1
|
Chen B, Li J, Yao S, Wang G, Wang X. Seed-specific expression of phosphatidate phosphohydrolases increases soybean oil content and seed weight. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:23. [PMID: 39994717 PMCID: PMC11849322 DOI: 10.1186/s13068-025-02620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Soybean is a major oil crop and a primary protein source for livestock, and soybean oil is the most common input for biodiesel. Identifying genes that enhance soybean yield and oil content is crucial for breeding programs. Phosphatidic acid (PA) phosphohydrolase (PAH), which dephosphorylates PA to diacylglycerol (DAG), plays a critical role in lipid synthesis, and yet their potential in improving agronomic traits of oil crops remains unexplored. RESULTS This study shows that seed-specific expression of AtPAH1/2 enhances PA turnover into DAG and triacylglycerol (TAG) accumulation in soybean seeds. PAH overexpression upregulated the expression of DAG acyltransferase (DGAT) but suppressed phospholipid: DAG acyltransferase (PDAT). In addition, seed-specific expression of AtPAH1/2 increases soybean seed size and weight. Furthermore, analysis of the variation of the soybean PAHs in 4414 soybean accessions indicated that the advantageous effects of GmPAHs on oil content and seed weight were selected during domestication. CONCLUSION These findings suggest that targeting PAHs represents a promising strategy for enhancing soybean seed oil content and yield in current cultivars and landraces soybeans.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, 450046, China.
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Geliang Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
2
|
Salazar-Villacorta A, Bond LM, Kim L, Anagnostopoulou K, Scardamaglia A, Filippakopoulou E, Ververi A, Efthymiou S, Dinopoulos A, Murphy D, Karadima G, Koutsis G, Kaliakatsos M, Houlden H, Walther TC, Farese RV. Partial loss of FITM2 function causes hereditary spastic paraplegia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.23.24319660. [PMID: 39974099 PMCID: PMC11838939 DOI: 10.1101/2025.01.23.24319660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
FITM2 encodes fat-storage inducing transmembrane protein 2 (FIT2), a lipid diphosphatase in the ER that cleaves acyl-CoAs and is crucial for ER homeostasis. In humans, homozygous null mutations in FITM2 are associated with a syndrome characterized by deafness and dystonia. Here, we report two families with hereditary spastic paraplegia (HSP) in whom exome sequencing revealed compound heterozygosity for FITM2 mutations. In each family, the affected probands carry one putative null allele and one G100R missense allele. Functional analyses demonstrated that the G100R allele is hypomorphic, with FIT2 protein levels reduced to 20% of wild type, leading to proportionately decreased enzyme activity. The occurrence of similar HSP disease phenotypes and the same hypomorphic mutation in these families suggests that the G100R mutation and its associated reduced enzyme activity represent a newly recognized clinical manifestation of FITM2 mutations, expanding the spectrum of conditions associated with this gene.
Collapse
|
3
|
Zhang H, Meng X, Liu R, Li R, Wang Y, Ma Z, Liu Z, Duan S, Li G, Guo X. Heat shock factor ZmHsf17 positively regulates phosphatidic acid phosphohydrolase ZmPAH1 and enhances maize thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:493-512. [PMID: 39324623 PMCID: PMC11714762 DOI: 10.1093/jxb/erae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Heat stress adversely impacts plant growth, development, and grain yield. Heat shock factors (Hsf), especially the HsfA2 subclass, play a pivotal role in the transcriptional regulation of genes in response to heat stress. In this study, the coding sequence of maize ZmHsf17 was cloned. ZmHsf17 contained conserved domains including a DNA binding domain, oligomerization domain, and transcriptional activation domain. The protein was nuclear localized and had transcription activation activity. Yeast two-hybrid and split luciferase complementation assays confirmed the interaction of ZmHsf17 with members of the maize HsfA2 subclass. Overexpression of ZmHsf17 in maize significantly increased chlorophyll content and net photosynthetic rate, and enhanced the stability of cellular membranes. Through integrative analysis of ChIP-seq and RNA-seq datasets, ZmPAH1, encoding phosphatidic acid phosphohydrolase of lipid metabolic pathways, was identified as a target gene of ZmHsf17. The promoter fragment of ZmPAH1 was bound by ZmHsf17 in protein-DNA interaction experiments in vivo and in vitro. Lipidomic data also indicated that the overexpression of ZmHsf17 increased levels of some critical membrane lipid components of maize leaves under heat stress. This research provides new insights into the role of the ZmHsf17-ZmPAH1 module in regulating thermotolerance in maize.
Collapse
Affiliation(s)
- Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Li
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, P. R. China
| | - Yantao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, P. R. China
| | - Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| |
Collapse
|
4
|
Kaushal C, Sachdev M, Parekh M, Gowrishankar H, Jain M, Sankaranarayanan S, Pathak B. Transcriptional engineering for value enhancement of oilseed crops: a forward perspective. Front Genome Ed 2025; 6:1488024. [PMID: 39840374 PMCID: PMC11747156 DOI: 10.3389/fgeed.2024.1488024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates. Recent genomic, transcriptomic, and metabolomics research has expanded our understanding of the genetic and physiological control of fatty acid biosynthesis and composition. Many oilseed species have inherent stress-combating mechanisms, including transcription factor regulation. Advances in genome editing tools like CRISPR/Cas9 offer precise genetic modifications, targeting transcription factors and binding sites to enhance desirable traits, such as the nutritional profile and chemical composition of fatty acids. This review explores the application of genome editing in oilseed improvement, covering recent progress, challenges, and future potential to boost yield and oil content. These advancements could play a transformative role in developing resilient, nutritious crop varieties essential for sustainable food security in a changing climate.
Collapse
Affiliation(s)
- Charli Kaushal
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Mahak Sachdev
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mansi Parekh
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harini Gowrishankar
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Bhuvan Pathak
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Carman GM, Stukey GJ, Jog R, Han GS. Insights into phosphatidic acid phosphatase and its potential role as a therapeutic target. Adv Biol Regul 2025; 95:101074. [PMID: 39788800 PMCID: PMC11832324 DOI: 10.1016/j.jbior.2025.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Phosphatidic acid phosphatase, a conserved eukaryotic enzyme that catalyzes the Mg2+-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol, has emerged as a vital regulator of lipid homeostasis. By controlling the balance of phosphatidic acid and diacylglycerol, the enzyme governs the use of the lipids for synthesis of the storage lipid triacylglycerol and the membrane phospholipids needed for cell growth. The mutational, biochemical, and cellular analyses of yeast phosphatidic acid phosphatase have provided insights into the structural determinants of enzyme function with the understanding of its regulation by phosphorylation and dephosphorylation. The key role that the enzyme plays in triacylglycerol synthesis indicates it may be a potential drug target to ameliorate obesity in humans. The enzyme activity, which is critical to the growth and virulence of pathogenic fungi, is a proposed target for therapeutic development to ameliorate fungal infections.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
6
|
Stukey GJ, Han GS, Carman GM. Architecture and function of yeast phosphatidate phosphatase Pah1 domains/regions. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159547. [PMID: 39103045 PMCID: PMC11586075 DOI: 10.1016/j.bbalip.2024.159547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, provides a direct precursor for the synthesis of the storage lipid triacylglycerol and the membrane phospholipids phosphatidylcholine and phosphatidylethanolamine. The enzyme controlling the key phospholipid PA also plays a crucial role in diverse aspects of lipid metabolism and cell physiology. PA phosphatase is a peripheral membrane enzyme that is composed of multiple domains/regions required for its catalytic function and subcellular localization. In this review, we discuss the domains/regions of PA phosphatase from the yeast Saccharomyces cerevisiae with reference to the homologous enzyme from mammalian cells.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
7
|
Ping Y, Shan J, Qin H, Li F, Qu J, Guo R, Han D, Jing W, Liu Y, Liu J, Liu Z, Li J, Yue D, Wang F, Wang L, Zhang B, Huang B, Zhang Y. PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8 + T cell ferroptosis. Immunity 2024; 57:2122-2139.e9. [PMID: 39208806 DOI: 10.1016/j.immuni.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/23/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The tumor microenvironment (TME) promotes metabolic reprogramming and dysfunction in immune cells. Here, we examined the impact of the TME on phospholipid metabolism in CD8+ T cells. In lung cancer, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were lower in intratumoral CD8+ T cells than in circulating CD8+ T cells. Intratumoral CD8+ T cells exhibited decreased expression of phospholipid phosphatase 1 (PLPP1), which catalyzes PE and PC synthesis. T cell-specific deletion of Plpp1 impaired antitumor immunity and promoted T cell death by ferroptosis. Unsaturated fatty acids in the TME stimulated ferroptosis of Plpp1-/- CD8+ T cells. Mechanistically, programmed death-1 (PD-1) signaling in CD8+ T cells induced GATA1 binding to the promoter region Plpp1 and thereby suppressed Plpp1 expression. PD-1 blockade increased Plpp1 expression and restored CD8+ T cell antitumor function but did not rescue dysfunction of Plpp1-/- CD8+ T cells. Thus, PD-1 signaling regulates phospholipid metabolism in CD8+ T cells, with therapeutic implications for immunotherapy.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiqi Shan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiming Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiao Qu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ru Guo
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Han
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Jing
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqing Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhangnan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongli Yue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine, Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; School of Public Health, Zhengzhou University, Zhengzhou, Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Zamora-Briseño JA, Schunke JM, Arteaga-Vázquez MA, Arredondo J, Tejeda MT, Ascencio-Ibáñez JT, Díaz-Fleischer F. Transcriptional response of laboratory-reared Mexican fruit flies ( Anastrepha ludens Loew) to desiccation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:563-570. [PMID: 39295441 DOI: 10.1017/s0007485324000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Confronting environments with low relative humidity is one of the main challenges faced by insects with expanding distribution ranges. Anastrepha ludens (the Mexican fruit fly) has evolved to cope with the variable conditions encountered during its lifetime, which allows it to colonise a wide range of environments. However, our understanding of the mechanisms underpinning the ability of this species to confront environments with low relative humidity is incomplete. In this sense, omic approaches such as transcriptomics can be helpful for advancing our knowledge on how this species copes with desiccation stress. Considering this, in this study, we performed transcriptomic analyses to compare the molecular responses of laboratory-reared A. ludens exposed and unexposed to desiccation. Data from the transcriptome analyses indicated that the responses to desiccation are shared by both sexes. We identified the up-regulation of transcripts encoding proteins involved in lipid metabolism and membrane remodelling, as well as proteases and cuticular proteins. Our results provide a framework for understanding the response to desiccation stress in one of the most invasive fruit fly species in the world.
Collapse
Affiliation(s)
| | - James M Schunke
- Department of Structural and Molecular Biochemistry, North Carolina State University
| | | | - José Arredondo
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | - Marco T Tejeda
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | | | | |
Collapse
|
9
|
Dawoody Nejad L, Annese T, Ribatti D. Lysosomal diacylglycerol pyrophosphate phosphatase is not essential in Trypanosoma brucei. Mol Biol Rep 2024; 51:578. [PMID: 38668789 DOI: 10.1007/s11033-024-09547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 02/06/2025]
Abstract
Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of β-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.
Collapse
Affiliation(s)
- Ladan Dawoody Nejad
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
- Graduate School for Cellular and Biochemical Sciences, University of Bern, Bern, Switzerland.
| | - Tiziana Annese
- Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro, Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, Italy
| |
Collapse
|
10
|
Qi Z, Guo C, Li H, Qiu H, Li H, Jong C, Yu G, Zhang Y, Hu L, Wu X, Xin D, Yang M, Liu C, Lv J, Wang X, Kong F, Chen Q. Natural variation in Fatty Acid 9 is a determinant of fatty acid and protein content. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:759-773. [PMID: 37937736 PMCID: PMC10893952 DOI: 10.1111/pbi.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Soybean is one of the most economically important crops worldwide and an important source of unsaturated fatty acids and protein for the human diet. Consumer demand for healthy fats and oils is increasing, and the global demand for vegetable oil is expected to double by 2050. Identification of key genes that regulate seed fatty acid content can facilitate molecular breeding of high-quality soybean varieties with enhanced fatty acid profiles. Here, we analysed the genetic architecture underlying variations in soybean seed fatty acid content using 547 accessions, including mainly landraces and cultivars from northeastern China. Through fatty acid profiling, genome re-sequencing, population genomics analyses, and GWAS, we identified a SEIPIN homologue at the FA9 locus as an important contributor to seed fatty acid content. Transgenic and multiomics analyses confirmed that FA9 was a key regulator of seed fatty acid content with pleiotropic effects on seed protein and seed size. We identified two major FA9 haplotypes in 1295 resequenced soybean accessions and assessed their phenotypic effects in a field planting of 424 accessions. Soybean accessions carrying FA9H2 had significantly higher total fatty acid contents and lower protein contents than those carrying FA9H1 . FA9H2 was absent in wild soybeans but present in 13% of landraces and 26% of cultivars, suggesting that it may have been selected during soybean post-domestication improvement. FA9 therefore represents a useful genetic resource for molecular breeding of high-quality soybean varieties with specific seed storage profiles.
Collapse
Affiliation(s)
- Zhaoming Qi
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Hongmei Qiu
- Soybean Research InstituteJilin Academy of Agricultural Sciences/National Soybean Engineering CenterChangchunChina
| | - Hui Li
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - CholNam Jong
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Guolong Yu
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Zhang
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Limin Hu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Xiaoxia Wu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Dawei Xin
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Mingliang Yang
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Chunyan Liu
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| | - Jian Lv
- Department of InnovationSyngenta Biotechnology ChinaBeijingChina
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri‐Seeds, Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Qingshan Chen
- College of AgricultureNortheast Agricultural UniversityHarbinHeilongjiangChina
| |
Collapse
|
11
|
Hawes E, Claxton D, Oeser J, O’Brien R. Identification of structural motifs critical for human G6PC2 function informed by sequence analysis and an AlphaFold2-predicted model. Biosci Rep 2024; 44:BSR20231851. [PMID: 38095063 PMCID: PMC10776900 DOI: 10.1042/bsr20231851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
G6PC2 encodes a glucose-6-phosphatase (G6Pase) catalytic subunit, primarily expressed in pancreatic islet β cells, which modulates the sensitivity of insulin secretion to glucose and thereby regulates fasting blood glucose (FBG). Mutational analyses were conducted to validate an AlphaFold2 (AF2)-predicted structure of human G6PC2 in conjunction with a novel method to solubilize and purify human G6PC2 from a heterologous expression system. These analyses show that residues forming a predicted intramolecular disulfide bond are essential for G6PC2 expression and that residues forming part of a type 2 phosphatidic acid phosphatase (PAP2) motif are critical for enzyme activity. Additional mutagenesis shows that residues forming a predicted substrate cavity modulate enzyme activity and substrate specificity and residues forming a putative cholesterol recognition amino acid consensus (CRAC) motif influence protein expression or enzyme activity. This CRAC motif begins at residue 219, the site of a common G6PC2 non-synonymous single-nucleotide polymorphism (SNP), rs492594 (Val219Leu), though the functional impact of this SNP is disputed. In microsomal membrane preparations, the L219 variant has greater activity than the V219 variant, but this difference disappears when G6PC2 is purified in detergent micelles. We hypothesize that this was due to a differential association of the two variants with cholesterol. This concept was supported by the observation that the addition of cholesteryl hemi-succinate to the purified enzymes decreased the Vmax of the V219 and L219 variants ∼8-fold and ∼3 fold, respectively. We anticipate that these observations should support the rational development of G6PC2 inhibitors designed to lower FBG.
Collapse
Affiliation(s)
- Emily M. Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Derek P. Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| |
Collapse
|
12
|
Ding Z, Song H, Wang F. Role of lipins in cardiovascular diseases. Lipids Health Dis 2023; 22:196. [PMID: 37964368 PMCID: PMC10644651 DOI: 10.1186/s12944-023-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Lipin family members in mammals include lipins 1, 2, and 3. Lipin family proteins play a crucial role in lipid metabolism due to their bifunctionality as both transcriptional coregulators and phosphatidate phosphatase (PAP) enzymes. In this review, we discuss the structural features, expression patterns, and pathophysiologic functions of lipins, emphasizing their direct as well as indirect roles in cardiovascular diseases (CVDs). Elucidating the regulation of lipins facilitates a deeper understanding of the roles of lipins in the processes underlying CVDs. The activity of lipins is modulated at various levels, e.g., in the form of the transcription of genes, post-translational modifications, and subcellular protein localization. Because lipin characteristics are undergoing progressive clarification, further research is necessitated to then actuate the investigation of lipins as viable therapeutic targets in CVDs.
Collapse
Affiliation(s)
- Zerui Ding
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Hongyu Song
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Wang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Tong Y, Li Y, Qin W, Wu S, Xu W, Jin P, Zheng Z. New insight into the metabolic mechanism of a novel lipid-utilizing and denitrifying bacterium capable of simultaneous removal of nitrogen and grease through transcriptome analysis. Front Microbiol 2023; 14:1258003. [PMID: 37965562 PMCID: PMC10642853 DOI: 10.3389/fmicb.2023.1258003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Issues related to fat, oil, and grease from kitchen waste (KFOG) in lipid-containing wastewater are intensifying globally. We reported a novel denitrifying bacterium Pseudomonas CYCN-C with lipid-utilizing activity and high nitrogen-removal efficiency. The aim of the present study was aim to explore the metabolic mechanism of the simultaneous lipid-utilizing and denitrifying bacterium CYCN-C at transcriptome level. Methods We comparatively investigated the cell-growth and nitrogen-removal performances of newly reported Pseudomonas glycinae CYCN-C under defined cultivation conditions. Transcriptome analysis was further used to investigate all pathway genes involved in nitrogen metabolism, lipid degradation and utilization, and cell growth at mRNA levels. Results CYCN-C could directly use fat, oil, and grease from kitchen waste (KFOG) as carbon source with TN removal efficiency of 73.5%, significantly higher than that (60.9%) with sodium acetate. The change levels of genes under defined KFOG and sodium acetate were analyzed by transcriptome sequencing. Results showed that genes cyo, CsrA, PHAs, and FumC involved in carbon metabolism under KFOG were significantly upregulated by 6.9, 0.7, 26.0, and 19.0-folds, respectively. The genes lipA, lipB, glpD, and glpK of lipid metabolic pathway were upregulated by 0.6, 0.4, 21.5, and 1.3-folds, respectively. KFOG also improved the denitrification efficiency by inducing the expression of the genes nar, nirB, nirD, and norR of denitrification pathways. Conclusion In summary, this work firstly provides valuable insights into the genes expression of lipid-utilizing and denitrifying bacterium, and provides a new approach for sewage treatment with reuse of KFOG wastes.
Collapse
Affiliation(s)
- Yaobin Tong
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
| | - Yiyi Li
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Wenpan Qin
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Shengchun Wu
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Weiping Xu
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang A & F University, Hangzhou, China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| |
Collapse
|
14
|
Mishra NN, de Paula Baptista R, Tran TT, Lapitan CK, Garcia-de-la-Maria C, Miró JM, Proctor RA, Bayer AS. Membrane Phenotypic, Metabolic and Genotypic Adaptations of Streptococcus oralis Strains Destined to Rapidly Develop Stable, High-Level Daptomycin Resistance during Daptomycin Exposures. Antibiotics (Basel) 2023; 12:1083. [PMID: 37508179 PMCID: PMC10376253 DOI: 10.3390/antibiotics12071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The Streptococcus mitis-oralis subgroup of viridans group streptococci are important human pathogens. We previously showed that a substantial portion of S. mitis-oralis strains (>25%) are 'destined' to develop rapid, high-level, and stable daptomycin (DAP) resistance (DAP-R) during DAP exposures in vitro. Such DAP-R is often accompanied by perturbations in distinct membrane phenotypes and metabolic pathways. The current study evaluated two S. oralis bloodstream isolates, 73 and 205. Strain 73 developed stable, high-level DAP-R (minimum inhibitory concentration [MIC] > 256 µg/mL) within 2 days of in vitro DAP passage ("high level" DAP-R [HLDR]). In contrast, strain 205 evolved low-level and unstable DAP-R (MIC = 8 µg/mL) under the same exposure conditions in vitro ("non-HLDR"). Comparing the parental 73 vs. 73-D2 (HLDR) strain-pair, we observed the 73-D2 had the following major differences: (i) altered cell membrane (CM) phospholipid profiles, featuring the disappearance of phosphatidylglycerol (PG) and cardiolipin (CL), with accumulation of the PG-CL pathway precursor, phosphatidic acid (PA); (ii) enhanced CM fluidity; (iii) increased DAP surface binding; (iv) reduced growth rates; (v) decreased glucose utilization and lactate accumulation; and (vi) increased enzymatic activity within the glycolytic (i.e., lactate dehydrogenase [LDH]) and lipid biosynthetic (glycerol-3-phosphate dehydrogenase [GPDH]) pathways. In contrast, the 205 (non-HLDR) strain-pair did not show these same phenotypic or metabolic changes over the 2-day DAP exposure. WGS analyses confirmed the presence of mutations in genes involved in the above glycolytic and phospholipid biosynthetic pathways in the 73-D2 passage variant. These data suggest that S. oralis strains which are 'destined' to rapidly develop HLDR do so via a conserved cadre of genotypic, membrane phenotypic, and metabolic adaptations.
Collapse
Affiliation(s)
- Nagendra N Mishra
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson St. MRL Bldg. Room 224, Torrance, CA 90502, USA
- The David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Rodrigo de Paula Baptista
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
| | - Truc T Tran
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, TX 77030, USA
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
| | - Christian K Lapitan
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson St. MRL Bldg. Room 224, Torrance, CA 90502, USA
| | - Cristina Garcia-de-la-Maria
- Infectious Diseases Service, Hospital Clinic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jose M Miró
- CIBERINFEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Richard A Proctor
- The Department of Medicine, University of Wisconsin School of Medicine, Madison, WI 53705, USA
| | - Arnold S Bayer
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson St. MRL Bldg. Room 224, Torrance, CA 90502, USA
- The David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
16
|
Kwiatek JM, Gutierrez B, Izgu EC, Han GS, Carman GM. Phosphatidic Acid Mediates the Nem1-Spo7/Pah1 Phosphatase Cascade in Yeast Lipid Synthesis. J Lipid Res 2022; 63:100282. [PMID: 36314526 PMCID: PMC9587005 DOI: 10.1016/j.jlr.2022.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the PAH1-encoded Mg2+-dependent phosphatidate (PA) phosphatase Pah1 regulates the bifurcation of PA to diacylglycerol (DAG) for triacylglycerol (TAG) synthesis and to CDP-DAG for phospholipid synthesis. Pah1 function is mainly regulated via control of its cellular location by phosphorylation and dephosphorylation. Pah1 phosphorylated by multiple protein kinases is sequestered in the cytosol apart from its substrate PA in the membrane. The phosphorylated Pah1 is then recruited and dephosphorylated by the protein phosphatase complex Nem1 (catalytic subunit)-Spo7 (regulatory subunit) in the endoplasmic reticulum. The dephosphorylated Pah1 hops onto and scoots along the membrane to recognize PA for its dephosphorylation to DAG. Here, we developed a proteoliposome model system that mimics the Nem1-Spo7/Pah1 phosphatase cascade to provide a tool for studying Pah1 regulation. Purified Nem1-Spo7 was reconstituted into phospholipid vesicles prepared in accordance with the phospholipid composition of the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7 phosphatase reconstituted in the proteoliposomes, which were measured 60 nm in an average diameter, was catalytically active on Pah1 phosphorylated by Pho85-Pho80, and its active site was located at the external side of the phospholipid bilayer. Moreover, we determined that PA stimulated the Nem1-Spo7 activity, and the regulatory effect was governed by the nature of the phosphate headgroup but not by the fatty acyl moiety of PA. The reconstitution system for the Nem1-Spo7/Pah1 phosphatase cascade, which starts with the phosphorylation of Pah1 by Pho85-Pho80 and ends with the production of DAG, is a significant advance to understand a regulatory cascade in yeast lipid synthesis.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Bryan Gutierrez
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Enver Cagri Izgu
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA; Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA; Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
17
|
Identification of Cyclic-di-GMP-Modulating Protein Residues by Bidirectionally Evolving a Social Behavior in Pseudomonas fluorescens. mSystems 2022; 7:e0073722. [PMID: 36190139 PMCID: PMC9600634 DOI: 10.1128/msystems.00737-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Modulation of the intracellular cyclic di-GMP (c-di-GMP) pool is central to the formation of structured bacterial communities. Genome annotations predict the presence of dozens of conserved c-di-GMP catalytic enzymes in many bacterial species, but the functionality and regulatory control of the vast majority remain underexplored. Here, we begin to fill this gap by utilizing an experimental evolution system in Pseudomonas fluorescens Pf0-1, which repeatedly produces a unique social behavior through bidirectional transitions between two distinct phenotypes converging on c-di-GMP modulation. Parallel evolution of 33 lineages captured 147 unique mutations among 191 evolved isolates in genes that are empirically demonstrated, bioinformatically predicted, or previously unknown to impact the intracellular pool of c-di-GMP. Quantitative chemistry confirmed that each mutation causing the phenotypic shift either amplifies or reduces c-di-GMP production. We identify missense or in-frame deletion mutations in numerous diguanylate cyclase genes that largely fall outside the conserved catalytic domain. We also describe a novel relationship between a regulatory component of branched-chain amino acid biosynthesis and c-di-GMP production, and predict functions of several other unexpected proteins that clearly impact c-di-GMP production. Sequential mutations that continuously disrupt or recover c-di-GMP production across discrete functional elements suggest a complex and underappreciated interconnectivity within the c-di-GMP regulome of P. fluorescens. IMPORTANCE Microbial communities comprise densely packed cells where competition for space and resources is fierce. Aging colonies of Pseudomonas fluorescens are known to repeatedly produce mutants with two distinct phenotypes that physically work together to spread away from the overcrowded population. We demonstrate that the mutants with one phenotype produce high levels of cyclic di-GMP (c-di-GMP) and those with the second phenotype produce low levels. C-di-GMP is an intracellular signaling molecule which regulates many bacterial traits that cause tremendous clinical and environmental problems. Here, we analyze 147 experimentally selected mutations, which manifest either of the two phenotypes, to identify key residues in diverse proteins that force or shut down c-di-GMP production. Our data indicate that the intracellular pool of c-di-GMP is modulated through the catalytic activities of many independent c-di-GMP enzymes, which appear to be in tune with several proteins with no known links to c-di-GMP modulation.
Collapse
|
18
|
The Role of Diacylglycerol Kinase in the Amelioration of Diabetic Nephropathy. Molecules 2022; 27:molecules27206784. [PMID: 36296376 PMCID: PMC9607625 DOI: 10.3390/molecules27206784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The drastic increase in the number of patients with diabetes and its complications is a global issue. Diabetic nephropathy, the leading cause of chronic kidney disease, significantly affects patients’ quality of life and medical expenses. Furthermore, there are limited drugs for treating diabetic nephropathy patients. Impaired lipid signaling, especially abnormal protein kinase C (PKC) activation by de novo-synthesized diacylglycerol (DG) under high blood glucose, is one of the causes of diabetic nephropathy. DG kinase (DGK) is an enzyme that phosphorylates DG and generates phosphatidic acid, i.e., DGK can inhibit PKC activation under diabetic conditions. Indeed, it has been proven that DGK activation ameliorates diabetic nephropathy. In this review, we summarize the involvement of PKC and DGK in diabetic nephropathy as therapeutic targets, and its mechanisms, by referring to our recent study.
Collapse
|
19
|
Park ME, Kim HU. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:969844. [PMID: 36119569 PMCID: PMC9471015 DOI: 10.3389/fpls.2022.969844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.
Collapse
Affiliation(s)
- Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
20
|
Advances in Plant Lipid Metabolism Responses to Phosphate Scarcity. PLANTS 2022; 11:plants11172238. [PMID: 36079619 PMCID: PMC9460063 DOI: 10.3390/plants11172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Low phosphate (Pi) availability in soils severely limits crop growth and production. Plants have evolved to have numerous physiological and molecular adaptive mechanisms to cope with Pi starvation. The release of Pi from membrane phospholipids is considered to improve plant phosphorus (P) utilization efficiency in response to Pi starvation and accompanies membrane lipid remodeling. In this review, we summarize recent discoveries related to this topic and the molecular basis of membrane phospholipid alteration and triacylglycerol metabolism in response to Pi depletion in plants at different subcellular levels. These findings will help to further elucidate the molecular mechanisms underlying plant adaptation to Pi starvation and thus help to develop crop cultivars with high P utilization efficiency.
Collapse
|
21
|
Yang Y, Chen L, Su G, Liu F, Zeng Q, Li R, Cha G, Liu C, Xing L, Ren X, Ding Y. Identification and expression analysis of the lipid phosphate phosphatases gene family reveal their involvement in abiotic stress response in kiwifruit. FRONTIERS IN PLANT SCIENCE 2022; 13:942937. [PMID: 36092394 PMCID: PMC9449726 DOI: 10.3389/fpls.2022.942937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Lipid phosphate phosphatases (LPPs) are a key enzyme in the production and degradation of phosphatidic acid (PA), which plays an important role in plant growth, development, stress resistance and plant hormone response. Thus far, little is known about the LPP family genes in kiwifruit (Actinidia spp.). According to this study, 7 members in the AcLPP family were identified from the whole genome of kiwifruit, the subcellular localization predictions were mainly on the plasma membrane. Chromosomal localization analysis showed that the AcLPP genes were unevenly distributed on 5 chromosomes, it was determined to have undergone strong purifying selection pressure. There were 5 duplicate gene pairs and all underwent segmental duplication events. The LPP genes of kiwifruit were conserved when compared with other plants, especially in terms of evolutionary relationships, conserved motifs, protein sequences, and gene structures. Cis-regulatory elements mainly included hormone response elements and abiotic response elements. Functional annotation of GO revealed that AcLPP genes were closely related to phosphatase/hydrolase activity, phosphorus metabolism and dephosphorylation. AcLPP genes family were predicted to be targets of miRNA. Transcript level analysis revealed that the AcLPP family played diverse functions in different tissues and during growth, development, and postharvest storage stages. qPCR analysis showed that the members of AcLPP gene family might be regulated by ETH, ABA, GA3, and IAA hormone signals. The family members were regulated by the stress of salt stress, osmotic stress, cold stress, and heat stress. These results would provide a basis and reference for studying the agricultural characteristics of kiwifruit and improving its stress resistance.
Collapse
Affiliation(s)
- Yaming Yang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Lijuan Chen
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Gen Su
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Fangfang Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Qiang Zeng
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Rui Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Guili Cha
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Cuihua Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Yuduan Ding
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| |
Collapse
|
22
|
Detection of Pyrophosphate and Alkaline Phosphatase Activity Based on PolyT Single Stranded DNA - Copper Nanoclusters. J Fluoresc 2022; 32:1949-1957. [PMID: 35776261 DOI: 10.1007/s10895-022-02984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
The determination of pyrophosphate and alkaline phosphatase activity plays a significant role in medical diagnosis. In this work, a label-free "ON-OFF-ON" fluorescence strategy is developed for the analysis of pyrophosphate and alkaline phosphatase activity. Using PolyT single strand DNA as templates to synthesize fluorescent copper nanoparticles, the coordination effect of pyrophosphoric acid on Cu2+ inhibited the generation of fluorescence. Afterwards, the addition of alkaline phosphatase into hydrolyze pyrophosphoric acid resulted in the release of Cu2+, whereby the fluorescence intensity could be recovered. Thereupon enhanced-sensitivity for alkaline phosphatase was obtained (0.1 mU/L), much better than previously reported methods. Meanwhile, it could be performed directly in homogeneous solution, which was very close to the actual activity level of alkaline phosphatase under physiological conditions. Likewise, satisfactory results were also obtained in specificity assessment, which demonstrated its potential application in clinical diagnosis. Notably, a new, sensitive, low-cost, short-time, and high-sensitivity platform for alkaline phosphatase detection was constructed, and the design of biosensor using DNA-templated Copper nanoclusters (CuNCs) was instructed in this study.
Collapse
|
23
|
Gaspar ML, Aregullin MA, Chang YF, Jesch SA, Henry SA. Phosphatidic acid species 34:1 mediates expression of the myo-inositol 3-phosphate synthase gene INO1 for lipid synthesis in yeast. J Biol Chem 2022; 298:102148. [PMID: 35716778 PMCID: PMC9283935 DOI: 10.1016/j.jbc.2022.102148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Depletion of exogenous inositol in yeast results in rising levels of phosphatidic acid (PA) and is correlated with increased expression of genes containing the inositol-dependent upstream activating sequence promoter element (UASINO). INO1, encoding myo-inositol 3-phosphate synthase, is the most highly regulated of the inositol-dependent upstream activating sequence-containing genes, but its mechanism of regulation is not clear. In the current study, we determined the relative timing and kinetics of appearance of individual molecular species of PA following removal of exogenous inositol in actively growing wild type, pah1Δ, and ole1ts strains. We report that the pah1Δ strain, lacking the PA phosphatase, exhibits a delay of about 60 min in comparison to wildtype before initiating derepression of INO1 expression. The ole1ts mutant on the other hand, defective in fatty acid desaturation, when grown at a semirestrictive temperature, exhibited reduced synthesis of PA species 34:1 and elevated synthesis of PA species 32:1. Importantly, we found these changes in the fatty acid composition in the PA pool of the ole1ts strain were associated with reduced expression of INO1, indicating that synthesis of PA 34:1 is involved in optimal expression of INO1 in the absence of inositol. Using deuterium-labeled glycerol in short-duration labeling assays, we found that changes associated with PA species 34:1 were uniquely correlated with increased expression of INO1 in all three strains. These data indicate that the signal for activation of INO1 transcription is not necessarily the overall level of PA but rather levels of a specific species of newly synthesized PA 34:1.
Collapse
Affiliation(s)
- Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | - Manuel A Aregullin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Yu-Fang Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
25
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Su W, Raza A, Gao A, Zeng L, Lv Y, Ding X, Cheng Y, Zou X. Plant lipid phosphate phosphatases: current advances and future outlooks. Crit Rev Biotechnol 2022; 43:384-392. [PMID: 35430946 DOI: 10.1080/07388551.2022.2032588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipids are widely distributed in various tissues of an organism, mainly in plant storage organs (e.g., fruits, seeds, etc.). Lipids are vital biological substances that are involved in: signal transduction, membrane biogenesis, energy storage, and the formation of transmembrane fat-soluble substances. Some lipids and related lipid derivatives could be changed in their: content, location, or physiological activity by the external environment, such as biotic or abiotic stresses. Lipid phosphate phosphatases (LPPs) play important roles in regulating intermediary lipid metabolism and cellular signal response. LPPs can dephosphorylate lipid phosphates containing phosphate monolipid bonds such as: phosphatidic acid, lysophosphatidic acid (LPA), and diacylglycerol pyrophosphate, etc. These processes can change the contents of some important lipid signal mediation such as diacylglycerol and LPA, affecting lipid signal transmission. Here, we summarize the research progress of LPPs in plants, emphasizing the structural and biochemical characteristics of LPPs and their role in spatio-temporal regulation. In the future, more in-depth studies are required to boost our understanding of the key role of plant LPPs and lipid metabolism in: signal regulation, stress tolerance pathway, and plant growth and development.
Collapse
Affiliation(s)
- Wei Su
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ang Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Liu Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaoyu Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yong Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
27
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
28
|
Khandelwal R, Jain D, Jaishankar J, Barman A, Srivastava P, Bisaria VS. Characterization of Zymomonas mobilis promoters that are functional in Escherichia coli. J Biosci Bioeng 2022; 133:301-308. [DOI: 10.1016/j.jbiosc.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023]
|
29
|
Kakehi S, Tamura Y, Ikeda SI, Kaga N, Taka H, Ueno N, Shiuchi T, Kubota A, Sakuraba K, Kawamori R, Watada H. Short-term physical inactivity induces diacylglycerol accumulation and insulin resistance in muscle via lipin1 activation. Am J Physiol Endocrinol Metab 2021; 321:E766-E781. [PMID: 34719943 DOI: 10.1152/ajpendo.00254.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization (HCI) to mice with normal or high-fat diet (HFD) and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. Although 2-wk HFD alone did not alter intramyocellular diacylglycerol (IMDG) accumulation, HCI alone increased it by 1.9-fold and HCI after HFD further increased it by 3.3-fold. Parallel to this, we found increased protein kinase C ε (PKCε) activity, reduced insulin-induced 2-deoxyglucose (2-DOG) uptake, and reduced phosphorylation of insulin receptor β (IRβ) and Akt, key molecules for insulin signaling pathway. Lipin1, which converts phosphatidic acid to diacylglycerol, showed increase of its activity by HCI, and dominant-negative lipin1 expression in muscle prevented HCI-induced IMDG accumulation and impaired insulin-induced 2-DOG uptake. Furthermore, 24-h leg cast immobilization in human increased lipin1 expression. Thus, even short-term immobilization increases IMDG and impairs insulin sensitivity in muscle via enhanced lipin1 activity.NEW & NOTEWORTHY Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization to mice with normal or high-fat diet and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. We found that even short-term immobilization increases intramyocellular diacylglycerol and impairs insulin sensitivity in muscle via enhanced lipin1 activity.
Collapse
Affiliation(s)
- Saori Kakehi
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shin-Ichi Ikeda
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Noriko Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tetsuya Shiuchi
- Department of Integrative Physiology, Institute for Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Atsushi Kubota
- Department of Sports Medicine, Juntendo University, Chiba, Japan
| | | | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
30
|
Yakimov MM, Merkel AY, Gaisin VA, Pilhofer M, Messina E, Hallsworth JE, Klyukina AA, Tikhonova EN, Gorlenko VM. Cultivation of a vampire: 'Candidatus Absconditicoccus praedator'. Environ Microbiol 2021; 24:30-49. [PMID: 34750952 DOI: 10.1111/1462-2920.15823] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Halorhodospira halophila, one of the most-xerophilic halophiles, inhabits biophysically stressful and energetically expensive, salt-saturated alkaline brines. Here, we report an additional stress factor that is biotic: a diminutive Candidate-Phyla-Radiation bacterium, that we named 'Ca. Absconditicoccus praedator' M39-6, which predates H. halophila M39-5, an obligately photosynthetic, anaerobic purple-sulfur bacterium. We cultivated this association (isolated from the hypersaline alkaline Lake Hotontyn Nur, Mongolia) and characterized their biology. 'Ca. Absconditicoccus praedator' is the first stably cultivated species from the candidate class-level lineage Gracilibacteria (order-level lineage Absconditabacterales). Its closed-and-curated genome lacks genes for the glycolytic, pentose phosphate- and Entner-Doudoroff pathways which would generate energy/reducing equivalents and produce central carbon currencies. Therefore, 'Ca. Absconditicoccus praedator' is dependent on host-derived building blocks for nucleic acid-, protein-, and peptidoglycan synthesis. It shares traits with (the uncultured) 'Ca. Vampirococcus lugosii', which is also of the Gracilibacteria lineage. These are obligate parasitic lifestyle, feeding on photosynthetic anoxygenic Gammaproteobacteria, and absorption of host cytoplasm. Commonalities in their genomic composition and structure suggest that the entire Absconditabacterales lineage consists of predatory species which act to cull the populations of their respective host bacteria. Cultivation of vampire : host associations can shed light on unresolved aspects of their metabolism and ecosystem dynamics at life-limiting extremes.
Collapse
Affiliation(s)
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vasil A Gaisin
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Enzo Messina
- Institute for Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Trypanosoma brucei Tim50 Possesses PAP Activity and Plays a Critical Role in Cell Cycle Regulation and Parasite Infectivity. mBio 2021; 12:e0159221. [PMID: 34517757 PMCID: PMC8546626 DOI: 10.1128/mbio.01592-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma brucei, the infective agent for African trypanosomiasis, possesses a homologue of the translocase of the mitochondrial inner membrane 50 (TbTim50). It has a pair of characteristic phosphatase signature motifs, DXDX(T/V). Here, we demonstrated that, besides its protein phosphatase activity, the recombinant TbTim50 binds and hydrolyzes phosphatidic acid in a concentration-dependent manner. Mutations of D242 and D244, but not of D345and D347, to alanine abolished these activities. In silico structural homology models identified the putative binding interfaces that may accommodate different phosphosubstrates. Interestingly, TbTim50 depletion in the bloodstream form (BF) of T. brucei reduced cardiolipin (CL) levels and decreased mitochondrial membrane potential (ΔΨ). TbTim50 knockdown (KD) also reduced the population of G2/M phase and increased that of G1 phase cells; inhibited segregation and caused overreplication of kinetoplast DNA (kDNA), and reduced BF cell growth. Depletion of TbTim50 increased the levels of AMPK phosphorylation, and parasite morphology was changed with upregulation of expression of a few stumpy marker genes. Importantly, we observed that TbTim50-depleted parasites were unable to establish infection in mice. Proteomics analysis showed reductions in levels of the translation factors, flagellar transport proteins, and many proteasomal subunits, including those of the mitochondrial heat shock locus ATPase (HslVU), which is known to play a role in regulation of kinetoplast DNA (kDNA) replication. Reduction of the level of HslV in TbTim50 KD cells was further validated by immunoblot analysis. Together, our results showed that TbTim50 is essential for mitochondrial function, regulation of kDNA replication, and the cell cycle in the BF. Therefore, TbTim50 is an important target for structure-based drug design to combat African trypanosomiasis.
Collapse
|
32
|
Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora. Sci Rep 2021; 11:19061. [PMID: 34561509 PMCID: PMC8463592 DOI: 10.1038/s41598-021-98548-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Coral reefs across the globe are threatened by warming oceans. The last few years have seen the worst mass coral bleaching events recorded, with more than one quarter of all reefs irreversibly impacted. Considering the widespread devastation, we need to increase our efforts to understanding the physiological and metabolic shifts underlying the breakdown of this important symbiotic ecosystem. Here, we investigated the proteome (PRIDE accession # PXD011668) of both host and symbionts of the reef-building coral Acropora millepora exposed to ambient (~ 28 °C) and elevated temperature (~ 32 °C for 2 days, following a five-day incremental increase) and explored associated biomolecular changes in the symbiont, with the aim of gaining new insights into the mechanisms underpinning the collapse of the coral symbiosis. We identified 1,230 unique proteins (774 host and 456 symbiont) in the control and thermally stressed corals, of which 107 significantly increased and 125 decreased in abundance under elevated temperature relative to the control. Proteins involved in oxidative stress and proteolysis constituted 29% of the host proteins that increased in abundance, with evidence of impairment to endoplasmic reticulum and cytoskeletal regulation proteins. In the symbiont, we detected a decrease in proteins responsible for photosynthesis and energy production (33% of proteins decreased in abundance), yet minimal signs of oxidative stress or proteolysis. Lipid stores increased > twofold despite reduction in photosynthesis, suggesting reduced translocation of carbon to the host. There were significant changes in proteins related to symbiotic state, including proteins linked to nitrogen metabolism in the host and the V-ATPase (-0.6 fold change) known to control symbiosome acidity. These results highlight key differences in host and symbiont proteomic adjustments under elevated temperature and identify two key proteins directly involved in bilateral nutrient exchange as potential indicators of symbiosis breakdown.
Collapse
|
33
|
Alvarez HM, Hernández MA, Lanfranconi MP, Silva RA, Villalba MS. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021; 26:molecules26164871. [PMID: 34443455 PMCID: PMC8401914 DOI: 10.3390/molecules26164871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/20/2023] Open
Abstract
Bacteria belonging to the Rhodococcus genus are frequent components of microbial communities in diverse natural environments. Some rhodococcal species exhibit the outstanding ability to produce significant amounts of triacylglycerols (TAG) (>20% of cellular dry weight) in the presence of an excess of the carbon source and limitation of the nitrogen source. For this reason, they can be considered as oleaginous microorganisms. As occurs as well in eukaryotic single-cell oil (SCO) producers, these bacteria possess specific physiological properties and molecular mechanisms that differentiate them from other microorganisms unable to synthesize TAG. In this review, we summarized several of the well-characterized molecular mechanisms that enable oleaginous rhodococci to produce significant amounts of SCO. Furthermore, we highlighted the ability of these microorganisms to degrade a wide range of carbon sources coupled to lipogenesis. The qualitative and quantitative oil production by rhodococci from diverse industrial wastes has also been included. Finally, we summarized the genetic and metabolic approaches applied to oleaginous rhodococci to improve SCO production. This review provides a comprehensive and integrating vision on the potential of oleaginous rhodococci to be considered as microbial biofactories for microbial oil production.
Collapse
|
34
|
Su W, Raza A, Zeng L, Gao A, Lv Y, Ding X, Cheng Y, Zou X. Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L. BMC Genomics 2021; 22:548. [PMID: 34273948 PMCID: PMC8286584 DOI: 10.1186/s12864-021-07862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). RESULTS In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. CONCLUSIONS This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.
Collapse
Affiliation(s)
- Wei Su
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Ali Raza
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Liu Zeng
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Ang Gao
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Yan Lv
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Xiaoyu Ding
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Yong Cheng
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China
| | - Xiling Zou
- Oil Crops Research Institute, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Chinese Academy of Agricultural Sciences (CAAS), Ministry of Agriculture, 430062, Wuhan, Hubei, China.
| |
Collapse
|
35
|
Crotta Asis A, Savoretti F, Cabruja M, Gramajo H, Gago G. Characterization of key enzymes involved in triacylglycerol biosynthesis in mycobacteria. Sci Rep 2021; 11:13257. [PMID: 34168231 PMCID: PMC8225852 DOI: 10.1038/s41598-021-92721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Phosphatidic acid phosphatase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. PAP activity has a key role in the regulation of PA flux towards TAG or glycerophospholipid synthesis. In this work we have characterized two Mycobacterium smegmatis genes encoding for functional PAP proteins. Disruption of both genes provoked a sharp reduction in de novo TAG biosynthesis in early growth phase cultures under stress conditions. In vivo labeling experiments demonstrated that TAG biosynthesis was restored in the ∆PAP mutant when bacteria reached exponential growth phase, with a concomitant reduction of phospholipid synthesis. In addition, comparative lipidomic analysis showed that the ∆PAP strain had increased levels of odd chain fatty acids esterified into TAGs, suggesting that the absence of PAP activity triggered other rearrangements of lipid metabolism, like phospholipid recycling, in order to maintain the wild type levels of TAG. Finally, the lipid changes observed in the ∆PAP mutant led to defective biofilm formation. Understanding the interaction between TAG synthesis and the lipid composition of mycobacterial cell envelope is a key step to better understand how lipid homeostasis is regulated during Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Agostina Crotta Asis
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Franco Savoretti
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Stanford University, Stanford, USA
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
36
|
Li N, Zhou J, Wang H, Mu C, Wang C. The iTRAQ-based quantitative proteomics reveals metabolic changes in Scylla paramamosain under different light intensities during indoor overwintering. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111384. [PMID: 33011457 DOI: 10.1016/j.ecoenv.2020.111384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Light intensity is one of the ecological factors that appreciably affects the metabolism of Scylla paramamosain during overwintering. This study adopted the isobaric tag for relative and absolute quantitation (iTRAQ) method to investigate metabolic changes of S. paramamosain under three illumination levels (0, 1.43 and 40.31 μmol m-2·s-1) for four months during indoor overwintering. The iTRAQ identified 3282 proteins, among which 267 exhibited significant differential expression (122 upregulated and 145 downregulated) in the low light group, and 299 with significant differential expression (252 upregulated and 47 downregulated) in the high light group. Analysis of these results showed that there were different metabolic regulatory patterns under different light intensities. Low light is more conducive to the survival of S. paramamosain, which needs to produce and consume relatively less energy to sustain physiological activities. Thus, the essential proteins associated with physiological activities were significantly upregulated, while those related to energy production were significantly downregulated. In contrast, high light exerts a certain stress on the survival of S. paramamosain and required more energy to cope with this stress, which forced a significant upregulation of proteins related to stress response and energy production. The findings of this study highlighted the metabolic regulatory mechanisms of S. paramamosain under different light intensities.
Collapse
Affiliation(s)
- Na Li
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Junming Zhou
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
37
|
Abstract
Phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol and regulates the synthesis of membrane phospholipids. There is much interest in this enzyme because it controls the cellular levels of its substrate, phosphatidate (PA), and product, DAG; defects in the metabolism of these lipid intermediates are the basis for lipid-based diseases such as obesity, lipodystrophy, and inflammation. The measurement of PAP activity is required for studies aimed at understanding its mechanisms of action, how it is regulated, and for screening its activators and/or inhibitors. Enzyme activity is determined through the use of radioactive and nonradioactive assays that measure the product, DAG, or Pi However, sensitivity and ease of use are variable across these methods. This review summarizes approaches to synthesize radioactive PA, to analyze radioactive and nonradioactive products, DAG and Pi, and discusses the advantages and disadvantages of each PAP assay.
Collapse
Affiliation(s)
- Prabuddha Dey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
38
|
Booth LA, Smith TK. Lipid metabolism in Trypanosoma cruzi: A review. Mol Biochem Parasitol 2020; 240:111324. [PMID: 32961207 DOI: 10.1016/j.molbiopara.2020.111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
The cellular membranes of Trypanosoma cruzi, like all eukaryotes, contain varying amounts of phospholipids, sphingolipids, neutral lipids and sterols. A multitude of pathways exist for the de novo synthesis of these lipid families but Trypanosoma cruzi has also become adapted to scavenge some of these lipids from the host. Completion of the TriTryp genomes has led to the identification of many putative genes involved in lipid synthesis, revealing some interesting differences to higher eukaryotes. Although many enzymes involved in lipid synthesis have yet to be characterised, completed experiments have shown the indispensability of some lipid metabolic pathways. Furthermore, the bioactive lipids of Trypanosoma cruzi and their effects on the host are becoming increasingly studied. Further studies on lipid metabolism in Trypanosoma cruzi will no doubt reveal some attractive targets for therapeutic intervention as well as reveal the interplay between parasite lipids, host response and pathogenesis.
Collapse
Affiliation(s)
- Leigh-Ann Booth
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, United Kingdom.
| |
Collapse
|
39
|
Gallardo A, Ugarte-Ruiz M, Hernández M, Miguela-Villoldo P, Rodríguez-Lázaro D, Domínguez L, Quesada A. Involvement of hpap2 and dgkA Genes in Colistin Resistance Mediated by mcr Determinants. Antibiotics (Basel) 2020; 9:E531. [PMID: 32842668 PMCID: PMC7559476 DOI: 10.3390/antibiotics9090531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Plasmid-mediated colistin resistance (mcr) determinants are challenging the efficacy of polymyxins against Gram-negative pathogens. Among 10 mcr genes described so far, the major determinants mcr-1 and mcr-3 are found closely linked to hpap2 or dgkA genes, encoding a hypothetical phosphatidic acid phosphatase of type 2 (PAP2) and a diacylglycerol kinase, respectively, whose functions are still unknown. In this study, mcr-1, mcr-1-hpap2, mcr-3, and mcr-3-dgkA were expressed in Escherichia coli, and recombinant strains were analyzed to detect antimicrobial susceptibility and changes in the expression of genes involved in phospholipid metabolism. The mcr-1 or mcr-3 single genes were enough to drive growth on colistin selective media, although co-expression of linked genes conferred maximal antibiotic resistance. Expression of mcr determinants downregulated endogenous genes involved in lipopolysaccharide (LPS) modification or phospholipid recycling, although to different extents of repression: strong for arnB, ybjG, and pmrR; medium for eptA, lpxT, and dgkA; small for bacA and pgpB. Four of these genes (bacA, lpxT, pgpB, and ybjG) encode undecaprenyl pyrophosphate (UPP) phosphatases. In these conditions, cells presented resistance against bacitracin, an antibiotic that sequesters UPP from PAP2 enzymes. The hpap2 and dgkA genes might play a role in colistin resistance by compensating for phospholipid metabolism functions altered during LPS modification by colistin resistance determinants.
Collapse
Affiliation(s)
- Alejandro Gallardo
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain;
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.U.-R.); (P.M.-V.); (L.D.)
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain;
| | - Pedro Miguela-Villoldo
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.U.-R.); (P.M.-V.); (L.D.)
| | - David Rodríguez-Lázaro
- Unidad de Microbiología, Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain;
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.U.-R.); (P.M.-V.); (L.D.)
| | - Alberto Quesada
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain;
- INBIO G + C, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
40
|
Mirheydari M, Dey P, Stukey GJ, Park Y, Han GS, Carman GM. The Spo7 sequence LLI is required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid metabolism. J Biol Chem 2020; 295:11473-11485. [PMID: 32527729 DOI: 10.1074/jbc.ra120.014129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Indexed: 11/06/2022] Open
Abstract
The Nem1-Spo7 complex in the yeast Saccharomyces cerevisiae is a protein phosphatase that catalyzes the dephosphory-lation of Pah1 phosphatidate phosphatase, required for its translocation to the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7/Pah1 phosphatase cascade plays a major role in triacylglycerol synthesis and in the regulation of phospholipid synthesis. In this work, we examined Spo7, a regulatory subunit required for Nem1 catalytic function, to identify residues that govern formation of the Nem1-Spo7 complex. By deletion analysis of Spo7, we identified a hydrophobic Leu-Leu-Ile (LLI) sequence comprising residues 54-56 as being required for the protein to complement the temperature-sensitive phenotype of an spo7Δ mutant strain. Mutational analysis of the LLI sequence with alanine and arginine substitutions showed that its overall hydrophobicity is crucial for the formation of the Nem1-Spo7 complex as well as for the Nem1 catalytic function on its substrate, Pah1, in vivo Consistent with the role of the Nem1-Spo7 complex in activating the function of Pah1, we found that the mutational effects of the Spo7 LLI sequence were on the Nem1-Spo7/Pah1 axis that controls lipid synthesis and related cellular processes (e.g. triacylglycerol/phospholipid synthesis, lipid droplet formation, nuclear/endoplasmic reticulum membrane morphology, vacuole fusion, and growth on glycerol medium). These findings advance the understanding of Nem1-Spo7 complex formation and its role in the phosphatase cascade that regulates the function of Pah1 phosphatidate phosphatase.
Collapse
Affiliation(s)
- Mona Mirheydari
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Prabuddha Dey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Yeonhee Park
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
41
|
Huang X, Jia J, Lin Y, Qiu B, Lin Z, Chen H. A Highly Sensitive Electrochemiluminescence Biosensor for Pyrophosphatase Detection Based on Click Chemistry-Triggered Hybridization Chain Reaction in Homogeneous Solution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34716-34722. [PMID: 32643920 DOI: 10.1021/acsami.0c10542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The abnormal expression of pyrophosphatase (PPase) is closely related to many diseases and malignant tumors, so the detection for PPase is of great significance in clinical diagnosis, disease monitoring, and other biomedical aspects. In this study, a sensitive and specific electrochemiluminescence (ECL) biosensor combined highly specific Cu+-catalyzed azide-alkyne cycloaddition (CuAAC) with high efficiency of hybridization chain reaction (HCR) for the purpose of detecting pyrophosphatase has been designed. Highly efficient hybridization chain reaction amplification processed in homogeneous solution and the amplification products were connected to the electrode surface in one step, which solved the problem of low DNA amplification efficiency on the electrode surface because of the steric hindrance. Ru(phen)32+ was embedded into the dsDNA and functioned as ECL probes; the enhanced ECL intensity of the system had a linear relationship with the logarithm of PPase concentration in the range of 0.025-50 mU with a detection limit of 8 μU. The method was proved to be of good specificity, repeatability, and stability that could be used for screening and quantitatively determining pyrophosphatase inhibitor sodium fluoride. The practicability of this method in clinical application has been proved through the detection of serum from the clinical arthritis patients. Moreover, the method can be used to monitor PPase activity of arthritis patients before and after administration to provide reference for the effect of drug treatment.
Collapse
Affiliation(s)
- Xiaocui Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinpeng Jia
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing 100853, China
| | - Yue Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huixing Chen
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| |
Collapse
|
42
|
Chang J, Tang B, Chen Y, Xia X, Qian M, Yang H. Two IncHI2 Plasmid-Mediated Colistin-Resistant Escherichia coli Strains from the Broiler Chicken Supply Chain in Zhejiang Province, China. J Food Prot 2020; 83:1402-1410. [PMID: 32294180 DOI: 10.4315/jfp-20-041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT Colistin is used as one of the last-resort drugs against lethal infections caused by carbapenem-resistant pathogens of the Enterobacteriaceae family. Enterobacteriaceae bacteria carrying the mcr-1 colistin resistance gene are emerging in livestock and poultry, posing a serious threat to human health. However, there have been few reports about the prevalence and transmission of mcr-1 along the regional chicken supply chain. In this study, the complete sequences of mcr-1-positive Escherichia coli ST2705 and ST206 isolates obtained by screening 129 chilled chicken samples and 251 chicken fecal samples were investigated. Both of these isolates showed resistance to colistin, and importantly, the complete sequence of the mcr-1-positive E. coli ST2705 in China was reported for the first time. The mcr-1 gene was located on the IncHI2 plasmids pTBMCR421 (254,365 bp) and pTBMCR401 (230,964 bp) in strains ECCNB20-2 and ECZP248, respectively. Comparative analysis of mcr-1-bearing IncHI2 plasmids showed a marked similarity, indicating that these plasmids are very common and have the ability to be efficient vehicles for mcr-1 dissemination among humans, animals, and food. Furthermore, an insertion (ISKpn26) in Tn6330 (ISApl1-mcr-1-pap2-ISApl1) was identified in the plasmid pTBMCR401 and then compared; this insertion might affect the adaptability and stability of Tn6330. Taken together, these findings suggest that the IncHI2 plasmid might be a main factor affecting the transmission of mcr-1 in the chicken supply chain and that the genetic context of the mcr-1-bearing IncHI2 plasmid is constantly evolving. HIGHLIGHTS
Collapse
Affiliation(s)
- Jiang Chang
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-9145-7713 [J.C.]).,State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Biao Tang
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China
| | - Yifei Chen
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, People's Republic of China
| | - Mingrong Qian
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China
| | - Hua Yang
- Institute of Quality and Standard for Agro-products & State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, People's Republic of China
| |
Collapse
|
43
|
Cruz A, Núñez-Montenegro A, Mateus P, Delgado R. Monitoring inorganic pyrophosphatase activity with the fluorescent dizinc(ii) complex of a macrocycle bearing one dansylamidoethyl antenna. Dalton Trans 2020; 49:9487-9494. [PMID: 32608414 DOI: 10.1039/d0dt01673j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The dizinc(ii) complexes of L were used for the recognition of anions by fluorescence spectroscopy (L is a heteroditopic hexaazamacrocycle with two diethylenetriamine coordination heads with 2-methylpyridyl and dansylamido ethyl arms, and m-xylyl spacers). The protonation of L and stability constants of its zinc(ii) complexes were determined in aqueous solution, at 298.2 ± 0.1 K and I = 0.10 ± 0.01 M in KNO3. At a 2 : 1 Zn2+/L ratio, the dinuclear complexes clearly dominate. The ligand alone does not display fluorescence changes upon increasing the pH value, but in the presence of Zn2+ the emission reaches a maximum at pH ≅ 7.5, at which 95% of the ligand is in the dinuclear complex form. The emission appears concomitantly with the [Zn2H-1L]3+ species formation, which supports that the latter complex corresponds to the metal-promoted deprotonation of dansylamide NH. The [Zn2H-1L]3+ complexes were used for the recognition of phosphate and polyphosphate anions in aqueous solution buffered at pH 7.5 with 2 mM PIPPS, at 298.2 K. The binding of anions causes a decrease of the emission. The association constant determination revealed that HPPi3- is the strongest bound anion (log Kapp = 5.57), followed by HATP3- (two times weaker), and the remaining anions show lower binding constants, with HPO42- having the weakest uptake by the receptor. The observed selectivity of the [Zn2H-1L]3+ receptor for PPi in relation to HPO42-, and the fact that the formation of the [Zn2H-1L]3+ complex is not disturbed by the presence of Mg2+, allowed monitoring of the PPi hydrolysis by using inorganic pyrophosphatase in real-time.
Collapse
Affiliation(s)
- Ana Cruz
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | | | | | | |
Collapse
|
44
|
Qi W, Lu H, Zhang Y, Cheng J, Huang B, Lu X, Sheteiwy MSA, Kuang S, Shao H. Oil crop genetic modification for producing added value lipids. Crit Rev Biotechnol 2020; 40:777-786. [PMID: 32605455 DOI: 10.1080/07388551.2020.1785384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant lipids, mainly stored in seeds and other plant parts, are not only a crucial resource for food and fodder but are also a promising alternative to fossil oils as a chemical industry feedstock. Oil crop cultivation and processing are always important parts of agriculture worldwide. Vegetable oils containing polyunsaturated fatty acids, very long chain fatty acids, conjugated fatty acids, hydroxy fatty acids and wax esters, have outstanding nutritional, lubricating, surfactant, and artificial-fibre-synthesis properties, amongst others. Enhancing the production of such specific lipid components is of economic interest. There has been a considerable amount of information reported about plant lipid biosynthesis, including identification of the pathway map of carbon flux, key enzymes (and the coding genes), and substrate affinities. Plant lipid biosynthesis engineering to produce special oil compounds has become feasible, although until now, only limited progress has been made in the laboratory. It is relatively easy to achieve the experimental objectives, for example, accumulating novel lipid compounds in given plant tissues facilitated by genetic modification. Applying such technologies to agricultural production is difficult, and the challenge is to make engineered crops economically attractive, which is impeded by only moderate success. To achieve this goal, more complicated and systematic strategies should be developed and discussed based on the relevant results currently available.
Collapse
Affiliation(s)
- Weicong Qi
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Haiying Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Yang Zhang
- Key Laboratory of Oil Crops in Huanghuaihai Plain, Ministry of Agriculture, PR China,Henan Provincial Key Laboratory for Oil Crops Improvement, Zheng Zhou, PR China
| | - Jihua Cheng
- Yuan Longping High-tech Agriculture Co., LTD, Changsha, PR China
| | - Bangquan Huang
- College of Life Sciences, Hubei University, Wuhan, PR China
| | - Xin Lu
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China
| | - Mohamed Salah Amr Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences(JAAS), Nanjing, PR China.,College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, PR China.,Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, PR China
| |
Collapse
|
45
|
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 2020; 31:1315-1323. [PMID: 32530796 PMCID: PMC7353140 DOI: 10.1091/mbc.e18-10-0636] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
46
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
47
|
Renne MF, Klug YA, Carvalho P. Lipid droplet biogenesis: A mystery "unmixing"? Semin Cell Dev Biol 2020; 108:14-23. [PMID: 32192830 DOI: 10.1016/j.semcdb.2020.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs) are versatile organelles with central roles in lipid and energy metabolism in all eukaryotes. They primarily buffer excess fatty acids by storing them as neutral lipids, mainly triglycerides and steryl esters. The neutral lipids form a core, surrounded by a unique phospholipid monolayer coated with a defined set of proteins. Thus, the architecture of LDs sets them apart from all other membrane-bound organelles. The origin of LDs remained controversial for a long time. However, it has become clear that their biogenesis occurs at the endoplasmic reticulum (ER) and is a lipid driven process. LD formation is intiatied by the demixing of neutral lipids from membrane phospholipids, leading to the formation of a neutral lipid "lens" like structure between the leaflets of the ER bilayer. As this lens grows, it buds out of the membrane towards the cytosol to give rise to a LD. Recent biophysical and cell biological experiments indicate that LD biogenesis occurs at specific ER domains. These domains are enriched in various proteins required for normal LD formation and possibly have a lipid composition distinct from the remaining ER membrane. Here, we describe the prevailing model for LD formation and discuss recent insights on how proteins organize ER domains involved in LD biogenesis.
Collapse
Affiliation(s)
- Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
48
|
Choi Y, Lee JY, Lim SK, Ko KS. Intact pap2 downstream of mcr-1 appears to be required for colistin resistance. Diagn Microbiol Infect Dis 2020; 97:114997. [PMID: 32139115 DOI: 10.1016/j.diagmicrobio.2020.114997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
In this study, we investigated the effect of pap2 on colistin susceptibility using intact pap2 and truncated pap2 (pap2∆351) genes, which were found along with mcr-1 in plasmid. Our experiments based on conjugation, antibiotic susceptibility testing, and time-killing assay showed that an intact pap2 gene is necessary along with mcr-1 for reduced colistin susceptibility.
Collapse
Affiliation(s)
- Yujin Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ji-Young Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| |
Collapse
|
49
|
Li F, Liu Y, Li Z, Li Q, Liu X, Cui H. Cu(II)-Regulated On-Site Assembly of Highly Chemiluminescent Multifunctionalized Carbon Nanotubes for Inorganic Pyrophosphatase Activity Determination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2903-2909. [PMID: 31851480 DOI: 10.1021/acsami.9b20259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel signal-on chemiluminescence (CL) assay for pyrophosphatase (PPase) activity determination was innovatively developed based on the Cu(II)-regulated on-site assembly of highly chemiluminescent Cu(II), N-(aminobutyl)-N-(ethylisoluminol) (ABEI), gold nanodot, and chitosan multifunctionalized carbon nanotubes (Cu(II)/ABEI-Au/cs-CNTs). First, ABEI-functionalized gold nanodots (ABEI-Au) were assembled on the surface of chitosan-modified carbon nanotubes (cs-CNTs) via the reduction of HAuCl4 with ABEI in a cs-CNT suspension to form ABEI-Au/cs-CNTs. Then, it was found that the catalyst Cu(II) can be selectively, efficiently, and quickly adsorbed onto ABEI-Au/cs-CNTs via the high-affinity interactions between Cu(II) and cs-CNTs to form novel hybrid nanomaterials Cu(II)/ABEI-Au/cs-CNTs. The CL intensity of Cu(II)/ABEI-Au/cs-CNTs was enhanced by about 2 orders of magnitude compared with that of ABEI-Au/cs-CNTs. Furthermore, it was found that in the presence of pyrophosphate ions (PPi), PPi could coordinate with Cu(II) to form a stable PPi-Cu(II) complex and block the assembly of Cu(II)/ABEI-Au/cs-CNTs. After the addition of PPase, PPase could catalyze the hydrolysis of PPi into Pi and release Cu(II) from the PPi-Cu(II) complex. The released free Cu(II) could trigger the on-site assembly of highly chemiluminescent Cu(II)/ABEI-Au/cs-CNTs, resulting in an enhanced CL intensity. The enhanced CL intensity had a good linear relationship with the activity units of PPase ranging from 0.025 to 0.5 U, with a detection limit of 9 mU. The method was employed to monitor the PPase inhibitor efficiently. Cu(II)/ABEI-Au/cs-CNTs with excellent CL may also find more applications in the development of novel CL analytical methods.
Collapse
Affiliation(s)
- Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230026 , P. R. China
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Yating Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Zimu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230026 , P. R. China
| | - Qi Li
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Xiaoying Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
50
|
Schönborn JW, Jehrke L, Mettler-Altmann T, Beller M. FlySilico: Flux balance modeling of Drosophila larval growth and resource allocation. Sci Rep 2019; 9:17156. [PMID: 31748517 PMCID: PMC6868164 DOI: 10.1038/s41598-019-53532-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Organisms depend on a highly connected and regulated network of biochemical reactions fueling life sustaining and growth promoting functions. While details of this metabolic network are well established, knowledge of the superordinate regulatory design principles is limited. Here, we investigated by iterative wet lab and modeling experiments the resource allocation process during the larval development of Drosophila melanogaster. We chose this system, as survival of the animals depends on the successful allocation of their available resources to the conflicting processes of growth and storage metabolite deposition. First, we generated “FlySilico”, a curated metabolic network of Drosophila, and performed time-resolved growth and metabolite measurements with larvae raised on a holidic diet. Subsequently, we performed flux balance analysis simulations and tested the predictive power of our model by simulating the impact of diet alterations on growth and metabolism. Our predictions correctly identified the essential amino acids as growth limiting factor, and metabolic flux differences in agreement with our experimental data. Thus, we present a framework to study important questions of resource allocation in a multicellular organism including process priorization and optimality principles.
Collapse
Affiliation(s)
- Jürgen Wilhelm Schönborn
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,Systems Biology of Lipid Metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Lisa Jehrke
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany.,Systems Biology of Lipid Metabolism, Heinrich Heine University, Duesseldorf, Germany
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry & Cluster of Excellence on Plant Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Duesseldorf, Germany. .,Systems Biology of Lipid Metabolism, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|