JH, Meng Z, Huo R. Epigenetic silencing of miR-130a ameliorates hemangioma by targeting tissue factor pathway inhibitor 2 through FAK/PI3K/Rac1/mdm2 signaling. Int J Oncol 2017; 50:1821-1831. [PMID: 28393235 DOI: 10.3892/ijo.2017.3943] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
Hemangiomas are the most common vascular tumors that occur frequently in prematures and females. microRNA (miR)-130a is associated with the growth and invasion in many tumors, and its role in hemangiomas has not been addressed so far. The present study revealed that miR‑130a was overexpressed in infantile hemangioma tissues compared with matched tumor-adjacent tissues. The inhibitor of miR-130a restrained cell growth and induced cell apoptosis in vitro. miR‑130a inhibitor also induced a cell cycle arrest at G2/M phase. Further studies revealed that tissue factor pathway inhibitor 2 (TFPI2) was a novel miR-130a target, due to miR-130a bound directly to its 3'-untranslated region and miR-130a inhibitor enhanced the expression of TFPI2. Contrary to the effects of miR-130a inhibitor, TFPI2 siRNA strongly promoted cell growth and colony formation, whereas TFPI2 overexpression contributed to the suppressing effect of miR-130a inhibitor in cell viability. Furthermore, miR-130a inhibitor reduced the activation of focal adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K)/Rac1/anti-mouse double minute (mdm2) pathway proteins, inhibited the expression and nuclear translocation of mdm2. Moreover, FAK overexpression prevented miR-130a inhibitor-induced cell cycle arrest and decrease of cell viability. In vivo experiments, miR-130a inhibition effectively suppressed the tumor growth, restrained angiogenesis by decreasing the expression of angiogenesis markers and the percentage of CD31+ and CD34+. Taken together, our research indicated that miR-130a functions as an oncogene by targeting TFPI2, miR-130a inhibition reduced the growth and angiogenesis of hemangioma by inactivating the FAK/PI3K/Rac1/mdm2 pathway. Thus, miR-130a may serve as a potential therapeutic strategy for the treatment of hemangioma.
Collapse
Affiliation(s)
- Feng Gao
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Fa-Gang Wang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Ren-Rong Liu
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Feng Xue
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Jian Zhang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Guang-Qi Xu
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Jian-Hai Bi
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Zhen Meng
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| | - Ran Huo
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| |
Collapse
|