1
|
González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiol Rev 2021; 45:fuab025. [PMID: 33983378 PMCID: PMC8632793 DOI: 10.1093/femsre/fuab025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Reverse transcriptases (RTs) catalyze the polymerization of DNA from an RNA template. These enzymes were first discovered in RNA tumor viruses in 1970, but it was not until 1989 that they were found in prokaryotes as a key component of retrons. Apart from RTs encoded by the 'selfish' mobile retroelements known as group II introns, prokaryotic RTs are extraordinarily diverse, but their function has remained elusive. However, recent studies have revealed that different lineages of prokaryotic RTs, including retrons, those associated with CRISPR-Cas systems, Abi-like RTs and other yet uncharacterized RTs, are key components of different lines of defense against phages and other mobile genetic elements. Prokaryotic RTs participate in various antiviral strategies, including abortive infection (Abi), in which the infected cell is induced to commit suicide to protect the host population, adaptive immunity, in which a memory of previous infection is used to build an efficient defense, and other as yet unidentified mechanisms. These prokaryotic enzymes are attracting considerable attention, both for use in cutting-edge technologies, such as genome editing, and as an emerging research topic. In this review, we discuss what is known about prokaryotic RTs, and the exciting evidence for their domestication from retroelements to create specialized defense systems.
Collapse
Affiliation(s)
- Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Mario Rodríguez Mestre
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, C/ Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
2
|
Mukhopadhyay J, Hausner G. Organellar Introns in Fungi, Algae, and Plants. Cells 2021; 10:cells10082001. [PMID: 34440770 PMCID: PMC8393795 DOI: 10.3390/cells10082001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Collapse
MESH Headings
- Evolution, Molecular
- Gene Expression Regulation, Fungal
- Gene Expression Regulation, Plant
- Genome, Fungal
- Genome, Plant
- Introns
- Organelles/genetics
- Organelles/metabolism
- RNA Splicing
- RNA Stability
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Transcription, Genetic
Collapse
|
3
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Smathers CM, Robart AR. Transitions between the steps of forward and reverse splicing of group IIC introns. RNA (NEW YORK, N.Y.) 2020; 26:664-673. [PMID: 32127385 PMCID: PMC7161350 DOI: 10.1261/rna.075044.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Group II introns are mobile genetic elements that perform both self-splicing and intron mobility reactions. These ribozymes are comprised of a catalytic RNA core that binds to an intron-encoded protein (IEP) to form a ribonucleoprotein (RNP) complex. Splicing proceeds through two competing reactions: hydrolysis or branching. Group IIC intron ribozymes have a minimal RNA architecture, and splice almost exclusively through hydrolysis in ribozyme reactions. Addition of the IEP allows the splicing reaction to form branched lariat RNPs capable of intron mobility. Here we examine ribozyme splicing, IEP-dependent splicing, and mobility reactions of a group IIC intron from the thermophilic bacterium Thermoanerobacter italicus (Ta.it.I1). We show that Ta.it.I1 is highly active for ribozyme activity, forming linear hydrolytic intron products. Addition of purified IEP switches activity to the canonical lariat forming splicing reaction. We demonstrate that the Ta.it.I1 group IIC intron coordinates the progression of the forward splicing reaction through a π-π' interaction between intron domains II and VI. We further show that branched splicing is supported in the absence of the IEP when the π-π' interaction is mutated. We also investigated the regulation of the two steps of reverse splicing during intron mobility into DNA substrates. Using a fluorescent mobility assay that simultaneously visualizes all steps of intron integration into DNA, we show that completion of reverse splicing is tightly coupled to cDNA synthesis regardless of mutation of the π-π' interaction.
Collapse
Affiliation(s)
- Claire M Smathers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 20506, USA
| | - Aaron R Robart
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 20506, USA
| |
Collapse
|
5
|
García-Rodríguez FM, Neira JL, Marcia M, Molina-Sánchez MD, Toro N. A group II intron-encoded protein interacts with the cellular replicative machinery through the β-sliding clamp. Nucleic Acids Res 2019; 47:7605-7617. [PMID: 31127285 PMCID: PMC6698660 DOI: 10.1093/nar/gkz468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
Group II introns are self-splicing mobile genetic retroelements. The spliced intron RNA and the intron-encoded protein (IEP) form ribonucleoprotein particles (RNPs) that recognize and invade specific DNA target sites. The IEP is a reverse transcriptase/maturase that may bear a C-terminal endonuclease domain enabling the RNP to cleave the target DNA strand to prime reverse transcription. However, some mobile introns, such as RmInt1, lack the En domain but nevertheless retrohome efficiently to transient single-stranded DNA target sites at a DNA replication fork. Their mobility is associated with host DNA replication, and they use the nascent lagging strand as a primer for reverse transcription. We searched for proteins that interact with RmInt1 RNPs and direct these RNPs to the DNA replication fork. Co-immunoprecipitation assays suggested that DnaN (the β-sliding clamp), a component of DNA polymerase III, interacts with the protein component of the RmInt1 RNP. Pulldown assays, far-western blots and biolayer interferometry supported this interaction. Peptide binding assays also identified a putative DnaN-interacting motif in the RmInt1 IEP structurally conserved in group II intron IEPs. Our results suggest that intron RNP interacts with the β-sliding clamp of the DNA replication machinery, favouring reverse splicing into the transient ssDNA at DNA replication forks.
Collapse
Affiliation(s)
- Fernando M García-Rodríguez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain.,Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, Grenoble 38042, France
| | - María D Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes (Grupo de Ecología Genética de la Rizosfera), Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
6
|
Plangger R, Juen MA, Hoernes TP, Nußbaumer F, Kremser J, Strebitzer E, Klingler D, Erharter K, Tollinger M, Erlacher MD, Kreutz C. Branch site bulge conformations in domain 6 determine functional sugar puckers in group II intron splicing. Nucleic Acids Res 2019; 47:11430-11440. [PMID: 31665419 PMCID: PMC6868427 DOI: 10.1093/nar/gkz965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Although group II intron ribozymes are intensively studied the question how structural dynamics affects splicing catalysis has remained elusive. We report for the first time that the group II intron domain 6 exists in a secondary structure equilibrium between a single- and a two-nucleotide bulge conformation, which is directly linked to a switch between sugar puckers of the branch site adenosine. Our study determined a functional sugar pucker equilibrium between the transesterification active C2'-endo conformation of the branch site adenosine in the 1nt bulge and an inactive C3'-endo state in the 2nt bulge fold, allowing the group II intron to switch its activity from the branching to the exon ligation step. Our detailed NMR spectroscopic investigation identified magnesium (II) ions and the branching reaction as regulators of the equilibrium populations. The tuneable secondary structure/sugar pucker equilibrium supports a conformational selection mechanism to up- and downregulate catalytically active and inactive states of the branch site adenosine to orchestrate the multi-step splicing process. The conformational dynamics of group II intron domain 6 is also proposed to be a key aspect for the directionality selection in reversible splicing.
Collapse
Affiliation(s)
- Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Philipp Hoernes
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johannes Kremser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - David Klingler
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Zubaer A, Wai A, Hausner G. The fungal mitochondrial Nad5 pan-genic intron landscape. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:835-842. [PMID: 31698975 DOI: 10.1080/24701394.2019.1687691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An intron landscape was prepared for the fungal mitochondrial nad5 gene. A hundred and eighty-eight fungal species were examined and a total of 265 introns were noted to be located in 29 intron insertion sites within the examined nad5 genes. Two hundred and sixty-three introns could be classified as group I types and two group II introns were noted. One additional group II intron module was identified nested within a composite group I intron. Based on features related to RNA secondary structures, introns can be classified into different subtypes and it was observed that intron insertion-sites are biased towards phase 0 and they appear to be specific to an intron type. Intron landscapes could be used as a guide map to predict the location of fungal mtDNA mobile introns, which are composite elements that include a ribozyme component and in some instances open reading frames encoding homing endonucleases or reverse transcriptases and all of these have applications in biotechnology.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Guha TK, Hausner G. Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes. Methods Mol Biol 2017; 1498:135-152. [PMID: 27709573 DOI: 10.1007/978-1-4939-6472-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing, targeted mutagenesis and gene therapy applications. Herein, we present strategies where homing endonuclease open reading frames (HEases ORFs) are interrupted with group II intron sequences. The ultimate goal is to achieve in vivo expression of HEases that can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. That addition of exogenous magnesium chloride (MgCl2) appears to stimulate splicing of nonnative group II introns in Escherichia coli and the addition of cobalt chloride (CoCl2) to the growth medium antagonizes the expression of HEase activity (i.e., splicing). Group II introns are potentially autocatalytic self-splicing elements and thus can be used as molecular switches that allow for temporal regulated HEase expression. This should be useful in precision genome engineering, mutagenesis, and minimizing off-target activities.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, 401 University of Manitoba, Buller Building 213, Winnipeg, MB, Canada, R3T 2N2
| | - Georg Hausner
- Department of Microbiology, 401 University of Manitoba, Buller Building 213, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
9
|
Abstract
Introns inserted within introns are commonly referred to as twintrons, however the original definition for twintron implied that splicing of the external member of the twintron could only proceed upon splicing of the internal member. This review examines the various types of twintron-like arrangements that have been reported and assigns them to either nested or twintron categories that are subdivided further into subtypes based on differences of their mode of splicing. Twintron-like arrangements evolved independently by fortuitous events among different types of introns but once formed they offer opportunities for the evolution of new regulatory strategies and/or novel genetic elements.
Collapse
Affiliation(s)
- Mohamed Hafez
- a Department of Biochemistry ; Faculty of Medicine; University of Montreal ; Montréal , QC Canada.,b Department of Botany and Microbiology ; Faculty of Science; Suez University ; Suez , Egypt
| | - Georg Hausner
- c Department of Microbiology ; University of Manitoba ; Winnipeg , MB Canada
| |
Collapse
|
10
|
Nisa-Martínez R, Molina-Sánchez MD, Toro N. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity. PLoS One 2016; 11:e0162275. [PMID: 27588750 PMCID: PMC5010178 DOI: 10.1371/journal.pone.0162275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/21/2016] [Indexed: 11/21/2022] Open
Abstract
Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP) with reverse transcriptase (RT) and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En) domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT) of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.
Collapse
Affiliation(s)
- Rafael Nisa-Martínez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain
| | - María Dolores Molina-Sánchez
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain
| | - Nicolás Toro
- Structure, Dynamics and Function of Rhizobacterial Genomes, Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, 18008, Granada, Spain
- * E-mail:
| |
Collapse
|
11
|
Singh J, Sikand K, Conrad H, Will CL, Komar AA, Shukla GC. U6atac snRNA stem-loop interacts with U12 p65 RNA binding protein and is functionally interchangeable with the U12 apical stem-loop III. Sci Rep 2016; 6:31393. [PMID: 27510544 PMCID: PMC4980772 DOI: 10.1038/srep31393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
Formation of catalytic core of the U12-dependent spliceosome involves U6atac and U12 interaction with the 5′ splice site and branch site regions of a U12-dependent intron, respectively. Beyond the formation of intermolecular helix I region between U6atac and U12 snRNAs, several other regions within these RNA molecules are predicted to form stem-loop structures. Our previous work demonstrated that the 3′ stem-loop region of U6atac snRNA contains a U12-dependent spliceosome-specific targeting activity. Here, we show a detailed structure-function analysis and requirement of a substructure of U6atac 3′ stem-loop in U12-dependent in vivo splicing. We show that the C-terminal RNA recognition motif of p65, a U12 snRNA binding protein, also binds to the distal 3′ stem-loop of U6atac. By using a binary splice site mutation suppressor assay we demonstrate that p65 protein-binding apical stem-loop of U12 snRNA can be replaced by this U6atac distal 3′ stem-loop. Furthermore, we tested the compatibility of the U6atac 3′ end from phylogenetically distant species in a human U6atac background, to establish the evolutionary relatedness of these structures and in vivo function. In summary, we demonstrate that RNA-RNA and RNA-protein interactions in the minor spliceosome are highly plastic as compared to the major spliceosome.
Collapse
Affiliation(s)
- Jagjit Singh
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Kavleen Sikand
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Heike Conrad
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Girish C Shukla
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA.,Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
12
|
Guha TK, Hausner G. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease. PLoS One 2016; 11:e0150097. [PMID: 26909494 PMCID: PMC4801052 DOI: 10.1371/journal.pone.0150097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/09/2016] [Indexed: 01/09/2023] Open
Abstract
In Chaetomium thermophilum (DSM 1495) within the mitochondrial DNA (mtDNA) small ribosomal subunit (rns) gene a group IIA1 intron interrupts an open reading frame (ORF) encoded within a group I intron (mS1247). This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase). Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo) in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2) stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2) to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
13
|
McNeil BA, Semper C, Zimmerly S. Group II introns: versatile ribozymes and retroelements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:341-55. [PMID: 26876278 DOI: 10.1002/wrna.1339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
Group II introns are catalytic RNAs (ribozymes) and retroelements found in the genomes of bacteria, archaebacteria, and organelles of some eukaryotes. The prototypical retroelement form consists of a structurally conserved RNA and a multidomain reverse transcriptase protein, which interact with each other to mediate splicing and mobility reactions. A wealth of biochemical, cross-linking, and X-ray crystal structure studies have helped to reveal how the two components cooperate to carry out the splicing and mobility reactions. In addition to the standard retroelement form, group II introns have evolved into derivative forms by either losing specific splicing or mobility characteristics, or becoming functionally specialized. Of particular interest are the eukaryotic derivatives-the spliceosome, spliceosomal introns, and non-LTR retroelements-which together make up approximately half of the human genome. On a practical level, the properties of group II introns have been exploited to develop group II intron-based biotechnological tools. WIREs RNA 2016, 7:341-355. doi: 10.1002/wrna.1339 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bonnie A McNeil
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Cameron Semper
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
14
|
Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. Mol Phylogenet Evol 2015; 90:140-9. [DOI: 10.1016/j.ympev.2015.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 11/23/2022]
|
15
|
Localization of a bacterial group II intron-encoded protein in human cells. Sci Rep 2015; 5:12716. [PMID: 26244523 PMCID: PMC4525487 DOI: 10.1038/srep12716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 01/06/2023] Open
Abstract
Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.
Collapse
|
16
|
Luo Y, Sintim HO, Dayie TK. Synthesis of a biotinylated photocleavable nucleotide monophosphate for the preparation of natively folded RNAs. Methods Enzymol 2015; 549:115-31. [PMID: 25432747 DOI: 10.1016/b978-0-12-801122-5.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNAs are involved in many functional roles in the cell, and this functional diversity is predicated on RNAs adopting requisite three-dimensional architectures. Preparing such "natively folded" RNAs with a homogeneous population is sometimes problematic for structural or enzymatic studies. Yet, standard methods for RNA preparations denature the RNA and create a heterogeneous population of conformers. Therefore, preparation of "natively folded" RNAs without going through the process of denaturing and refolding is important to obtain maximal biological function. Here, we present a simple strategy using "click" chemistry to couple biotin to a "caged" photocleavable (PC) guanosine monophosphate (GMP) in high yield. This biotin-PC-GMP is readily accepted by T7 RNA polymerase to transcribe "natively folded" RNAs ranging in size from 27 to 493 nucleotides. This facile strategy allows efficient biotinylation of RNA and provides a traceless means to remove the biotin after the purification. Such preparation of natively folded RNAs should benefit biophysical and therapeutic applications.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Herman O Sintim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.
| | - T Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA; Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
17
|
Inactivation of group II intron RmInt1 in the Sinorhizobium meliloti genome. Sci Rep 2015; 5:12036. [PMID: 26156864 PMCID: PMC4496777 DOI: 10.1038/srep12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 06/15/2015] [Indexed: 11/10/2022] Open
Abstract
Group II introns are self-splicing catalytic RNAs that probably originated in bacteria and act as mobile retroelements. The dispersal and dynamics of group II intron spread within a bacterial genome are thought to follow a selection-driven extinction model. Likewise, various studies on the evolution of group II introns have suggested that they are evolving toward an inactive form by fragmentation, with the loss of the intron 3′-terminus, but with some intron fragments remaining and continuing to evolve in the genome. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti, but some strains of this species have no RmInt1 introns. We studied the splicing ability and mobility of the three full-length RmInt1 copies harbored by S. meliloti 1021, and obtained evidence suggesting that specific mutations may lead to the impairment of intron splicing and retrohoming. Our data suggest that the RmInt1 copies in this strain are undergoing a process of inactivation.
Collapse
|
18
|
Single-molecule fluorescence-based studies on the dynamics, assembly and catalytic mechanism of the spliceosome. Biochem Soc Trans 2015; 42:1211-8. [PMID: 25110027 DOI: 10.1042/bst20140105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pre-mRNA (precursor mRNA) splicing is a key step in cellular gene expression where introns are excised and exons are ligated together to produce mature mRNA. This process is catalysed by the spliceosome, which consists of five snRNPs (small nuclear ribonucleoprotein particles) and numerous protein factors. Assembly of these snRNPs and associated proteins is a highly dynamic process, making it challenging to study the conformational rearrangements and spliceosome assembly kinetics in bulk studies. In the present review, we discuss recent studies utilizing techniques based on single-molecule detection that have helped overcome this challenge. These studies focus on the assembly dynamics and splicing kinetics in real-time, which help understanding of spliceosomal assembly and catalysis.
Collapse
|
19
|
Abstract
Present in the genomes of bacteria and eukaryotic organelles, group II introns are an ancient class of ribozymes and retroelements that are believed to have been the ancestors of nuclear pre-mRNA introns. Despite long-standing speculation, there is limited understanding about the actual pathway by which group II introns evolved into eukaryotic introns. In this review, we focus on the evolution of group II introns themselves. We describe the different forms of group II introns known to exist in nature and then address how these forms may have evolved to give rise to spliceosomal introns and other genetic elements. Finally, we summarize the structural and biochemical parallels between group II introns and the spliceosome, including recent data that strongly support their hypothesized evolutionary relationship.
Collapse
Affiliation(s)
- Steven Zimmerly
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| | - Cameron Semper
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4 Canada
| |
Collapse
|
20
|
Comprehensive phylogenetic analysis of bacterial reverse transcriptases. PLoS One 2014; 9:e114083. [PMID: 25423096 PMCID: PMC4244168 DOI: 10.1371/journal.pone.0114083] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022] Open
Abstract
Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.
Collapse
|
21
|
Martínez-Rodríguez L, García-Rodríguez FM, Molina-Sánchez MD, Toro N, Martínez-Abarca F. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome. RNA Biol 2014; 11:1061-71. [PMID: 25482895 PMCID: PMC4615759 DOI: 10.4161/rna.32092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.
Collapse
Affiliation(s)
- Laura Martínez-Rodríguez
- a Grupo de Ecología Genética; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas ; Granada , Spain
| | | | | | | | | |
Collapse
|
22
|
Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae. Heredity (Edinb) 2014; 113:306-15. [PMID: 24736785 PMCID: PMC4181065 DOI: 10.1038/hdy.2014.32] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/12/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.
Collapse
|
23
|
Valadkhan S. The role of snRNAs in spliceosomal catalysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:195-228. [PMID: 24156945 DOI: 10.1016/b978-0-12-381286-5.00006-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The spliceosomes, large ribonucleoprotein (RNP) assemblies that remove the intervening sequences from pre-mRNAs, contain a large number of proteins and five small nuclear RNAs (snRNAs). One snRNA, U6, contains highly conserved sequences that are thought to be the functional counterparts of the RNA elements that form the active site of self-splicing group II intron ribozymes. An in vitro-assembled, protein-free complex of U6 with U2, the base-pairing partner in the spliceosomal catalytic core, can catalyze a two-step splicing reaction in the absence of all other spliceosomal factors, suggesting that the two snRNAs may form all or a large share of the spliceosomal active site. On the other hand, several spliceosomal proteins are thought to help in the formation of functionally required RNA-RNA interactions in the catalytic core. Whether they also contribute functional groups to the spliceosomal active site, and thus whether the spliceosomes are RNA or RNP enzymes remain uncertain.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Guha TK, Hausner G. A homing endonuclease with a switch: Characterization of a twintron encoded homing endonuclease. Fungal Genet Biol 2014; 65:57-68. [DOI: 10.1016/j.fgb.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
25
|
García-Rodríguez FM, Hernández-Gutiérrez T, Díaz-Prado V, Toro N. Use of the computer-retargeted group II intron RmInt1 of Sinorhizobium meliloti for gene targeting. RNA Biol 2014; 11:391-401. [PMID: 24646865 PMCID: PMC4075523 DOI: 10.4161/rna.28373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gene-targeting vectors derived from mobile group II introns capable of forming a ribonucleoprotein (RNP) complex containing excised intron lariat RNA and an intron-encoded protein (IEP) with reverse transcriptase (RT), maturase, and endonuclease (En) activities have been described. RmInt1 is an efficient mobile group II intron with an IEP lacking the En domain. We performed a comprehensive study of the rules governing RmInt1 target site recognition based on selection experiments with donor and recipient plasmid libraries, with randomization of the elements of the intron RNA involved in target recognition and the wild-type target site. The data obtained were used to develop a computer algorithm for identifying potential RmInt1 targets in any DNA sequence. Using this algorithm, we modified RmInt1 for the efficient recognition of DNA target sites at different locations in the Sinorhizobium meliloti chromosome. The retargeted RmInt1 integrated efficiently into the chromosome, regardless of the location of the target gene. Our results suggest that RmInt1 could be efficiently adapted for gene targeting.
Collapse
Affiliation(s)
- Fernando M García-Rodríguez
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Teresa Hernández-Gutiérrez
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Vanessa Díaz-Prado
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| |
Collapse
|
26
|
Abebe M, Candales MA, Duong A, Hood KS, Li T, Neufeld RAE, Shakenov A, Sun R, Wu L, Jarding AM, Semper C, Zimmerly S. A pipeline of programs for collecting and analyzing group II intron retroelement sequences from GenBank. Mob DNA 2013; 4:28. [PMID: 24359548 PMCID: PMC4028801 DOI: 10.1186/1759-8753-4-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/28/2013] [Indexed: 11/16/2022] Open
Abstract
Background Accurate and complete identification of mobile elements is a challenging task in the current era of sequencing, given their large numbers and frequent truncations. Group II intron retroelements, which consist of a ribozyme and an intron-encoded protein (IEP), are usually identified in bacterial genomes through their IEP; however, the RNA component that defines the intron boundaries is often difficult to identify because of a lack of strong sequence conservation corresponding to the RNA structure. Compounding the problem of boundary definition is the fact that a majority of group II intron copies in bacteria are truncated. Results Here we present a pipeline of 11 programs that collect and analyze group II intron sequences from GenBank. The pipeline begins with a BLAST search of GenBank using a set of representative group II IEPs as queries. Subsequent steps download the corresponding genomic sequences and flanks, filter out non-group II introns, assign introns to phylogenetic subclasses, filter out incomplete and/or non-functional introns, and assign IEP sequences and RNA boundaries to the full-length introns. In the final step, the redundancy in the data set is reduced by grouping introns into sets of ≥95% identity, with one example sequence chosen to be the representative. Conclusions These programs should be useful for comprehensive identification of group II introns in sequence databases as data continue to rapidly accumulate.
Collapse
Affiliation(s)
- Michael Abebe
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Manuel A Candales
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Adrian Duong
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Keyar S Hood
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Tony Li
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Ryan A E Neufeld
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Abat Shakenov
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Runda Sun
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Li Wu
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Ashley M Jarding
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Cameron Semper
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| | - Steven Zimmerly
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1 N4, Canada
| |
Collapse
|
27
|
Evolutionary dynamics of introns and their open reading frames in the U7 region of the mitochondrial rnl gene in species of Ceratocystis. Fungal Biol 2013; 117:791-806. [DOI: 10.1016/j.funbio.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/12/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
|
28
|
Marcia M, Humphris-Narayanan E, Keating KS, Somarowthu S, Rajashankar K, Pyle AM. Solving nucleic acid structures by molecular replacement: examples from group II intron studies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2174-85. [PMID: 24189228 PMCID: PMC3817690 DOI: 10.1107/s0907444913013218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022]
Abstract
Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts.
Collapse
Affiliation(s)
- Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | - Kevin S. Keating
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Kanagalaghatta Rajashankar
- The Northeastern Collaborative Access Team (NE-CAT), Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
29
|
Enhanced group II intron retrohoming in magnesium-deficient Escherichia coli via selection of mutations in the ribozyme core. Proc Natl Acad Sci U S A 2013; 110:E3800-9. [PMID: 24043808 DOI: 10.1073/pnas.1315742110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mobile group II introns are bacterial retrotransposons thought to be evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of a catalytically active intron RNA ("ribozyme") and an intron-encoded reverse transcriptase, which function together to promote RNA splicing and intron mobility via reverse splicing of the intron RNA into new DNA sites ("retrohoming"). Although group II introns are active in bacteria, their natural hosts, they function inefficiently in eukaryotes, where lower free Mg(2+) concentrations decrease their ribozyme activity and constitute a natural barrier to group II intron proliferation within nuclear genomes. Here, we show that retrohoming of the Ll.LtrB group II intron is strongly inhibited in an Escherichia coli mutant lacking the Mg(2+) transporter MgtA, and we use this system to select mutations in catalytic core domain V (DV) that partially rescue retrohoming at low Mg(2+) concentrations. We thus identified mutations in the distal stem of DV that increase retrohoming efficiency in the MgtA mutant up to 22-fold. Biochemical assays of splicing and reverse splicing indicate that the mutations increase the fraction of intron RNA that folds into an active conformation at low Mg(2+) concentrations, and terbium-cleavage assays suggest that this increase is due to enhanced Mg(2+) binding to the distal stem of DV. Our findings indicate that DV is involved in a critical Mg(2+)-dependent RNA folding step in group II introns and demonstrate the feasibility of selecting intron variants that function more efficiently at low Mg(2+) concentrations, with implications for evolution and potential applications in gene targeting.
Collapse
|
30
|
Anokhina M, Bessonov S, Miao Z, Westhof E, Hartmuth K, Lührmann R. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J 2013; 32:2804-18. [PMID: 24002212 DOI: 10.1038/emboj.2013.198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/24/2013] [Indexed: 11/09/2022] Open
Abstract
Although U snRNAs play essential roles in splicing, little is known about the 3D arrangement of U2, U6, and U5 snRNAs and the pre-mRNA in active spliceosomes. To elucidate their relative spatial organization and dynamic rearrangement, we examined the RNA structure of affinity-purified, human spliceosomes before and after catalytic step 1 by chemical RNA structure probing. We found a stable 3-way junction of the U2/U6 snRNA duplex in active spliceosomes that persists minimally through step 1. Moreover, the formation of alternating, mutually exclusive, U2 snRNA conformations, as observed in yeast, was not detected in different assembly stages of human spliceosomal complexes (that is, B, B(act), or C complexes). Psoralen crosslinking revealed an interaction during/after step 1 between internal loop 1 of the U5 snRNA, and intron nucleotides immediately downstream of the branchpoint. Using the experimentally derived structural constraints, we generated a model of the RNA network of the step 1 spliceosome, based on the crystal structure of a group II intron through homology modelling. The model is topologically consistent with current genetic, biochemical, and structural data.
Collapse
Affiliation(s)
- Maria Anokhina
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.
Collapse
|
32
|
Ryzhova NN, Slugina MA, Kochieva EZ, Skryabin KG. Polymorphism and structural variation of rps16 group-II intron in the Solanum species. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413070120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
The mtDNA rns gene landscape in the Ophiostomatales and other fungal taxa: Twintrons, introns, and intron-encoded proteins. Fungal Genet Biol 2013; 53:71-83. [DOI: 10.1016/j.fgb.2013.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/06/2013] [Accepted: 01/15/2013] [Indexed: 12/17/2022]
|
34
|
Toro N, Martínez-Abarca F. Comprehensive phylogenetic analysis of bacterial group II intron-encoded ORFs lacking the DNA endonuclease domain reveals new varieties. PLoS One 2013; 8:e55102. [PMID: 23355907 PMCID: PMC3552965 DOI: 10.1371/journal.pone.0055102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/18/2012] [Indexed: 11/23/2022] Open
Abstract
Group II introns are self-splicing RNAs that act as mobile retroelements in the organelles of plants, fungi and protists. They are also widely distributed in bacteria, and are generally assumed to be the ancestors of nuclear spliceosomal introns. Most bacterial group II introns have a multifunctional intron-encoded protein (IEP) ORF within the ribozyme domain IV (DIV). This ORF encodes an N-terminal reverse transcriptase (RT) domain, followed by a putative RNA-binding domain with RNA splicing or maturase activity and, in some cases, a C-terminal DNA-binding (D) region followed by a DNA endonuclease (En) domain. In this study, we focused on bacterial group II intron ORF phylogenetic classes containing only reverse transcriptase/maturase open reading frames, with no recognizable D/En region (classes A, C, D, E, F and unclassified introns). On the basis of phylogenetic analyses of the maturase domain and its C-terminal extension, which appears to be a signature characteristic of ORF phylogenetic class, with support from the phylogeny inferred from the RT domain, we have revised the proposed new class F, defining new intron ORF varieties. Our results increase knowledge of the lineage of group II introns encoding proteins lacking the En-domain.
Collapse
Affiliation(s)
- Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas-CSIC, Granada, Spain.
| | | |
Collapse
|
35
|
Abstract
Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA-RNA and RNA-protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA-RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5' splice site, and U5 and the exonic sequences immediately adjacent to the 5' and 3' splice sites. Thus RNA-RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | |
Collapse
|
36
|
Donghi D, Pechlaner M, Finazzo C, Knobloch B, Sigel RKO. The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron. Nucleic Acids Res 2012; 41:2489-504. [PMID: 23275550 PMCID: PMC3575829 DOI: 10.1093/nar/gks1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.
Collapse
Affiliation(s)
- Daniela Donghi
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Abstract
RNA folding is an essential aspect underlying RNA-mediated cellular processes. Many RNAs, including large, multi-domain ribozymes, are capable of folding to the native, functional state without assistance of a protein cofactor in vitro. In the cell, trans-acting factors, such as proteins, are however known to modulate the structure and thus the fate of an RNA. DEAD-box proteins, including Mss116p, were recently found to assist folding of group I and group II introns in vitro and in vivo. The underlying mechanism(s) have been studied extensively to explore the contribution of ATP hydrolysis and duplex unwinding in helicase-stimulated intron splicing. Here we summarize the ongoing efforts to understand the novel role of DEAD-box proteins in RNA folding.
Collapse
Affiliation(s)
- Nora Sachsenmaier
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
38
|
Hudson AJ, Moore AN, Elniski D, Joseph J, Yee J, Russell AG. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia. Nucleic Acids Res 2012; 40:10995-1008. [PMID: 23019220 PMCID: PMC3510501 DOI: 10.1093/nar/gks887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3' end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3' end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA-snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs.
Collapse
Affiliation(s)
- Andrew J Hudson
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Weng ML, Ruhlman TA, Gibby M, Jansen RK. Phylogeny, rate variation, and genome size evolution of Pelargonium (Geraniaceae). Mol Phylogenet Evol 2012; 64:654-70. [DOI: 10.1016/j.ympev.2012.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/17/2012] [Accepted: 05/22/2012] [Indexed: 11/28/2022]
|
40
|
Abstract
Buried within the genomes of many microorganisms are genetic elements that encode rare-cutting homing endonucleases that assist in the mobility of the elements that encode them, such as the self-splicing group I and II introns and in some cases inteins. There are several different families of homing endonucleases and their ability to initiate and target specific sequences for lateral transfers makes them attractive reagents for gene targeting. Homing endonucleases have been applied in promoting DNA modification or genome editing such as gene repair or "gene knockouts". This review examines the categories of homing endonucleases that have been described so far and their possible applications to biotechnology. Strategies to engineer homing endonucleases to alter target site specificities will also be addressed. Alternatives to homing endonucleases such as zinc finger nucleases, transcription activator-like effector nucleases, triplex forming oligonucleotide nucleases, and targetrons are also briefly discussed.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
41
|
Korneta I, Bujnicki JM. Intrinsic disorder in the human spliceosomal proteome. PLoS Comput Biol 2012; 8:e1002641. [PMID: 22912569 PMCID: PMC3415423 DOI: 10.1371/journal.pcbi.1002641] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 06/16/2012] [Indexed: 12/11/2022] Open
Abstract
The spliceosome is a molecular machine that performs the excision of introns from eukaryotic pre-mRNAs. This macromolecular complex comprises in human cells five RNAs and over one hundred proteins. In recent years, many spliceosomal proteins have been found to exhibit intrinsic disorder, that is to lack stable native three-dimensional structure in solution. Building on the previous body of proteomic, structural and functional data, we have carried out a systematic bioinformatics analysis of intrinsic disorder in the proteome of the human spliceosome. We discovered that almost a half of the combined sequence of proteins abundant in the spliceosome is predicted to be intrinsically disordered, at least when the individual proteins are considered in isolation. The distribution of intrinsic order and disorder throughout the spliceosome is uneven, and is related to the various functions performed by the intrinsic disorder of the spliceosomal proteins in the complex. In particular, proteins involved in the secondary functions of the spliceosome, such as mRNA recognition, intron/exon definition and spliceosomal assembly and dynamics, are more disordered than proteins directly involved in assisting splicing catalysis. Conserved disordered regions in spliceosomal proteins are evolutionarily younger and less widespread than ordered domains of essential spliceosomal proteins at the core of the spliceosome, suggesting that disordered regions were added to a preexistent ordered functional core. Finally, the spliceosomal proteome contains a much higher amount of intrinsic disorder predicted to lack secondary structure than the proteome of the ribosome, another large RNP machine. This result agrees with the currently recognized different functions of proteins in these two complexes.
Collapse
Affiliation(s)
- Iga Korneta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
42
|
Abstract
Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-32P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5′ target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5′ mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation.
Collapse
Affiliation(s)
- Elisa Biondi
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
43
|
Rasche N, Dybkov O, Schmitzová J, Akyildiz B, Fabrizio P, Lührmann R. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J 2012; 31:1591-604. [PMID: 22246180 PMCID: PMC3321175 DOI: 10.1038/emboj.2011.502] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/15/2011] [Indexed: 11/09/2022] Open
Abstract
RNA-structural elements play key roles in pre-mRNA splicing catalysis; yet, the formation of catalytically competent RNA structures requires the assistance of spliceosomal proteins. We show that the S. cerevisiae Cwc2 protein functions prior to step 1 of splicing, and it is not required for the Prp2-mediated spliceosome remodelling that generates the catalytically active B complex, suggesting that Cwc2 plays a more sophisticated role in the generation of a functional catalytic centre. In active spliceosomes, Cwc2 contacts catalytically important RNA elements, including the U6 internal stem-loop (ISL), and regions of U6 and the pre-mRNA intron near the 5' splice site, placing Cwc2 at/near the spliceosome's catalytic centre. These interactions are evolutionarily conserved, as shown by studies with Cwc2's human counterpart RBM22, indicating that Cwc2/RBM22-RNA contacts are functionally important. We propose that Cwc2 induces an active conformation of the spliceosome's catalytic RNA elements. Thus, the function of RNA-RNA tertiary interactions within group II introns, namely to induce an active conformation of domain V, may be fulfilled by proteins that contact the functionally analogous U6-ISL, within the spliceosome.
Collapse
Affiliation(s)
- Nicolas Rasche
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Jana Schmitzová
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Berktan Akyildiz
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
44
|
Glanz S, Jacobs J, Kock V, Mishra A, Kück U. Raa4 is a trans-splicing factor that specifically binds chloroplast tscA intron RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:421-431. [PMID: 21954961 DOI: 10.1111/j.1365-313x.2011.04801.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During trans-splicing of discontinuous organellar introns, independently transcribed coding sequences are joined together to generate a continuous mRNA. The chloroplast psaA gene from Chlamydomonas reinhardtii encoding the P(700) core protein of photosystem I (PSI) is split into three exons and two group IIB introns, which are both spliced in trans. Using forward genetics, we isolated a novel PSI mutant, raa4, with a defect in trans-splicing of the first intron. Complementation analysis identified the affected gene encoding the 112.4 kDa Raa4 protein, which shares no strong sequence identity with other known proteins. The chloroplast localization of the protein was confirmed by confocal fluorescence microscopy, using a GFP-tagged Raa4 fusion protein. RNA-binding studies showed that Raa4 binds specifically to domains D2 and D3, but not to other conserved domains of the tripartite group II intron. Raa4 may play a role in stabilizing folding intermediates or functionally active structures of the split intron RNA.
Collapse
Affiliation(s)
- Stephanie Glanz
- Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
45
|
Candales MA, Duong A, Hood KS, Li T, Neufeld RAE, Sun R, McNeil BA, Wu L, Jarding AM, Zimmerly S. Database for bacterial group II introns. Nucleic Acids Res 2011; 40:D187-90. [PMID: 22080509 PMCID: PMC3245105 DOI: 10.1093/nar/gkr1043] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Database for Bacterial Group II Introns (http://webapps2.ucalgary.ca/~groupii/index.html#) provides a catalogue of full-length, non-redundant group II introns present in bacterial DNA sequences in GenBank. The website is divided into three sections. The first section provides general information on group II intron properties, structures and classification. The second and main section lists information for individual introns, including insertion sites, DNA sequences, intron-encoded protein sequences and RNA secondary structure models. The final section provides tools for identification and analysis of intron sequences. These include a step-by-step guide to identify introns in genomic sequences, a local BLAST tool to identify closest intron relatives to a query sequence, and a boundary-finding tool that predicts 5′ and 3′ intron–exon junctions in an input DNA sequence. Finally, selected intron data can be downloaded in FASTA format. It is hoped that this database will be a useful resource not only to group II intron and RNA researchers, but also to microbiologists who encounter these unexpected introns in genomic sequences.
Collapse
Affiliation(s)
- Manuel A Candales
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Potratz JP, Campo MD, Wolf RZ, Lambowitz AM, Russell R. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. J Mol Biol 2011; 411:661-79. [PMID: 21679717 PMCID: PMC3146569 DOI: 10.1016/j.jmb.2011.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/24/2011] [Accepted: 05/28/2011] [Indexed: 01/03/2023]
Abstract
The yeast DEAD-box protein Mss116p functions as a general RNA chaperone in splicing mitochondrial group I and group II introns. For most of its functions, Mss116p is thought to use ATP-dependent RNA unwinding to facilitate RNA structural transitions, but it has been suggested to assist in the folding of one group II intron (aI5γ) primarily by stabilizing a folding intermediate. Here we compare three aI5γ constructs: one with long exons, one with short exons, and a ribozyme construct lacking exons. The long exons result in slower splicing, suggesting that they misfold and/or stabilize nonnative intronic structures. Nevertheless, Mss116p acceleration of all three constructs depends on ATP and is inhibited by mutations that compromise RNA unwinding, suggesting similar mechanisms. Results of splicing assays and a new two-stage assay that separates ribozyme folding and catalysis indicate that maximal folding of all three constructs by Mss116p requires ATP-dependent RNA unwinding. ATP-independent activation is appreciable for only a subpopulation of the minimal ribozyme construct and not for constructs containing exons. As expected for a general RNA chaperone, Mss116p can also disrupt the native ribozyme, which can refold after Mss116p removal. Finally, using yeast strains with mitochondrial DNA containing only the single intron aI5γ, we show that Mss116p mutants promote splicing in vivo to degrees that correlate with their residual ATP-dependent RNA-unwinding activities. Together, our results indicate that, although DEAD-box proteins play multiple roles in RNA folding, the physiological function of Mss116p in aI5γ splicing includes a requirement for ATP-dependent local unfolding, allowing the conversion of nonfunctional RNA structure into functional RNA structure.
Collapse
Affiliation(s)
- Jeffrey P. Potratz
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Mark Del Campo
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Rachel Z. Wolf
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Alan M. Lambowitz
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Rick Russell
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
47
|
Baidyaroy D, Hausner G, Hafez M, Michel F, Fulbright DW, Bertrand H. A 971-bp insertion in the rns gene is associated with mitochondrial hypovirulence in a strain of Cryphonectria parasitica isolated from nature. Fungal Genet Biol 2011; 48:775-83. [DOI: 10.1016/j.fgb.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 03/18/2011] [Accepted: 05/08/2011] [Indexed: 01/16/2023]
|
48
|
Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011; 3:a003616. [PMID: 20463000 DOI: 10.1101/cshperspect.a003616] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Group II introns are mobile ribozymes that self-splice from precursor RNAs to yield excised intron lariat RNAs, which then invade new genomic DNA sites by reverse splicing. The introns encode a reverse transcriptase that stabilizes the catalytically active RNA structure for forward and reverse splicing, and afterwards converts the integrated intron RNA back into DNA. The characteristics of group II introns suggest that they or their close relatives were evolutionary ancestors of spliceosomal introns, the spliceosome, and retrotransposons in eukaryotes. Further, their ribozyme-based DNA integration mechanism enabled the development of group II introns into gene targeting vectors ("targetrons"), which have the unique feature of readily programmable DNA target specificity.
Collapse
Affiliation(s)
- Alan M Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
49
|
Luo Y, Eldho NV, Sintim HO, Dayie TK. RNAs synthesized using photocleavable biotinylated nucleotides have dramatically improved catalytic efficiency. Nucleic Acids Res 2011; 39:8559-71. [PMID: 21742763 PMCID: PMC3201860 DOI: 10.1093/nar/gkr464] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obtaining homogeneous population of natively folded RNAs is a crippling problem encountered when preparing RNAs for structural or enzymatic studies. Most of the traditional methods that are employed to prepare large quantities of RNAs involve procedures that partially denature the RNA. Here, we present a simple strategy using ‘click’ chemistry to couple biotin to a ‘caged’ photocleavable (PC) guanosine monophosphate (GMP) in high yield. This biotin-PC GMP, accepted by T7 RNA polymerase, has been used to transcribe RNAs ranging in size from 27 to 527 nt. Furthermore we show, using an in-gel fluorescence assay, that natively prepared 160 and 175 kDa minimal group II intron ribozymes have enhanced catalytic activity over the same RNAs, purified via denaturing conditions and refolded. We conclude that large complex RNAs prepared by non-denaturing means form a homogeneous population and are catalytically more active than those prepared by denaturing methods and subsequent refolding; this facile approach for native RNA preparation should benefit synthesis of RNAs for biophysical and therapeutic applications.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg, College Park, MD 20742-3360, USA
| | | | | | | |
Collapse
|
50
|
Li CF, Costa M, Bassi G, Lai YK, Michel F. Recurrent insertion of 5'-terminal nucleotides and loss of the branchpoint motif in lineages of group II introns inserted in mitochondrial preribosomal RNAs. RNA (NEW YORK, N.Y.) 2011; 17:1321-1335. [PMID: 21613530 PMCID: PMC3138568 DOI: 10.1261/rna.2655911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
A survey of sequence databases revealed 10 instances of subgroup IIB1 mitochondrial ribosomal introns with 1 to 33 additional nucleotides inserted between the 5' exon and the consensus sequence at the intron 5' end. These 10 introns depart further from the IIB1 consensus in their predicted domain VI structure: In contrast to its basal helix and distal GNRA terminal loop, the middle part of domain VI is highly variable and lacks the bulging A that serves as the branchpoint in lariat formation. In vitro experiments using two closely related IIB1 members inserted at the same ribosomal RNA site in the basidiomycete fungi Grifola frondosa and Pycnoporellus fulgens revealed that both ribozymes are capable of efficient self-splicing. However, whereas the Grifola intron was excised predominantly as a lariat, the Pycnoporellus intron, which possesses six additional nucleotides at the 5' end, yielded only linear products, consistent with its predicted domain VI structure. Strikingly, all of the introns with 5' terminal insertions lack the EBS2 exon-binding site. Moreover, several of them are part of the small subset of group II introns that encode potentially functional homing endonucleases of the LAGLIDADG family rather than reverse transcriptases. Such coincidences suggest causal relationships between the shift to DNA-based mobility, the loss of one of the two ribozyme sites for binding the 5' exon, and the exclusive use of hydrolysis to initiate splicing.
Collapse
MESH Headings
- Base Sequence
- Basidiomycota/genetics
- Basidiomycota/metabolism
- Grifola/genetics
- Introns/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Mutagenesis, Insertional/physiology
- Nucleic Acid Conformation
- Nucleotides/genetics
- Pycnoporus/genetics
- RNA/genetics
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Splicing
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Mitochondrial
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
Collapse
Affiliation(s)
- Cheng-Fang Li
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Maria Costa
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| | - Gurminder Bassi
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| | - Yiu-Kay Lai
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - François Michel
- Centre de Génétique Moléculaire du C.N.R.S., 91190 Gif-sur-Yvette, France
| |
Collapse
|