1
|
Croft J, Grajeda B, Gao L, Abou-Fadel J, Badr A, Sheng V, Zhang J. Whole-Genome Omics Elucidates the Role of CCM1 and Progesterone in Cerebral Cavernous Malformations within CmPn Networks. Diagnostics (Basel) 2024; 14:1895. [PMID: 39272679 PMCID: PMC11394482 DOI: 10.3390/diagnostics14171895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormal expansions of brain capillaries that increase the risk of hemorrhagic strokes, with CCM1 mutations responsible for about 50% of familial cases. The disorder can cause irreversible brain damage by compromising the blood-brain barrier (BBB), leading to fatal brain hemorrhages. Studies show that progesterone and its derivatives significantly impact BBB integrity. The three CCM proteins (CCM1, CCM2, and CCM3) form the CCM signaling complex (CSC), linking classic and non-classic progesterone signaling within the CmPn network, which is crucial for maintaining BBB integrity. This study aimed to explore the relationship between CCM1 and key pathways of the CmPn signaling network using three mouse embryonic fibroblast lines (MEFs) with distinct CCM1 expressions. Omics and systems biology analysis investigated CCM1-mediated signaling within the CmPn network. Our findings reveal that CCM1 is essential for regulating cellular processes within progesterone-mediated CmPn/CmP signaling, playing a crucial role in maintaining microvessel integrity. This regulation occurs partly through gene transcription control. The critical role of CCM1 in these processes suggests it could be a promising therapeutic target for CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Liyuan Gao
- Department of Computer Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Johnathan Abou-Fadel
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Ahmed Badr
- Department of Anesthesiology, Ochsner LSU Health, Shreveport, LA 71130, USA
| | - Victor Sheng
- Department of Computer Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jun Zhang
- Departs of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
2
|
Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev 2024; 45:593-624. [PMID: 38551091 PMCID: PMC11244253 DOI: 10.1210/endrev/bnae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 07/13/2024]
Abstract
Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.
Collapse
Affiliation(s)
- Jack Lockett
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Warrick J Inder
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Woolloongabba, QLD 4102, Australia
| | - Vicki L Clifton
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4101, Australia
| |
Collapse
|
3
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Salamone IM, Quattrocelli M, Barefield DY, Page PG, Tahtah I, Hadhazy M, Tomar G, McNally EM. Intermittent glucocorticoid treatment enhances skeletal muscle performance through sexually dimorphic mechanisms. J Clin Invest 2022; 132:149828. [PMID: 35143417 PMCID: PMC8920338 DOI: 10.1172/jci149828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid steroids are commonly prescribed for many inflammatory conditions, but chronic daily use produces adverse effects, including muscle wasting and weakness. In contrast, shorter glucocorticoid pulses may improve athletic performance, although the mechanisms remain unclear. Muscle is sexually dimorphic and comparatively little is known about how male and female muscles respond to glucocorticoids. We investigated the impact of once-weekly glucocorticoid exposure on skeletal muscle performance comparing male and female mice. One month of once-weekly glucocorticoid dosing improved muscle specific force in both males and females. Transcriptomic profiling of isolated myofibers identified a striking sexually dimorphic response to weekly glucocorticoids. Male myofibers had increased expression of genes in the IGF1/PI3K pathway and calcium handling, while female myofibers had profound upregulation of lipid metabolism genes. Muscles from weekly prednisone–treated males had improved calcium handling, while comparably treated female muscles had reduced intramuscular triglycerides. Consistent with altered lipid metabolism, weekly prednisone–treated female mice had greater endurance relative to controls. Using chromatin immunoprecipitation, we defined a sexually dimorphic chromatin landscape after weekly prednisone. These results demonstrate that weekly glucocorticoid exposure elicits distinct pathways in males versus females, resulting in enhanced performance.
Collapse
Affiliation(s)
- Isabella M Salamone
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Mattia Quattrocelli
- Department of Pediatrics, Cinicinnati Children's Hospital, Cincinnati, United States of America
| | - David Y Barefield
- Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, United States of America
| | - Patrick G Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Garima Tomar
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| |
Collapse
|
5
|
Gu X, Ge L, Ren B, Fang Y, Li Y, Wang Y, Xu H. Glucocorticoids Promote Extracellular Matrix Component Remodeling by Activating YAP in Human Retinal Capillary Endothelial Cells. Front Cell Dev Biol 2022; 9:738341. [PMID: 34970541 PMCID: PMC8712730 DOI: 10.3389/fcell.2021.738341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Remodeling of extracellular matrix (ECM) components of endothelial cells is the main cause of retinal vascular basement membrane (BM) thickening, which leads to the initiation and perpetuation of microvasculopathy of diabetic retinopathy (DR). Excessive amounts of glucocorticoids (GCs) are related to the presence and severity of DR, however transcriptional effects of GCs on the biology of human retinal capillary endothelial cells (HRCECs) and its impacts on DR are still unclear. Here, we showed that GC (hydrocortisone) treatment induced ECM component [fibronectin (FN) and type IV collagen (Col IV)] expression and morphological changes in HRCECs via the glucocorticoid receptor (GR), which depended on the nuclear translocation of YAP coactivator. Mechanistically, GCs induced stress fiber formation in HRCECs, while blocking stress fiber formation inhibited GC-induced YAP nuclear translocation. Overexpression of FN, but not Col IV, activated YAP through the promotion of stress fiber formation via ECM-integrin signaling. Thus, a feedforward loop is established to sustain YAP activity. Using mRNA sequencing of HRCECs with overexpressed YAP or GC treatment, we found a similarity in Gene Ontology (GO) terms, differentially expressed genes (DEGs) and transcription factors (TFs) between the two RNA-seq datasets. In vivo, YAP was activated in retina vascular ECs of STZ-induced diabetic mice, and TF prediction analysis of published RNA-seq data of dermal vascular ECs from T2DM patients showed that GR and TEAD (the main transcription factor for YAP) were enriched. Together, GCs activate YAP and promote ECM component (FN and Col IV) remodeling in retinal capillary endothelial cells, and the underlying regulatory mechanism may provide new insights into the vascular BM thickening of the retina in the early pathogenesis of DR.
Collapse
Affiliation(s)
- Xianliang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yi Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage & Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
6
|
Quattrocelli M, Zelikovich AS, Salamone IM, Fischer JA, McNally EM. Mechanisms and Clinical Applications of Glucocorticoid Steroids in Muscular Dystrophy. J Neuromuscul Dis 2021; 8:39-52. [PMID: 33104035 PMCID: PMC7902991 DOI: 10.3233/jnd-200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucocorticoid steroids are widely used as immunomodulatory agents in acute and chronic conditions. Glucocorticoid steroids such as prednisone and deflazacort are recommended for treating Duchenne Muscular Dystrophy where their use prolongs ambulation and life expectancy. Despite this benefit, glucocorticoid use in Duchenne Muscular Dystrophy is also associated with significant adverse consequences including adrenal suppression, growth impairment, poor bone health and metabolic syndrome. For other forms of muscular dystrophy like the limb girdle dystrophies, glucocorticoids are not typically used. Here we review the experimental evidence supporting multiple mechanisms of glucocorticoid action in dystrophic muscle including their role in dampening inflammation and myofiber injury. We also discuss alternative dosing strategies as well as novel steroid agents that are in development and testing, with the goal to reduce adverse consequences of prolonged glucocorticoid exposure while maximizing beneficial outcomes.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron S Zelikovich
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julie A Fischer
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Yorio T, Patel GC, Clark AF. Glucocorticoid-Induced Ocular Hypertension: Origins and New Approaches to Minimize. EXPERT REVIEW OF OPHTHALMOLOGY 2020; 15:145-157. [PMID: 38274668 PMCID: PMC10810227 DOI: 10.1080/17469899.2020.1762488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Introduction Glucocorticoids (GCs) have unique actions in their combined anti-inflammatory and immunosuppressive activities and are among the most commonly-prescribed drugs, particularly for inflammatory conditions. They are often used clinically to treat inflammatory eye diseases like uveitis, optic neuritis, conjunctivitis, keratitis and others, but are often accompanied by side effects, like ocular hypertension that can be vision threatening. Areas covered The review will focus on the complex molecular mechanism of action of GCs that involve both transactivation and transrepression and their use therapeutically that can cause significant systemic side effects, particularly ocular hypertension that can lead to glaucoma. Expert Opinion While we are still unclear as to all the mechanisms responsible for GC-induced ocular hypertension, however, there are potential novel therapies that are in development that can separate some of the anti-inflammatory therapeutic efficacy from their ocular hypertension side effect. This review provides some insight into these approaches.
Collapse
Affiliation(s)
- Thomas Yorio
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| | | | - Abbot F. Clark
- Department of Pharmacology & Neuroscience, UNTHSC
- North Texas Eye Research, Institute, UNTHSC
| |
Collapse
|
8
|
MLL2 regulates glucocorticoid receptor-mediated transcription of ENACα in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2020; 525:675-680. [PMID: 32139118 DOI: 10.1016/j.bbrc.2020.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 11/24/2022]
Abstract
Glucocorticoids require the glucocorticoid receptor (GR), a type of ligand-dependent nuclear receptor to transmit their downstream effects. Upon glucocorticoid binding, GR associates with glucocorticoid response elements (GREs) and recruits other transcriptional coregulators to activate or repress target gene transcription. Many SET-domain family proteins have been demonstrated to contribute to GR-mediated transcriptional activity. However, whether histone H3K4-specific methyltransferase plays a cell-type-specific role in GR transcriptional regulation remains poorly understood. In this report, we examined MLL2 (KMT2D), a histone-lysine methyltransferase that catalyzes histone H3 lysine 4 methylation (H3K4me). Furthermore, we demonstrated that MLL2 specifically regulates the transcription of some GR target genes (e.g., ENACα and FLJ20371) in ARPE-19 cells, but has no effect in A549 cells. Mechanistically, co-immunoprecipitation assays revealed that MLL2 is associated with GR in a ligand-independent manner in APRE-19 cells. Moreover, chromatin immunoprecipitation analyses demonstrated that MLL2 could co-occupy glucocorticoid response elements (GREs) of GR target genes along with GR following Dex stimulation. Finally, the FAIRE-qPCR results illustrated that MLL2 is pivotal in establishing chromatin structure accessibility at the GREs of ARPE-19 specific genes in the presence of Dex. Taken together, our study determined that MLL2 regulates GR-mediated transcription in a cell-type-specific manner, and we provide a molecular mechanism to explain the specific role of MLL2 in regulating GR target gene expression in ARPE-19 cells.
Collapse
|
9
|
Magomedova L, Tiefenbach J, Zilberman E, Le Billan F, Voisin V, Saikali M, Boivin V, Robitaille M, Gueroussov S, Irimia M, Ray D, Patel R, Xu C, Jeyasuria P, Bader GD, Hughes TR, Morris QD, Scott MS, Krause H, Angers S, Blencowe BJ, Cummins CL. ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucleic Acids Res 2019; 47:2856-2870. [PMID: 30698747 PMCID: PMC6451108 DOI: 10.1093/nar/gkz010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
Stress hormones bind and activate the glucocorticoid receptor (GR) in many tissues including the brain. We identified arginine and glutamate rich 1 (ARGLU1) in a screen for new modulators of glucocorticoid signaling in the CNS. Biochemical studies show that the glutamate rich C-terminus of ARGLU1 coactivates multiple nuclear receptors including the glucocorticoid receptor (GR) and the arginine rich N-terminus interacts with splicing factors and binds to RNA. RNA-seq of neural cells depleted of ARGLU1 revealed significant changes in the expression and alternative splicing of distinct genes involved in neurogenesis. Loss of ARGLU1 is embryonic lethal in mice, and knockdown in zebrafish causes neurodevelopmental and heart defects. Treatment with dexamethasone, a GR activator, also induces changes in the pattern of alternatively spliced genes, many of which were lost when ARGLU1 was absent. Importantly, the genes found to be alternatively spliced in response to glucocorticoid treatment were distinct from those under transcriptional control by GR, suggesting an additional mechanism of glucocorticoid action is present in neural cells. Our results thus show that ARGLU1 is a novel factor for embryonic development that modulates basal transcription and alternative splicing in neural cells with consequences for glucocorticoid signaling.
Collapse
Affiliation(s)
- Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jens Tiefenbach
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Emma Zilberman
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael Saikali
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Vincent Boivin
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Melanie Robitaille
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Serge Gueroussov
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Manuel Irimia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Debashish Ray
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Rucha Patel
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - ChangJiang Xu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Pancharatnam Jeyasuria
- Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gary D Bader
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Quaid D Morris
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Biochemistry,University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| |
Collapse
|
10
|
Tumor-Associated Macrophages Induce Endocrine Therapy Resistance in ER+ Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11020189. [PMID: 30736340 PMCID: PMC6406935 DOI: 10.3390/cancers11020189] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Antiestrogenic adjuvant treatments are first-line therapies in patients with breast cancer positive for estrogen receptor (ER+). Improvement of their treatment strategies is needed because most patients eventually acquire endocrine resistance and many others are initially refractory to anti-estrogen treatments. The tumor microenvironment plays essential roles in cancer development and progress; however, the molecular mechanisms underlying such effects remain poorly understood. Breast cancer cell lines co-cultured with TNF-α-conditioned macrophages were used as pro-inflammatory tumor microenvironment models. Proliferation, migration, and colony formation assays were performed to evaluate tamoxifen and ICI 182,780 resistance and confirmed in a mouse-xenograft model. Molecular mechanisms were investigated using cytokine antibody arrays, WB, ELISA, ChIP, siRNA, and qPCR-assays. In our simulated pro-inflammatory tumor microenvironment, tumor-associated macrophages promoted proliferation, migration, invasiveness, and breast tumor growth of ER+ cells, rendering these estrogen-dependent breast cancer cells resistant to estrogen withdrawal and tamoxifen or ICI 182,780 treatment. Crosstalk between breast cancer cells and conditioned macrophages induced sustained release of pro-inflammatory cytokines from both cell types, activation of NF-κB/STAT3/ERK in the cancer cells and hyperphosphorylation of ERα, which resulted constitutively active. Our simulated tumor microenvironment strongly altered endocrine and inflammatory signaling pathways in breast cancer cells, leading to endocrine resistance in these cells.
Collapse
|
11
|
Clarisse D, Thommis J, Van Wesemael K, Houtman R, Ratman D, Tavernier J, Offner F, Beck I, De Bosscher K. Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies. Oncotarget 2017; 8:109675-109691. [PMID: 29312638 PMCID: PMC5752551 DOI: 10.18632/oncotarget.22764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - René Houtman
- PamGene International B.V., 's Hertogenbosch, The Netherlands
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Current/Present address: Roche Global IT Solutions, Roche-Polska, Warsaw, Poland
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
12
|
Gates LA, Foulds CE, O'Malley BW. Histone Marks in the 'Driver's Seat': Functional Roles in Steering the Transcription Cycle. Trends Biochem Sci 2017; 42:977-989. [PMID: 29122461 DOI: 10.1016/j.tibs.2017.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Particular chromatin modifications are associated with different states of gene transcription, yet our understanding of which modifications are causal 'drivers' in promoting transcription is incomplete. Here, we discuss new developments describing the ordered, mechanistic role of select histone marks occurring during distinct steps in the RNA polymerase II (Pol II) transcription cycle. In particular, we highlight the interplay between histone marks in specifying the 'next step' of transcription. While many studies have described correlative relationships between histone marks and their occupancy at distinct gene regions, we focus on studies that elucidate clear functional consequences of specific histone marks during different stages of transcription. These recent discoveries have refined our current mechanistic understanding of how histone marks promote Pol II transcriptional progression.
Collapse
Affiliation(s)
- Leah A Gates
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Current address: Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Bossi F, Fan J, Xiao J, Chandra L, Shen M, Dorone Y, Wagner D, Rhee SY. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction. BMC Genomics 2017; 18:480. [PMID: 28651538 PMCID: PMC5485742 DOI: 10.1186/s12864-017-3853-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. RESULTS To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. CONCLUSIONS Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.
Collapse
Affiliation(s)
- Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jue Fan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Lilyana Chandra
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Max Shen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
- Department of Biology, Stanford University, Stanford, California, 94305 USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| |
Collapse
|
14
|
Katsu Y, Cziko PA, Chandsawangbhuwana C, Thornton JW, Sato R, Oka K, Takei Y, Baker ME, Iguchi T. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription. Gen Comp Endocrinol 2016; 236:105-114. [PMID: 27432813 DOI: 10.1016/j.ygcen.2016.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022]
Abstract
Estrogens regulate many physiological responses in vertebrates by binding to the estrogen receptor (ER), a ligand-activated transcription factor. To understand the evolution of vertebrate ERs and to investigate how estrogen acts in a jawless vertebrate, we used degenerate primer sets and PCR to isolate DNA fragments encoding two distinct ER subtypes, Esr1a and Esr1b from the Japanese lamprey, Lethenteron japonicum. Phylogenetic analysis indicates that these two ERs are the result of lineage-specific gene duplication within the jawless fishes, different from the previous duplication event of Esr1 (ERα) and Esr2 (ERβ) within the jawed vertebrates. Reporter gene assays show that lamprey Esr1a displays both constitutive and estrogen-dependent activation of gene transcription. Domain swapping experiments indicate that constitutive activity resides in the A/B domain of lamprey Esr1a. Unexpectedly, lamprey Esr1b does not bind estradiol and is not stimulated by other estrogens, androgens or corticosteroids. A 3D model of lamprey Esr1b suggests that although estradiol fits into the steroid binding site, some stabilizing contacts between the ligand and side chains that are found in human Esr1 and Esr2 are missing in lamprey Esr1b.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan
| | - Paul A Cziko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Joseph W Thornton
- Departments of Ecology and Evolution and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Rui Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Koari Oka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Michael E Baker
- Department of Medicine, University of California, San Diego, CA, USA
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan; National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
15
|
Abstract
Glucocorticoids are primary stress hormones that regulate a variety of physiologic processes and are essential for life. The actions of glucocorticoids are predominantly mediated through the classic glucocorticoid receptor (GR). GRs are expressed throughout the body, but there is considerable heterogeneity in glucocorticoid sensitivity and biologic responses across tissues. The conventional belief that glucocorticoids act through a single GR protein has changed dramatically with the discovery of a diverse collection of receptor isoforms. This article provides an overview of the molecular mechanisms that regulate glucocorticoid actions, highlights the dynamic nature of hormone signaling, and discusses the molecular properties of the GR isoforms.
Collapse
|
16
|
Foulds CE, Panigrahi AK, Coarfa C, Lanz RB, O'Malley BW. Long Noncoding RNAs as Targets and Regulators of Nuclear Receptors. Curr Top Microbiol Immunol 2016; 394:143-76. [PMID: 26362934 DOI: 10.1007/82_2015_465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Intensive research has been directed at the discovery, biogenesis, and expression patterns of long noncoding RNAs , yet their biochemical functions have remained elusive for the most part. Nuclear receptors that interpret signaling mediated by small molecule hormones play a role in regulating the expression of some long noncoding RNAs. More importantly, these RNAs have also been shown to effect hormone-affected gene transcription regulated by the nuclear receptors. In this chapter, we summarize the current knowledge that has been acquired on hormonal signaling inducing expression of long noncoding RNAs and how they then may act in trans or in cis to modulate gene transcription. We highlight a few of these noncoding RNA molecules in terms of how they may impact hormone-driven cancers. Future directions critical for moving this field forward are presented, with a clear emphasis on the need for better biochemical approaches to address the mechanism of action of these exciting RNAs.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Anil K Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Abstract
Estrogen receptor alpha (ERα) is a critical player in development and function of the female reproductive system. Perturbations in ERα response can affect wide-ranging aspects of health in humans as well as in livestock and wildlife. Because of its long-known and broad impact, ERα mechanisms of action continue to be the focus on cutting-edge research efforts. Consequently, novel insights have greatly advanced understanding of every aspect of estrogen signaling. In this review, we attempt to briefly outline the current understanding of ERα mediated mechanisms in the context of the female reproductive system.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Wipawee Winuthayanon
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Kenneth S Korach
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
18
|
Ruggiero C, Lalli E. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes. Front Endocrinol (Lausanne) 2016; 7:24. [PMID: 27065945 PMCID: PMC4810002 DOI: 10.3389/fendo.2016.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
- *Correspondence: Carmen Ruggiero, ; Enzo Lalli,
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
- *Correspondence: Carmen Ruggiero, ; Enzo Lalli,
| |
Collapse
|
19
|
Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J Steroid Biochem Mol Biol 2015; 153:27-34. [PMID: 25804222 PMCID: PMC4568128 DOI: 10.1016/j.jsbmb.2015.03.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
Heart failure is one of the leading causes of death in the Western world. Glucocorticoids are primary stress hormones that regulate a vast array of biological processes, and synthetic derivatives of these steroids have been mainstays in the clinic for the last half century. Abnormal levels of glucocorticoids are known to negatively impact the cardiovascular system; however, surprisingly little is known about the direct role of glucocorticoid signaling in the heart. The actions of glucocorticoids are mediated classically by the glucocorticoid receptor (GR). In certain cells, such as cardiomyocytes, glucocorticoid occupancy and activation of the mineralocorticoid receptor (MR) may also contribute to the observed response. Recently, there has been a surge of reports investigating the in vivo function of glucocorticoid signaling in the heart using transgenic mice that specifically target GR or MR in cardiomyocytes. Results from these studies suggest that GR signaling in cardiomyocytes is critical for the normal development and function of the heart. In contrast, MR signaling in cardiomyocytes participates in the development and progression of cardiac disease. In the following review, we discuss these genetic mouse models and the new insights they are providing into the direct role cardiomyocyte glucocorticoid signaling plays in heart physiology and pathophysiology. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Robert H Oakley
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, MD F3-07, Research Triangle Park, North Carolina 27709, USA.
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, P.O. Box 12233, MD F3-07, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
20
|
Abstract
Endogenous glucocorticoids regulate a variety of physiologic processes and are crucial to the systemic stress response. Glucocorticoid receptors are expressed throughout the body, but there is considerable heterogeneity in glucocorticoid sensitivity and induced biological responses across tissues. The immunoregulatory properties of glucocorticoids are exploited in the clinic for the treatment of inflammatory and autoimmune disorders as well as certain hematological malignancies, but adverse side effects hamper prolonged use. Fully understanding the molecular events that shape the physiologic effects of glucocorticoid treatment will provide insight into optimal glucocorticoid therapies, reliable assessment of glucocorticoid sensitivity in patients, and may advance the development of novel GR agonists that exert immunosuppressive effects while avoiding harmful side effects. In this review, we provide an overview of mechanisms that affect glucocorticoid specificity and sensitivity in health and disease, focusing on the distinct isoforms of the glucocorticoid receptor and their unique regulatory and functional properties.
Collapse
Affiliation(s)
- Derek W Cain
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| |
Collapse
|
21
|
Abstract
Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, and development. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases.
Collapse
|
22
|
Liberman AC, Antunica-Noguerol M, Arzt E. Modulation of the Glucocorticoid Receptor Activity by Post-Translational Modifications. NUCLEAR RECEPTOR RESEARCH 2014. [DOI: 10.11131/2014/101086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
| | - María Antunica-Noguerol
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
| |
Collapse
|
23
|
Bhan A, Hussain I, Ansari KI, Bobzean SAM, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol 2014; 141:160-70. [PMID: 24533973 PMCID: PMC4025971 DOI: 10.1016/j.jsbmb.2014.02.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/18/2014] [Accepted: 02/05/2014] [Indexed: 02/09/2023]
Abstract
Antisense transcript, long non-coding RNA HOTAIR is a key player in gene silencing and breast cancer and is transcriptionally regulated by estradiol. Here, we have investigated if HOTAIR expression is misregulated by bisphenol-A (BPA) and diethylstilbestrol (DES). Our findings demonstrate BPA and DES induce HOTAIR expression in cultured human breast cancer cells (MCF7) as well as in vivo in the mammary glands of rat. Luciferase assay showed that HOTAIR promoter estrogen-response-elements (EREs) are induced by BPA and DES. Estrogen-receptors (ERs) and ER-coregulators such as MLL-histone methylases (MLL1 and MLL3) bind to the HOTAIR promoter EREs in the presence of BPA and DES, modify chromatin (histone methylation and acetylation) and lead to gene activation. Knockdown of ERs down-regulated the BPA and DES-induced expression of HOTAIR. In summary, our results demonstrate that BPA and DES exposure alters the epigenetic programming of the HOTAIR promoters leading to its endocrine disruption in vitro and in vivo.
Collapse
Affiliation(s)
- Arunoday Bhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Imran Hussain
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Samara A M Bobzean
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, United States
| | - Subhrangsu S Mandal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
24
|
Candelaria NR, Liu K, Lin CY. Estrogen receptor alpha: molecular mechanisms and emerging insights. J Cell Biochem 2014; 114:2203-8. [PMID: 23649536 DOI: 10.1002/jcb.24584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 11/11/2022]
Abstract
Estrogen receptor alpha (ERα) is a cellular receptor for the female sex hormone estrogen and other natural and synthetic ligands and play critical roles in normal development and physiology and in the etiology and treatment of endocrine-related diseases. ERα is a member of the nuclear receptor superfamily of transcription factors and regulates target gene expression in a ligand-dependent manner. It has also been shown to interact with G-protein coupled receptors and associated signaling molecules in the cytoplasm. Transcriptionally, ERα either binds DNA directly through conserved estrogen response element sequence motifs or indirectly by tethering to other interacting transcription factors and nucleate transcriptional regulatory complexes which include an array of co-regulator proteins. Genome-scale studies of ERα transcriptional activity and localization have revealed mechanistic complexity and insights including novel interactions with several transcription factors, including FOXA1, AP-2g, GATA3, and RUNX1, which function as pioneering, collaborative, or tethering factors. The major challenge and exciting prospect moving forward is the comprehensive definition and integration of ERα complexes and mechanisms and their tissue-specific roles in normal physiology and in human diseases.
Collapse
Affiliation(s)
- Nicholes R Candelaria
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204‐5506, USA
| | | | | |
Collapse
|
25
|
The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 2013; 132:1033-44. [PMID: 24084075 DOI: 10.1016/j.jaci.2013.09.007] [Citation(s) in RCA: 669] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are primary stress hormones necessary for life that regulate numerous physiologic processes in an effort to maintain homeostasis. Synthetic derivatives of these hormones have been mainstays in the clinic for treating inflammatory diseases, autoimmune disorders, and hematologic cancers. The physiologic and pharmacologic actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. Ligand-occupied GR induces or represses the transcription of thousands of genes through direct binding to DNA response elements, physically associating with other transcription factors, or both. The traditional view that glucocorticoids act through a single GR protein has changed dramatically with the discovery of a large cohort of receptor isoforms with unique expression, gene-regulatory, and functional profiles. These GR subtypes are derived from a single gene by means of alternative splicing and alternative translation initiation mechanisms. Posttranslational modification of these GR isoforms further expands the diversity of glucocorticoid responses. Here we discuss the origin and molecular properties of the GR isoforms and their contribution to the specificity and sensitivity of glucocorticoid signaling in healthy and diseased tissues.
Collapse
|
26
|
Charlier TD, Seredynski AL, Niessen NA, Balthazart J. Modulation of testosterone-dependent male sexual behavior and the associated neuroplasticity. Gen Comp Endocrinol 2013; 190:24-33. [PMID: 23523709 PMCID: PMC4761263 DOI: 10.1016/j.ygcen.2013.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
Abstract
Steroids modulate the transcription of a multitude of genes and ultimately influence numerous aspects of reproductive behaviors. Our research investigates how one single steroid, testosterone, is able to trigger this vast number of physiological and behavioral responses. Testosterone potency can be changed locally via aromatization into 17β-estradiol which then activates estrogen receptors of the alpha and beta sub-types. We demonstrated that the independent activation of either receptor activates different aspects of male sexual behavior in Japanese quail. In addition, several studies suggest that the specificity of testosterone action on target genes transcription is related to the recruitment of specific steroid receptor coactivators. We demonstrated that the specific down-regulation of the coactivators SRC-1 or SRC-2 in the medial preoptic nucleus by antisense techniques significantly inhibits steroid-dependent male-typical copulatory behavior and the underlying neuroplasticity. In conclusion, our results demonstrate that the interaction between several steroid metabolizing enzymes, steroid receptors and their coactivators plays a key role in the control of steroid-dependent male sexual behavior and the associated neuroplasticity in quail.
Collapse
Affiliation(s)
- Thierry D Charlier
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Belgium.
| | | | | | | |
Collapse
|
27
|
Byrne C, Miclet E, Broutin I, Gallo D, Pelekanou V, Kampa M, Castanas E, Leclercq G, Jacquot Y. Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: new insights for ERα coactivator interactions. Chirality 2013; 25:628-42. [PMID: 23925889 DOI: 10.1002/chir.22188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 04/12/2013] [Indexed: 11/07/2022]
Abstract
Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation.
Collapse
Affiliation(s)
- C Byrne
- Laboratoire des BioMolécules (LBM), CNRS - UMR 7203, Ecole Normale Supérieure / Université Pierre et Marie Curie 24, rue Lhomond, 75231, Paris Cedex 05, France; Fondation Pierre-Gilles de Gennes pour la Recherche, 29, rue d'Ulm, 75005, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee MT, Leung YK, Chung I, Tarapore P, Ho SM. Estrogen receptor β (ERβ1) transactivation is differentially modulated by the transcriptional coregulator Tip60 in a cis-acting element-dependent manner. J Biol Chem 2013; 288:25038-25052. [PMID: 23857583 DOI: 10.1074/jbc.m113.476952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1.
Collapse
Affiliation(s)
- Ming-Tsung Lee
- From the Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health
| | - Yuet-Kin Leung
- From the Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health,; Center for Environmental Genetics, and; Cancer Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267 and
| | - Irving Chung
- From the Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health
| | - Pheruza Tarapore
- From the Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health,; Center for Environmental Genetics, and; Cancer Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267 and
| | - Shuk-Mei Ho
- From the Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health,; Center for Environmental Genetics, and; Cancer Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267 and; the Cincinnati Veteran Affairs Medical Center, Cincinnati, Ohio 45220.
| |
Collapse
|
29
|
Bender IK, Cao Y, Lu NZ. Determinants of the heightened activity of glucocorticoid receptor translational isoforms. Mol Endocrinol 2013; 27:1577-87. [PMID: 23820903 DOI: 10.1210/me.2013-1009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Translational isoforms of the glucocorticoid receptor α (GR-A, -B, -C1, -C2, -C3, -D1, -D2, and -D3) have distinct tissue distribution patterns and unique gene targets. The GR-C3 isoform-expressing cells are more sensitive to glucocorticoid killing than cells expressing other GRα isoforms and the GR-D isoform-expressing cells are resistant to glucocorticoid killing. Whereas a lack of activation function 1 (AF1) may underlie the reduced activity of the GR-D isoforms, it is not clear how the GR-C3 isoform has heightened activity. Mutation analyses and N-terminal tagging demonstrated that steric hindrance is probably the mechanism for the GR-A, -B, -C1, and -C2 isoforms to have lower activity than the GR-C3 isoform. In addition, truncation scanning analyses revealed that residues 98 to 115 are critical in the hyperactivity of the human GR-C3 isoform. Chimera constructs linking this critical fragment with the GAL4 DNA-binding domain showed that GR residues 98 to 115 do not contain any independent transactivation activity. Mutations at residues Asp101 or Gln106 and Gln107 all reduced the activity of the GR-C3 isoform. In addition, functional studies indicated that Asp101 is crucial for the GR-C3 isoform to recruit coregulators and to mediate glucocorticoid-induced apoptosis. Thus, charged and polar residues are essential components of an N-terminal motif that enhances the activity of AF1 and the GR-C3 isoform. These studies, together with the observations that GR isoforms have cell-specific expression patterns, provide a molecular basis for the tissue-specific functions of GR translational isoforms.
Collapse
Affiliation(s)
- Ingrid K Bender
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
30
|
Abstract
Estradiol (E2) is the principal physiological estrogen in mammals. E2 and its active metabolites, estrone and estriol have a characteristic phenolic A ring, unlike progesterone, testosterone, cortisol and aldosterone, which have an A ring containing a C3-ketone, a Δ(4) bond and a C19 methyl group. Crystal structures of E2 in the estrogen receptor (ER) confirm the importance of the A ring in stabilizing E2 in the ER. However, other steroids, including Δ(5)-androstenediol, 5α-androstanediol and 27-hydroxycholesterol, which have a saturated A ring containing a 3β-hydroxyl and a C19 methyl group, also mediate physiological responses through binding to estrogen receptor-α (ERα) and ERβ. Moreover, selective estrogen response modulators (SERMs) with diverse structures also regulate transcription of ERα and ERβ. Our understanding of the physiological responses mediated by these "alternative" estrogens is in its infancy. Further studies of the role of these steroids and SERMs in regulating responses mediated by ERα and ERβ a variety of tissues, during different stages of development, are likely to uncover additional estrogenic activities.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA.
| |
Collapse
|
31
|
Ansari KI, Kasiri S, Hussain I, Bobzean SAM, Perrotti LI, Mandal SS. MLL histone methylases regulate expression of HDLR-SR-B1 in presence of estrogen and control plasma cholesterol in vivo. Mol Endocrinol 2012. [PMID: 23192982 DOI: 10.1210/me.2012-1147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
High-density lipoprotein receptors scavenger receptor class B type I [HDLR-SR-B1 (SR-B1)] is a key player in reverse cholesterol transport and maintaining blood cholesterol. We demonstrated that human SR-B1 is transcriptionally activated by 17β-estradiol (E2) in HEPG2 and JAR cells. SR-B1 promoter contains multiple estrogen response elements (ERE half-sites) along with some Sp1 binding sites. Knockdown of estrogen receptor (ER)α and ERβ down-regulated E2-induced SR-B1 expression. ERs were bound to SR-B1 promoter EREs in an E2-dependent manner. Along with ERs, mixed-lineage leukemia (MLL) histone methylases, especially MLL1 and MLL2, play key roles in E2-mediated SR-B1 activation. MLL1 and MLL2 bind to SR-B1 promoter in an E2-dependent manner and control the assembly of transcription pre-initiation complex and RNA polymerase II (RNAPII) recruitment. ERs and MLLs play critical roles in determining the cholesterol uptake by steroidogenic tissues/cells, and their knockdown suppressed the E2-induced cholesterol uptake efficiencies of the cells. Intriguingly, MLL2 knockdown in mice resulted in a 33% increase in plasma cholesterol level and also reduced SR-B1 expression in mice liver, demonstrating its crucial functions in controlling plasma cholesterol in vivo.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA. Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology 2012; 153:5346-60. [PMID: 22989630 PMCID: PMC3473206 DOI: 10.1210/en.2012-1563] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucocorticoids and their synthetic derivatives are known to alter cardiac function in vivo; however, the nature of these effects and whether glucocorticoids act directly on cardiomyocytes are poorly understood. To explore the role of glucocorticoid signaling in the heart, we used rat embryonic H9C2 cardiomyocytes and primary cardiomyocytes as model systems. Dexamethasone (100 nm) treatment of cardiomyocytes caused a significant increase in cell size and up-regulated the expression of cardiac hypertrophic markers, including atrial natriuretic factor, β-myosin heavy chain, and skeletal muscle α-actin. In contrast, serum deprivation and TNFα exposure triggered cardiomyocyte apoptosis, and these apoptotic effects were inhibited by dexamethasone. Both the hypertrophic and anti-apoptotic actions of glucocorticoids were abolished by the glucocorticoid receptor (GR) antagonist RU486 and by short hairpin RNA-mediated GR depletion. Blocking the activity of the mineralocorticoid receptor had no effect on these glucocorticoid-dependent cardiomyocyte responses. Aldosterone (1 μm) activation of GR also promoted cardiomyocyte hypertrophy and cell survival. To elucidate the mechanism of the dual glucocorticoid actions, a genome-wide microarray was performed on H9C2 cardiomyocytes treated with vehicle or dexamethasone in the absence or presence of serum. Serum dramatically influenced the transcriptome regulated by GR, revealing potential glucocorticoid signaling mediators in both cardiomyocyte hypertrophy and apoptosis. These studies reveal a direct and dynamic role for glucocorticoids and GR signaling in the modulation of cardiomyocyte function.
Collapse
Affiliation(s)
- Rongqin Ren
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
33
|
Purcell DJ, Khalid O, Ou CY, Little GH, Frenkel B, Baniwal SK, Stallcup MR. Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. J Cell Biochem 2012; 113:2406-14. [PMID: 22389001 DOI: 10.1002/jcb.24114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Runx2, best known for its role in regulating osteoblast-specific gene expression, also plays an increasingly recognized role in prostate and breast cancer metastasis. Using the C4-2B/Rx2(dox) prostate cancer cell line that conditionally expressed Runx2 in response to doxycycline treatment, we identified and characterized G9a, a histone methyltransferase, as a novel regulator for Runx2 activity. G9a function was locus-dependent. Whereas depletion of G9a reduced expression of many Runx2 target genes, including MMP9, CSF2, SDF1, and CST7, expression of others, such as MMP13 and PIP, was enhanced. Physical association between G9a and Runx2 was indicated by co-immunoprecipitation, GST-pulldown, immunofluorescence, and fluorescence recovery after photobleaching (FRAP) assays. Since G9a makes repressive histone methylation marks and is primarily known as a corepressor, we further investigated the mechanism by which G9a functioned as a positive regulator for Runx2 target genes. Transient reporter assays indicated that the histone methyltransferase activity of G9a was not required for transcriptional activation by Runx2. Chromatin immunoprecipitation assays for Runx2 and G9a showed that G9a was recruited to endogenous Runx2 binding sites. We conclude that a subset of cancer-related Runx2 target genes require recruitment of G9a for their expression, but do not depend on its histone methyltransferase activity.
Collapse
Affiliation(s)
- Daniel J Purcell
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Hernández-Hernández OT, González-García TK, Camacho-Arroyo I. Progesterone receptor and SRC-1 participate in the regulation of VEGF, EGFR and Cyclin D1 expression in human astrocytoma cell lines. J Steroid Biochem Mol Biol 2012; 132:127-34. [PMID: 22542550 DOI: 10.1016/j.jsbmb.2012.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/09/2012] [Accepted: 04/12/2012] [Indexed: 01/31/2023]
Abstract
Astrocytomas are the most common primary brain tumors in humans. It has been reported that vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), cyclin D1 and progesterone receptor (PR) expression levels are elevated in patients with high-grade astrocytomas. Progesterone (P) regulates astrocytomas growth through its interaction with PR, which recruits coregulatory proteins such as steroid receptor coactivator-1 (SRC-1) that are required for efficient transcriptional activation. The regulation of VEGF, EGFR and cyclin D1 expression by P in human astrocytoma cells is not known. We studied the role of PR and SRC-1 in the expression of VEGF, EGFR and cyclin D1 mediated by P in human astrocytoma cell lines grade III (U373) and IV (D54). P significantly increased VEGF and EGFR mRNA expression after 12h of treatment in D54 cells that was reflected at protein level 24h after treatment. This effect was blocked by the PR antagonist, RU 486. In U373 cells cyclin D1 mRNA and protein expression was induced by P after 6 and 8h of treatment, respectively, and this effect was blocked with RU 486. Transfection with short hairpin RNA targeting coactivator SRC-1 significantly reduced VEGF expression after 24h of treatment. Collectively, our results indicate that P regulates VEGF and EGFR expression in D54 cells and cyclin D1 expression in U373 through PR, and that SRC-1 participates in the regulation of VEGF expression.
Collapse
|
35
|
Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 2012. [PMID: 22664915 DOI: 10.4161/rna.20481395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
With the advent of next generation sequencing methods and progress in transcriptome analysis, it became obvious that the human genome contains much more than just protein-coding genes. In fact, up to 70% of our genome is transcribed into RNA that does not serve as templates for proteins. In this review, we focus on the emerging roles of these long non-coding RNAs (lncRNAs) in the field of tumor biology. Long ncRNAs were found to be deregulated in several human cancers and show tissue-specific expression. Functional studies revealed a broad spectrum of mechanisms applied by lncRNAs such as HOTAIR, MALAT1, ANRIL or lincRNA-p21 to fulfill their functions. Here, we link the cellular processes influenced by long ncRNAs to the hallmarks of cancer and therefore provide an ncRNA point-of-view on tumor biology. This should stimulate new research directions and therapeutic options considering long ncRNAs as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Tony Gutschner
- Helmholtz-University-Group "Molecular RNA Biology & Cancer", German Cancer Research Center DKFZ, Heidelberg, Germany
| | | |
Collapse
|
36
|
Abstract
With the advent of next generation sequencing methods and progress in transcriptome analysis, it became obvious that the human genome contains much more than just protein-coding genes. In fact, up to 70% of our genome is transcribed into RNA that does not serve as templates for proteins. In this review, we focus on the emerging roles of these long non-coding RNAs (lncRNAs) in the field of tumor biology. Long ncRNAs were found to be deregulated in several human cancers and show tissue-specific expression. Functional studies revealed a broad spectrum of mechanisms applied by lncRNAs such as HOTAIR, MALAT1, ANRIL or lincRNA-p21 to fulfill their functions. Here, we link the cellular processes influenced by long ncRNAs to the hallmarks of cancer and therefore provide an ncRNA point-of-view on tumor biology. This should stimulate new research directions and therapeutic options considering long ncRNAs as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Tony Gutschner
- Helmholtz-University-Group "Molecular RNA Biology & Cancer", German Cancer Research Center DKFZ, Heidelberg, Germany
| | | |
Collapse
|
37
|
Won Jeong K, Chodankar R, Purcell DJ, Bittencourt D, Stallcup MR. Gene-specific patterns of coregulator requirements by estrogen receptor-α in breast cancer cells. Mol Endocrinol 2012; 26:955-66. [PMID: 22543272 DOI: 10.1210/me.2012-1066] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Progesterone receptor (PgR) controls the menstrual cycle, pregnancy, embryonic development, and homeostasis, and it plays important roles in breast cancer development and progression. However, the requirement of coregulators for estrogen-induced expression of the PgR gene has not been fully explored. Here we used RNA interference to demonstrate dramatic differences in requirements of 10 different coregulators for estrogen-regulated expression of six different genes, including PgR and the well-studied TFF1 (or pS2) gene in MCF-7 breast cancer cells. Full estrogen-induced expression of TFF1 required all ten coregulators, but PgR induction required only four of the 10 coregulators. Chromatin immunoprecipitation studies demonstrated several mechanisms responsible for the differential coregulator requirements. Actin-binding coregulator Flightless-I, required for TFF1 expression and recruited to that gene by estrogen receptor-α (ERα), is not required for PgR expression and not recruited to that gene. Protein acetyltransferase tat-interactive protein 60 and ATP-dependent chromatin remodeler Brahma Related Gene 1 are recruited to both genes but are required only for TFF1 expression. Histone methyltransferase G9a is recruited to both genes and required for estrogen-induced expression of TFF1 but negatively regulates estrogen-induced expression of PgR. In contrast, histone methyltransferase myeloid/lymphoid or mixed-lineage leukemia 1 (MLL1), pioneer factor Forkhead box A1, and p160 coregulator steroid receptor coactivator-3 are required for expression of and are recruited to both genes. Depletion of MLL1 decreased ERα binding to the PgR and TFF1 genes. In contrast, depletion of G9a enhanced ERα binding to the PgR gene but had no effect on ERα binding to the TFF1 gene. These studies suggest that differential promoter architecture is responsible for promoter-specific mechanisms of gene regulation.
Collapse
Affiliation(s)
- Kwang Won Jeong
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
38
|
Li P, Fan W, Xu J, Lu M, Yamamoto H, Auwerx J, Sears DD, Talukdar S, Oh D, Chen A, Bandyopadhyay G, Scadeng M, Ofrecio JM, Nalbandian S, Olefsky JM. Adipocyte NCoR knockout decreases PPARγ phosphorylation and enhances PPARγ activity and insulin sensitivity. Cell 2012; 147:815-26. [PMID: 22078880 DOI: 10.1016/j.cell.2011.09.050] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/22/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023]
Abstract
Insulin resistance, tissue inflammation, and adipose tissue dysfunction are features of obesity and Type 2 diabetes. We generated adipocyte-specific Nuclear Receptor Corepressor (NCoR) knockout (AKO) mice to investigate the function of NCoR in adipocyte biology, glucose and insulin homeostasis. Despite increased obesity, glucose tolerance was improved in AKO mice, and clamp studies demonstrated enhanced insulin sensitivity in liver, muscle, and fat. Adipose tissue macrophage infiltration and inflammation were also decreased. PPARγ response genes were upregulated in adipose tissue from AKO mice and CDK5-mediated PPARγ ser-273 phosphorylation was reduced, creating a constitutively active PPARγ state. This identifies NCoR as an adaptor protein that enhances the ability of CDK5 to associate with and phosphorylate PPARγ. The dominant function of adipocyte NCoR is to transrepress PPARγ and promote PPARγ ser-273 phosphorylation, such that NCoR deletion leads to adipogenesis, reduced inflammation, and enhanced systemic insulin sensitivity, phenocopying the TZD-treated state.
Collapse
Affiliation(s)
- Pingping Li
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Recovering protein-protein and domain-domain interactions from aggregation of IP-MS proteomics of coregulator complexes. PLoS Comput Biol 2011; 7:e1002319. [PMID: 22219718 PMCID: PMC3248428 DOI: 10.1371/journal.pcbi.1002319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 11/07/2011] [Indexed: 11/19/2022] Open
Abstract
Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.
Collapse
|
40
|
Nemunaitis J, Rao DD, Liu SH, Brunicardi FC. Personalized cancer approach: using RNA interference technology. World J Surg 2011; 35:1700-14. [PMID: 21557010 DOI: 10.1007/s00268-011-1100-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Normal cellular survival is dependent on the cooperative expression of genes' signaling through a broad array of DNA patterns. Cancer, however, has an Achilles' heel. Its altered cellular survival is dependent on a limited subset of signals through mutated DNA, possibly as few as three. Identification and control of these signals through the use of RNA interference (RNAi) technology may provide a unique clinical opportunity for the management of cancer that employs genomic-proteomic profiling to provide a molecular characterization of the cancer, leading to targeted therapy customized to an individual cancer signal. Such an approach has been described as "personalized therapy." The present review identifies unique developing technology that employs RNAi as a method to target, and therefore block, signaling from mutated DNA and describes a clinical pathway toward its development in cancer therapy.
Collapse
Affiliation(s)
- John Nemunaitis
- Mary Crowley Cancer Research Centers, 1700 Pacific Avenue, Suite 1100, Dallas, TX, USA.
| | | | | | | |
Collapse
|
41
|
Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 2011; 94:579-87. [PMID: 21983542 DOI: 10.1016/j.biochi.2011.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery. This multiprotein complex plays a pivotal role in the regulation of eukaryotic mRNA synthesis. The yeast Mediator complex consists of 26 different subunits. Recent studies indicate additional pathogenic roles for Mediator, for example during transcription elongation and non-coding RNA production. Mediator subunits have been emerging also to have pathophysiological roles suggesting MED-dependent therapeutic targets involving in several diseases, such as cancer, cardiovascular disease (CVD), metabolic and neurological disorders.
Collapse
|
42
|
Nuclear receptor signaling inhibits HIV-1 replication in macrophages through multiple trans-repression mechanisms. J Virol 2011; 85:10834-50. [PMID: 21849441 DOI: 10.1128/jvi.00789-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sexually transmitted pathogens activate HIV-1 replication and inflammatory gene expression in macrophages through engagement of Toll-like receptors (TLRs). Ligand-activated nuclear receptor (NR) transcription factors, including glucocorticoid receptor (GR), peroxisome proliferator-activated receptor gamma (PPARγ), and liver X receptor (LXR), are potent inhibitors of TLR-induced inflammatory gene expression. We therefore hypothesized that ligand-activated NRs repress both basal and pathogen-enhanced HIV-1 replication in macrophages by directly repressing HIV-1 transcription and by ameliorating the local proinflammatory response to pathogens. We show that the TLR2 ligand PAM3CSK4 activated virus transcription in macrophages and that NR signaling repressed both basal and TLR-induced HIV-1 transcription. NR ligand treatment repressed HIV-1 expression when added concurrently with TLR ligands and in the presence of cycloheximide, demonstrating that they act independently of new cellular gene expression. We found that treatment with NR ligands inhibited the association of AP-1 and NF-κB subunits, as well as the coactivator CBP, with the long terminal repeat (LTR). We show for the first time that the nuclear corepressor NCoR is bound to HIV-1 LTR in unstimulated macrophages and is released from the LTR after TLR engagement. Treatment with PPARγ and LXR ligands, but not GR ligands, prevented this TLR-induced clearance of NCoR from the LTR. Our data demonstrate that both classical and nonclassical trans-repression mechanisms account for NR-mediated HIV-1 repression. Finally, NR ligand treatment inhibited the potent proinflammatory response induced by PAM3CSK4 that would otherwise activate HIV-1 expression in infected cells. Our findings provide a rationale for studying ligand-activated NRs as modulators of basal and inflammation-induced HIV-1 replication.
Collapse
|
43
|
Prognostic value of novel biomarkers in astrocytic brain tumors: nuclear receptor co-regulators AIB1, TIF2, and PELP1 are associated with high tumor grade and worse patient prognosis. J Neurooncol 2011; 106:23-31. [PMID: 21735116 DOI: 10.1007/s11060-011-0637-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/17/2011] [Indexed: 02/06/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) and their co-regulatory proteins are key components of complex signaling networks that specifically regulate the growth and development of various tissues and tumors. Still, their protein expression profiles and possible role in the pathogenesis of astrocytic tumors remain largely unknown. The purpose of the present study is to evaluate the differential protein expression of ΕRα, ERβ, and their co-activators, AIB1, TIF2, and PELP1 in astrocytic tumors of World Health Organization (WHO) grade II-IV, using immunohistochemistry. Potential correlations with clinicopathological parameters and patient prognosis were also explored. ERα protein expression was undetectable while ERβ levels were significantly decreased with progression of tumor grade (P < 0.001). High expression of ERβ was an independent favorable prognostic factor on multivariate analysis (P = 0.003). Expression of AIB1, TIF2, and PELP1 was not correlated with ERβ expression and followed an opposite trend, with increasing levels in high-grade relative to low-grade tumors (P < 0.001). Univariate survival analysis revealed that high AIB1, TIF2, and PELP1 expression was associated with worse prognosis (P = 0.049, P = 0.033, and P = 0.020, respectively). ERβ and ER co-activators AIB1, TIF2, and PELP1 appear to play an important role in the pathogenesis and progression of astrocytic tumors and might have prognostic significance. The mechanisms underlying their involvement in astrocytic tumorigenesis, as well as their utility for prognostic and therapeutic purposes merit further investigation.
Collapse
|
44
|
Ansari KI, Hussain I, Shrestha B, Kasiri S, Mandal SS. HOXC6 Is transcriptionally regulated via coordination of MLL histone methylase and estrogen receptor in an estrogen environment. J Mol Biol 2011; 411:334-49. [PMID: 21683083 DOI: 10.1016/j.jmb.2011.05.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 10/24/2022]
Abstract
Homeobox (HOX)-containing gene HOXC6 is a critical player in mammary gland development and milk production, and is overexpressed in breast and prostate cancers. We demonstrated that HOXC6 is transcriptionally regulated by estrogen (E2). HOXC6 promoter contains two putative estrogen response elements (EREs), termed as ERE1(1/2) and ERE2(1/2). Promoter analysis using luciferase-based reporter assay demonstrated that both EREs are responsive to E2, with ERE1(1/2) being more responsive than ERE2(1/2). Estrogen receptors (ERs) ERα and ERβ bind to these EREs in an E2-dependent manner, and antisense-mediated knockdown of ERs suppressed the E2-dependent activation of HOXC6 expression. Similarly, knockdown of histone methylases MLL2 and MLL3 decreased the E2-mediated activation of HOXC6. However, depletion of MLL1 or MLL4 showed no significant effect. MLL2 and MLL3 were bound to the HOXC6 EREs in an E2-dependent manner. In contrast, MLL1 and MLL4 that were bound to the HOXC6 promoter in the absence of E2 decreased upon exposure to E2. MLL2 and MLL3 play key roles in histone H3 lysine-4 trimethylation and in the recruitment of general transcription factors and RNA polymerase II in the HOXC6 promoter during E2-dependent transactivation. Nuclear receptor corepressors N-CoR and SAFB1 were bound in the HOXC6 promoter in the absence of E2, and that binding was decreased upon E2 treatment, indicating their critical roles in suppressing HOXC6 gene expression under nonactivated conditions. Knockdown of either ERα or ERβ abolished E2-dependent recruitment of MLL2 and MLL3 into the HOXC6 promoter, demonstrating key roles of ERs in the recruitment of these mixed lineage leukemias into the HOXC6 promoter. Overall, our studies demonstrated that HOXC6 is an E2-responsive gene, and that histone methylases MLL2 and MLL3, in coordination with ERα and ERβ, transcriptionally regulate HOXC6 in an E2-dependent manner.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
45
|
Ananthanarayanan M, Li Y, Surapureddi S, Balasubramaniyan N, Ahn J, Goldstein JA, Suchy FJ. Histone H3K4 trimethylation by MLL3 as part of ASCOM complex is critical for NR activation of bile acid transporter genes and is downregulated in cholestasis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G771-81. [PMID: 21330447 PMCID: PMC3094144 DOI: 10.1152/ajpgi.00499.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nuclear receptor Farnesoid x receptor (FXR) is a critical regulator of multiple genes involved in bile acid homeostasis. The coactivators attracted to promoters of FXR target genes and epigenetic modifications that occur after ligand binding to FXR have not been completely defined, and it is unknown whether these processes are disrupted during cholestasis. Using a microarray, we identified decreased expression of mixed lineage leukemia 3 (MLL3), a histone H3 lysine 4 (H3K4) lysine methyl transferase at 1 and 3 days of post-common bile duct ligation (CBDL) in mice. Chromatin immunoprecipitation analysis (ChIP) analysis revealed that H3K4me3 of transporter promoters by MLL3 as part of activating signal cointegrator-2 -containing complex (ASCOM) is essential for activation of bile salt export pump (BSEP), multidrug resistance associated protein 2 (MRP2), and sodium taurocholate cotransporting polypeptide (NTCP) genes by FXR and glucocorticoid receptor (GR). Knockdown of nuclear receptor coactivator 6 (NCOA6) or MLL3/MLL4 mRNAs by small interfering RNA treatment led to a decrease in BSEP and NTCP mRNA levels in hepatoma cells. Human BSEP promoter transactivation by FXR/RXR was enhanced in a dose-dependent fashion by NCOA6 cDNA coexpression and decreased by AdsiNCOA6 infection in HepG2 cells. GST-pull down assays showed that domain 3 and 5 of NCOA6 (LXXLL motifs) interacted with FXR and that the interaction with domain 5 was enhanced by chenodeoxycholic acid. In vivo ChIP assays in HepG2 cells revealed ligand-dependent recruitment of ASCOM complex to FXR element in BSEP and GR element in NTCP promoters, respectively. ChIP analysis demonstrated significantly diminished recruitment of ASCOM complex components and H3K4me3 to Bsep and Mrp2 promoter FXR elements in mouse livers after CBDL. Taken together, these data show that the "H3K4me3" epigenetic mark is essential to activation of BSEP, NTCP, and MRP2 genes by nuclear receptors and is downregulated in cholestasis.
Collapse
Affiliation(s)
- M. Ananthanarayanan
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; ,3Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Yanfeng Li
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York;
| | - S. Surapureddi
- 4Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle, North Carolina
| | - N. Balasubramaniyan
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; ,2Children's Hospital Research Institute, University of Colorado School of Medicine, Denver, Colorado;
| | - Jaeyong Ahn
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York;
| | - J. A. Goldstein
- 4Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle, North Carolina
| | - Frederick J. Suchy
- 1Department of Pediatrics, Mount Sinai School of Medicine, New York, New York; ,2Children's Hospital Research Institute, University of Colorado School of Medicine, Denver, Colorado;
| |
Collapse
|
46
|
Fozzatti L, Lu C, Kim DW, Cheng SY. Differential recruitment of nuclear coregulators directs the isoform-dependent action of mutant thyroid hormone receptors. Mol Endocrinol 2011; 25:908-21. [PMID: 21474540 DOI: 10.1210/me.2010-0474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Studies using mice deficient in thyroid hormone receptors (TR) indicate that the two TR isoforms, TRα1 and TRβ1, in addition to mediating overlapping biological activities of the thyroid hormone, T3, also mediate distinct functions. Mice harboring an identical dominant negative mutation (denoted PV) at the C terminus of TRα1 (Thra1(PV) mice) or β1 (Thrb(PV) mice) also exhibit distinct phenotypes. These knockin mutant mice provide an opportunity to understand the molecular basis of isoform-dependent functions in vivo. Here we tested the hypothesis that the distinct functions of TR mutant isoforms are directed by a subset of nuclear regulatory proteins. Tandem-affinity chromatography of HeLa nuclear extracts showed that distinct 33 nuclear proteins including nuclear receptor corepressor (NCoR1) and six other proteins preferentially associated with TRα1PV or TRβ1PV, respectively. These results indicate that recruitment of nuclear regulatory proteins by TR mutants is subtype dependent. The involvement of NCoR1 in mediating the distinct liver phenotype of Thra1(PV) and Thrb(PV) mice was further explored. NCoR1 preferentially interacted with TRα1PV rather than with TRβ1PV. NCoR1 was recruited more avidly to the thyroid hormone response element-bound TRα1PV than to TRβ1PV in the promoter of the CCAAT/enhancer-binding protein α gene to repress its expression in the liver of Thra1(PV) mice, but not in Thrb(PV) mice. This preferential recruitment of NCoR1 by mutant isoforms could contribute, at least in part, to the distinct liver lipid phenotype of these mutant mice. The present study highlights a novel mechanism by which TR isoforms direct their selective functions via preferential recruitment of a subset of nuclear coregulatory proteins.
Collapse
Affiliation(s)
- Laura Fozzatti
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892-4264, USA
| | | | | | | |
Collapse
|
47
|
Oakley RH, Cidlowski JA. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 2011; 286:3177-84. [PMID: 21149445 PMCID: PMC3030321 DOI: 10.1074/jbc.r110.179325] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids regulate numerous physiological processes and are mainstays in the treatment of inflammation, autoimmune disease, and cancer. The traditional view that glucocorticoids act through a single glucocorticoid receptor (GR) protein has changed in recent years with the discovery of a large cohort of receptor subtypes arising from alternative processing of the GR gene. These isoforms differ in their expression, gene regulatory, and functional profiles. Post-translational modification of these proteins further expands GR diversity. Here, we discuss the origin and molecular properties of the GR isoforms and their contribution to the sensitivity and specificity of the glucocorticoid response.
Collapse
Affiliation(s)
- Robert H. Oakley
- From the Laboratory of Signal Transduction, NIEHS, National Institutes of Heath, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A. Cidlowski
- From the Laboratory of Signal Transduction, NIEHS, National Institutes of Heath, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
48
|
Russo MA, Arciuch VGA, Di Cristofano A. Mouse models of follicular and papillary thyroid cancer progression. Front Endocrinol (Lausanne) 2011; 2:119. [PMID: 22654848 PMCID: PMC3356054 DOI: 10.3389/fendo.2011.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/30/2011] [Indexed: 12/15/2022] Open
Abstract
A significant number of well-differentiated thyroid cancers progress or recur, becoming resistant to current therapeutic options. Mouse models recapitulating the genetic and histological features of advanced thyroid cancer have been an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, poorly differentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the lessons learned from models of epithelial cell-derived thyroid cancer showing progression from hyperplastic lesions to locally invasive and metastatic carcinomas.
Collapse
Affiliation(s)
- Marika A. Russo
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
| | - Valeria G. Antico Arciuch
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
- *Correspondence: Antonio Di Cristofano, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Price Center for Genetic and Translational Medicine, 1301 Morris Park Avenue, Room 302, Bronx, NY 10461, USA. e-mail:
| |
Collapse
|
49
|
Münz T, Litterst CM, Pfitzner E. Interaction of STAT6 with its co-activator SRC-1/NCoA-1 is regulated by dephosphorylation of the latter via PP2A. Nucleic Acids Res 2010; 39:3255-66. [PMID: 21148148 PMCID: PMC3082895 DOI: 10.1093/nar/gkq1225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Regulation of gene expression represents a central issue in signal-regulated cellular responses. STAT6 is a critical mediator of IL-4 stimulated gene activation. To mediate this function, STAT6 recruits co-activator complexes. We have previously shown that STAT6 binds the PAS-B domain of the co-activator NCoA-1 via an LXXLL motif in its transactivation domain. Our recent finding that the PAS-B domain of NCoA-1 is also essential for co-activator complex formation points to an additional level of regulation of the co-activator assembly. In this study, we discovered that dephosphorylation of NCoA-1 is essential for the interaction with STAT6 and for IL-4-dependent transcriptional activation. PP2A dephosphorylates NCoA-1 and facilitates the activation of STAT6 target genes. Interestingly, simultaneous inhibition of phosphatase and cyclin-dependent kinases rescues the NCoA-1/STAT6 interaction. Moreover, arrest of cells at G1/S results in enhanced NCoA-1 phosphorylation. In summary, our results indicate that the interaction of NCoA-1 and STAT6 is dynamically regulated by the phosphatase PP2A and by cyclin-dependent kinases. This provides a mechanism for integrating transcriptional regulation by STAT6 with cell cycle progression.
Collapse
Affiliation(s)
- Tobias Münz
- Friedrich-Schiller-University, Jena Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Hans-Knöll-Str 2, 07743 Jena, Germany
| | | | | |
Collapse
|
50
|
Abstract
The vitamin A metabolite all-trans-retinoic acid (RA) regulates multiple biological processes by virtue of its ability to regulate gene expression. It thus plays critical roles in embryonic development and is involved in regulating growth, remodeling, and metabolic responses in adult tissues. RA can also suppress carcinoma cell growth and is currently used in treatment of some cancers. Growth inhibition by RA may be exerted by induction of differentiation, cell cycle arrest, or apoptosis, or by a combination of these activities. Paradoxically, in the context of some cells, RA not only fails to inhibit growth but, instead, enhances proliferation and survival. This review focuses on the involvement of RA in regulating apoptotic responses. It includes brief overviews of transcriptional signaling by RA and of apoptotic pathways, and then addresses available information on the mechanisms by which RA induces apoptosis or, conversely, inhibits cell death and enhances survival.
Collapse
Affiliation(s)
- Noa Noy
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|