1
|
Cherlin T, Jing Y, Shah S, Kennedy A, Telonis AG, Pliatsika V, Wilson H, Thompson L, Vlantis PI, Loher P, Leiby B, Rigoutsos I. The subcellular distribution of miRNA isoforms, tRNA-derived fragments, and rRNA-derived fragments depends on nucleotide sequence and cell type. BMC Biol 2024; 22:205. [PMID: 39267057 PMCID: PMC11397057 DOI: 10.1186/s12915-024-01970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, and the same for all isoforms of a sncRNA. RESULTS We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biological replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast (MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contamination and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abundances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend on each sncRNA's exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose sequences differ by a few nucleotides (nts) can have different subcellular distributions. CONCLUSIONS SncRNAs with similar sequences have different subcellular distributions within and across cell lines, suggesting that each isoform could have a different function. Future computational and experimental studies of isomiRs, tRFs, and rRFs will need to distinguish among each molecule's various isoforms and account for differences in each isoform's subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed to exclude alternative explanations for the observed subcellular distribution of sncRNAs.
Collapse
Affiliation(s)
- Tess Cherlin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Jing
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Siddhartha Shah
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Anne Kennedy
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- University of Miami, Miami, FL, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- New York University, New York, NY, USA
| | - Haley Wilson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lily Thompson
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Panagiotis I Vlantis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
- Independent Scholar, Athens, Greece
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Benjamin Leiby
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA, 19017, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA, 19017, USA.
| |
Collapse
|
2
|
Hu SL, Chen YL, Zhang LQ, Bai H, Yang JH, Li QZ. LncSTPred: a predictive model of lncRNA subcellular localization and decipherment of the biological determinants influencing localization. Front Mol Biosci 2024; 11:1452142. [PMID: 39301172 PMCID: PMC11411566 DOI: 10.3389/fmolb.2024.1452142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Long non-coding RNAs (lncRNAs) play crucial roles in genetic markers, genome rearrangement, chromatin modifications, and other biological processes. Increasing evidence suggests that lncRNA functions are closely related to their subcellular localization. However, the distribution of lncRNAs in different subcellular localizations is imbalanced. The number of lncRNAs located in the nucleus is more than ten times that in the exosome. Methods In this study, we propose a new oversampling method to construct a predictive dataset and develop a predictive model called LncSTPred. This model improves the Adaboost algorithm for subcellular localization prediction using 3-mer, 3-RF sequence, and minimum free energy structure features. Results and Discussion By using our improved Adaboost algorithm, better prediction accuracy for lncRNA subcellular localization was obtained. In addition, we evaluated feature importance by using the F-score and analyzed the influence of highly relevant features on lncRNAs. Our study shows that the ANA features may be a key factor for predicting lncRNA subcellular localization, which correlates with the composition of stems and loops in the secondary structure of lncRNAs.
Collapse
Affiliation(s)
- Si-Le Hu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Ying-Li Chen
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Lu-Qiang Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Hui Bai
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Jia-Hong Yang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
| | - Qian-Zhong Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Gan M, Lei Y, Wang K, Wang Y, Liao T, Ma J, Zhu L, Shen L. A dataset of hidden small non-coding RNA in the testis of heat-stressed models revealed by Pandora-seq. Sci Data 2024; 11:747. [PMID: 38982138 PMCID: PMC11233633 DOI: 10.1038/s41597-024-03612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Infertility, a worldwide reproductive health concern, impacts approximately one in five couples. Male infertility, stemming from spermatogenic dysfunction and reduced sperm quality, stands as a primary factor contributing to infertility. Given the global decrease in male fertility linked to environmental factors like the greenhouse effect, it is crucial to develop a comprehensive understanding of how increased temperatures impact both the quantity and quality of sperm. In this study, we utilized Pandora-seq technology to detect the small non-coding RNAs (sncRNAs) expression profile in the testicular tissue of heat-stressed mice. The investigation explores the dynamic shifts in sncRNAs within the mouse testis under heat stress, including miRNAs, tsRNAs, piRNAs, rsRNAs and other sncRNAs. Furthermore, we successfully identified differentially expressed sncRNAs in testicular tissues before and after heat stress. Subsequently, we conducted functional enrichment analysis on the potential predicted target genes of differentially expressed miRNAs and tsRNAs. These datasets will constitute a valuable foundational resource for further investigations into the decline in male reproductive capacity triggered by heat stress.
Collapse
Affiliation(s)
- Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianfeng Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Hossain SM, Carpenter C, Eccles MR. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int J Mol Sci 2024; 25:7252. [PMID: 39000359 PMCID: PMC11241335 DOI: 10.3390/ijms25137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Carien Carpenter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Guo Q, Zhang G, Zhou W, Lu Y, Chen X, Deng Z, Li J, Bi H, Wu M, Xie M, Yan Y, Zhang J. m 6A modification of lncRNA PHKA1-AS1 enhances Actinin Alpha 4 stability and promotes non-small cell lung cancer metastasis. MedComm (Beijing) 2024; 5:e547. [PMID: 38764726 PMCID: PMC11099756 DOI: 10.1002/mco2.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.
Collapse
Affiliation(s)
- Qiao‐Ru Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Guo‐Bin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Wen‐Min Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Xin‐Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Zhuo‐Fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Jin‐Shuo Li
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Hong Bi
- Department of PathologyShanxi Provincial People's HospitalTaiyuanP.R. China
| | - Ming‐Sheng Wu
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Ming‐Ran Xie
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Yan‐Yan Yan
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Jian‐Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
- The Affiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuanP.R. China
| |
Collapse
|
6
|
Han Y, Pu Q, Fan T, Wei T, Xu Y, Zhao L, Liu S. Long non-coding RNAs as promising targets for controlling disease vector mosquitoes. INSECT SCIENCE 2024. [PMID: 38783627 DOI: 10.1111/1744-7917.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| |
Collapse
|
7
|
Mahajan A, Hong J, Krukovets I, Shin J, Tkachenko S, Espinosa-Diez C, Owens GK, Cherepanova OA. Integrative analysis of the lncRNA-miRNA-mRNA interactions in smooth muscle cell phenotypic transitions. Front Genet 2024; 15:1356558. [PMID: 38660676 PMCID: PMC11039880 DOI: 10.3389/fgene.2024.1356558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Objectives: We previously found that the pluripotency factor OCT4 is reactivated in smooth muscle cells (SMC) in human and mouse atherosclerotic plaques and plays an atheroprotective role. Loss of OCT4 in SMC in vitro was associated with decreases in SMC migration. However, molecular mechanisms responsible for atheroprotective SMC-OCT4-dependent effects remain unknown. Methods: Since studies in embryonic stem cells demonstrated that OCT4 regulates long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), making them candidates for OCT4 effect mediators, we applied an in vitro approach to investigate the interactions between OCT4-regulated lncRNAs, mRNAs, and miRNAs in SMC. We used OCT4 deficient mouse aortic SMC (MASMC) treated with the pro-atherogenic oxidized phospholipid POVPC, which, as we previously demonstrated, suppresses SMC contractile markers and induces SMC migration. Differential expression of lncRNAs, mRNAs, and miRNAs was obtained by lncRNA/mRNA expression array and small-RNA microarray. Long non-coding RNA to mRNA associations were predicted based on their genomic proximity and association with vascular diseases. Given a recently discovered crosstalk between miRNA and lncRNA, we also investigated the association of miRNAs with upregulated/downregulated lncRNA-mRNA pairs. Results: POVPC treatment in SMC resulted in upregulating genes related to the axon guidance and focal adhesion pathways. Knockdown of Oct4 resulted in differential regulation of pathways associated with phagocytosis. Importantly, these results were consistent with our data showing that OCT4 deficiency attenuated POVPC-induced SMC migration and led to increased phagocytosis. Next, we identified several up- or downregulated lncRNA associated with upregulation of the specific mRNA unique for the OCT4 deficient SMC, including upregulation of ENSMUST00000140952-Hoxb5/6 and ENSMUST00000155531-Zfp652 along with downregulation of ENSMUST00000173605-Parp9 and, ENSMUST00000137236-Zmym1. Finally, we found that many of the downregulated miRNAs were associated with cell migration, including miR-196a-1 and miR-10a, targets of upregulated ENSMUST00000140952, and miR-155 and miR-122, targets of upregulated ENSMUST00000155531. Oppositely, the upregulated miRNAs were anti-migratory and pro-phagocytic, such as miR-10a/b and miR-15a/b, targets of downregulated ENSMUST00000173605, and miR-146a/b and miR-15b targets of ENSMUST00000137236. Conclusion: Our integrative analyses of the lncRNA-miRNA-mRNA interactions in SMC indicated novel potential OCT4-dependent mechanisms that may play a role in SMC phenotypic transitions.
Collapse
Affiliation(s)
- Aatish Mahajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Cristina Espinosa-Diez
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Jurkiewicz M, Szczepaniak A, Zielińska M. Long non-coding RNAs - SNHG6 emerge as potential marker in colorectal cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189056. [PMID: 38104909 DOI: 10.1016/j.bbcan.2023.189056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Colorectal cancer (CRC) ranks among the leading cancers in terms of incidence and mortality in the Western world. Currently, there are no sufficient diagnostic markers that would enable an early diagnosis and efficient therapy. Unfortunately, a significant number of new CRC cases is detected in late stages, with distant metastases, therefore, new therapeutic approaches, which would alleviate the prognosis for advanced stages of CRC, are highly in demand. SNHG6 belongs to the group of long non-coding RNAs, which are a larger entity of RNAs consisting of >200 nucleotides. SNHG6 is expressed mainly in the cell cytoplasm, where it acts as a regulator of numerous processes: modulation of crucial protein hubs; sponging miRNAs and upregulating the expression of their target mRNAs; and interacting with various cellular pathways including TGF-β/Smad and Wnt/β-catenin. SNHG6 is an oncogene, substantially overexpressed in CRC tissues and cancerous cell lines as compared to healthy samples. Its overexpression is associated with higher grade, lymphovascular invasion and tumor size. Taking into consideration the role of SNHG6 in the colorectal tumorigenesis, invasion and metastasis, we summarized its role in CRC and conclude that it could serve as a potential biomarker in CRC diagnosis and prognosis assessment.
Collapse
Affiliation(s)
- Michalina Jurkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adrian Szczepaniak
- Department of NeuroOncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
9
|
Ma M, Chen M, Wu X, Sooranna SR, Liu Q, Shi D, Wang J, Li H. A newly identified lncRNA lnc000100 regulates proliferation and differentiation of cattle skeletal muscle cells. Epigenetics 2023; 18:2270864. [PMID: 37910666 PMCID: PMC10768731 DOI: 10.1080/15592294.2023.2270864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
Cattle skeletal muscle development is a complex and highly coordinated biological process mediated by a series of myogenic regulators, which plays a critical role in beef yield and quality. Long non-coding RNAs (lncRNAs) have been shown to regulate skeletal muscle development. However, the molecular mechanism by which lncRNAs regulate skeletal muscle development is largely unknown. We performed transcriptome analysis of muscle tissues of adult and embryo Angus cattle to investigate the mechanism by which lncRNA regulates skeletal muscle development between adult and embryo cattle. A total of 37,115 candidate lncRNAs were detected, and a total of 1,998 lncRNAs were differentially expressed between the muscle tissue libraries of adult and embryo cattle, including 1,229 up-regulated lncRNAs and 769 down-regulated lncRNAs (adult cattle were the control group). We verified the expression of 7 differentially expressed lncRNAs by quantitative real-time PCR (RT-qPCR), and analysed the tissue expression profile of lnc000100, which is down-regulated in the longest dorsal muscle during foetal life and which is highly specifically expressed in muscle tissue. We found that the interference of lnc000100 significantly inhibited cell proliferation and promoted cell differentiation. Lnc000100 was located in the nucleus by RNA-FISH. Our research provides certain resources for the analysis of lncRNA regulating cattle skeletal muscle development, and may also provide new insights for improving beef production and breed selection.
Collapse
Affiliation(s)
- Mengke Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Suren R. Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Saadh MJ, Arellano MTC, Saini RS, Amin AH, Sharma N, Arias-Gonzáles JL, Alsandook T, Cotrina-Aliaga JC, Akhavan-Sigari R. Molecular mechanisms of long non-coding RNAs in differentiation of T Helper17 cells. Int Immunopharmacol 2023; 123:110728. [PMID: 37572506 DOI: 10.1016/j.intimp.2023.110728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
T helper (Th) 17 cells are one of the most important T cell subsets in a number of autoimmune and chronic inflammatory diseases. During infections, Th17 cells appear to play an important role in the clearance of extracellular pathogens. Th17 cells, on the other hand, are engaged in inflammation and have been linked to the pathophysiology of a number of autoimmune illnesses and human inflammatory disorders. A diverse group of RNA molecules known as lncRNAs serve critical functions in gene expression regulation. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structure. LncRNAs, which have restricted or no protein-coding activity, are implicated in a number of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. Several lncRNAs have been associated with Th7 cell development in the context of immune cell differentiation. In this article, we cover new studies on the involvement of lncRNAs in Th17 cell differentiation in a variety of disorders, including auto-immune diseases, malignancies, asthma, heart disease, and infections.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | | | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Nidhi Sharma
- Department of Computer Engineering & Application, GLA University, Mathura, India.
| | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq.
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland.
| |
Collapse
|
11
|
Al-Hawary SIS, Kashikova K, Ioffe EM, Izbasarova A, Hjazi A, Tayyib NA, Alsalamy A, Hussien BM, Hameed M, Abdalkareem MJ. Pathological role of LncRNAs in immune-related disease via regulation of T regulatory cells. Pathol Res Pract 2023; 249:154709. [PMID: 37586216 DOI: 10.1016/j.prp.2023.154709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Human regulatory T cells (Tregs) are essential in pathogenesis of several diseases such as autoimmune diseases and cancers, and their imbalances may be promoting factor in these disorders. The development of the proinflammatory T cell subset TH17 and its balance with the generation of regulatory T cells (Treg) is linked to autoimmune disease and cancers. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in a variety of diseases and can regulate the expression of significant genes at multiple levels through epigenetic regulation and by modulating transcription, post-transcriptional processes, translation, and protein modification. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structural makeup. LncRNAs are implicated in a range of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. In this regard, a prominent example is lncRNA NEAT1 which several studies have performed to determine its role in the differentiation of immune cells. Many other lncRNAs have been linked to Treg cell differentiation in the context of immune cell differentiation. In this study, we review recent research on the various roles of lncRNAs in differentiation of Treg cell and regulation of the Th17/Treg balance in autoimmune diseases and tumors in which T regs play an important role.
Collapse
Affiliation(s)
| | - Khadisha Kashikova
- Caspian University, International School of Medicine, Almaty, Kazakhstan
| | - Elena M Ioffe
- Department of Military Clinical Hospital, Ministry of Defence, Almaty, Kazakhstan.
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
12
|
Zhou Z, Du Z, Wei J, Zhuo L, Pan S, Fu X, Lian X. MHAM-NPI: Predicting ncRNA-protein interactions based on multi-head attention mechanism. Comput Biol Med 2023; 163:107143. [PMID: 37339574 DOI: 10.1016/j.compbiomed.2023.107143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Non-coding RNA (ncRNA) is a functional RNA molecule that plays a key role in various fundamental biological processes, such as gene regulation. Therefore, studying the connection between ncRNA and proteins holds significant importance in exploring the function of ncRNA. Although many efficient and accurate methods have been developed by modern biological scientists, accurate predictions still pose a major challenge for various issues. In our approach, we utilize a multi-head attention mechanism to merge residual connections, allowing for the automatic learning of ncRNA and protein sequence features. Specifically, the proposed method projects node features into multiple spaces based on multi-head attention mechanism, thereby obtaining different feature interaction patterns in these spaces. By stacking interaction layers, higher-order interaction modes can be derived, while still preserving the initial feature information through the residual connection. This strategy effectively leverages the sequence information of ncRNA and protein, enabling the capture of hidden high-order features. The final experimental results demonstrate the effectiveness of our method, with AUC values of 97.4%, 98.5%, and 94.8% achieved on the NPInter v2.0, RPI807, and RPI488 datasets, respectively. These impressive results solidify our method as a powerful tool for exploring the connection between ncRNAs and proteins. We have uploaded the implementation code on GitHub: https://github.com/ZZCrazy00/MHAM-NPI.
Collapse
Affiliation(s)
- Zhecheng Zhou
- Wenzhou University of Technology, Wenzhou, 325000, China
| | - Zhenya Du
- Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Jinhang Wei
- Wenzhou University of Technology, Wenzhou, 325000, China
| | - Linlin Zhuo
- Wenzhou University of Technology, Wenzhou, 325000, China; Hunan University, Changsha, 410000, China.
| | - Shiyao Pan
- Wenzhou University of Technology, Wenzhou, 325000, China
| | | | - Xinze Lian
- Wenzhou University of Technology, Wenzhou, 325000, China.
| |
Collapse
|
13
|
Wang W, Bo T, Zhang G, Li J, Ma J, Ma L, Hu G, Tong H, Lv Q, Araujo DJ, Luo D, Chen Y, Wang M, Wang Z, Wang GZ. Noncoding transcripts are linked to brain resting-state activity in non-human primates. Cell Rep 2023; 42:112652. [PMID: 37335775 DOI: 10.1016/j.celrep.2023.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Brain-derived transcriptomes are known to correlate with resting-state brain activity in humans. Whether this association holds in nonhuman primates remains uncertain. Here, we search for such molecular correlates by integrating 757 transcriptomes derived from 100 macaque cortical regions with resting-state activity in separate conspecifics. We observe that 150 noncoding genes explain variations in resting-state activity at a comparable level with protein-coding genes. In-depth analysis of these noncoding genes reveals that they are connected to the function of nonneuronal cells such as oligodendrocytes. Co-expression network analysis finds that the modules of noncoding genes are linked to both autism and schizophrenia risk genes. Moreover, genes associated with resting-state noncoding genes are highly enriched in human resting-state functional genes and memory-effect genes, and their links with resting-state functional magnetic resonance imaging (fMRI) signals are altered in the brains of patients with autism. Our results highlight the potential for noncoding RNAs to explain resting-state activity in the nonhuman primate brain.
Collapse
Affiliation(s)
- Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tingting Bo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangxiao Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian Lv
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daniel J Araujo
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Dong Luo
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| | - Yuejun Chen
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
14
|
Huang X, Jie S, Li W, Liu C. GATA4-activated lncRNA MALAT1 promotes osteogenic differentiation through inhibiting NEDD4-mediated RUNX1 degradation. Cell Death Discov 2023; 9:150. [PMID: 37156809 PMCID: PMC10167365 DOI: 10.1038/s41420-023-01422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) brings a lot of inconvenience to patients and serious economic burden to society. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays vital role in the process of PMOP treatment. However, the functional mechanism remains unclear. In this study, GATA4, MALAT1 and KHSRP were downregulated in bone tissues of PMOP patients, while NEDD4 was overexpressed. Through functional experiments, GATA4 overexpression strikingly accelerated osteogenic differentiation of BMSCs and promoted bone formation in vitro and in vivo, while these effects were dramatically reversed after MALAT1 silence. Intermolecular interaction experiments confirmed that GATA4 activated the transcription of MALAT1, which could form a 'RNA-protein' complex with KHSRP to decay NEDD4 mRNA. NEDD4 promoted the degradation of Runx1 by ubiquitination. Moreover, NEDD4 silencing blocked the inhibitory effects of MALAT1 knockdown on BMSCs osteogenic differentiation. In sum up, GATA4-activated MALAT1 promoted BMSCs osteogenic differentiation via regulating KHSPR/NEDD4 axis-regulated RUNX1 degradation, ultimately improving PMOP.
Collapse
Affiliation(s)
- Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Wenzhao Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
15
|
Unveiling the Vital Role of Long Non-Coding RNAs in Cardiac Oxidative Stress, Cell Death, and Fibrosis in Diabetic Cardiomyopathy. Antioxidants (Basel) 2022; 11:antiox11122391. [PMID: 36552599 PMCID: PMC9774664 DOI: 10.3390/antiox11122391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetes mellitus is a burdensome public health problem. Diabetic cardiomyopathy (DCM) is a major cause of mortality and morbidity in diabetes patients. The pathogenesis of DCM is multifactorial and involves metabolic abnormalities, the accumulation of advanced glycation end products, myocardial cell death, oxidative stress, inflammation, microangiopathy, and cardiac fibrosis. Evidence suggests that various types of cardiomyocyte death act simultaneously as terminal pathways in DCM. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with lengths greater than 200 nucleotides and no apparent coding potential. Emerging studies have shown the critical role of lncRNAs in the pathogenesis of DCM, along with the development of molecular biology technologies. Therefore, we summarize specific lncRNAs that mainly regulate multiple modes of cardiomyopathy death, oxidative stress, and cardiac fibrosis and provide valuable insights into diagnostic and therapeutic biomarkers and strategies for DCM.
Collapse
|
16
|
Lycopene Scavenges Cellular ROS, Modulates Autophagy and Improves Survival through 7SK snRNA Interaction in Smooth Muscle Cells. Cells 2022; 11:cells11223617. [PMID: 36429045 PMCID: PMC9688495 DOI: 10.3390/cells11223617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The chance of survival rate and autophagy of smooth muscle cells under calcium stress were drastically improved with a prolonged inclusion of Lycopene in the media. The results showed an improved viability from 41% to 69% and a reduction in overall autophagic bodies from 7% to 3%, which was well in agreement with the LC3II and III mRNA levels. However, the proliferation was slow compared to the controls. The fall in the major inflammatory marker TNF-α and improved antioxidant enzyme GPx were regarded as significant restoration markers of cell survival. The reactive oxygen species (ROS) were reduced from 8 fold to 3 fold post addition of lycopene for 24 h. Further, the docking studies revealed binding of lycopene molecules with 7SK snRNA at 7.6 kcal/mol docking energy with 300 ns stability under physiological conditions. Together, these results suggest that Lycopene administration during ischemic heart disease might improve the functions of the smooth muscle cells and 7SK snRNA might be involved in the binding of lycopene and its antioxidant protective effects.
Collapse
|
17
|
Dos Santos JAC, Veras ASC, Batista VRG, Tavares MEA, Correia RR, Suggett CB, Teixeira GR. Physical exercise and the functions of microRNAs. Life Sci 2022; 304:120723. [PMID: 35718233 DOI: 10.1016/j.lfs.2022.120723] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) control RNA translation and are a class of small, tissue-specific, non-protein-coding RNAs that maintain cellular homeostasis through negative gene regulation. Maintenance of the physiological environment depends on the proper control of miRNA expression, as these molecules influence almost all genetic pathways, from the cell cycle checkpoint to cell proliferation and apoptosis, with a wide range of target genes. Dysregulation of the expression of miRNAs is correlated with several types of diseases, acting as regulators of cardiovascular functions, myogenesis, adipogenesis, osteogenesis, hepatic lipogenesis, and important brain functions. miRNAs can be modulated by environmental factors or external stimuli, such as physical exercise, and can eventually induce specific and adjusted changes in the transcriptional response. Physical exercise is used as a preventive and non-pharmacological treatment for many diseases. It is well established that physical exercise promotes various benefits in the human body such as muscle hypertrophy, mental health improvement, cellular apoptosis, weight loss, and inhibition of cell proliferation. This review highlights the current knowledge on the main miRNAs altered by exercise in the skeletal muscle, cardiac muscle, bone, adipose tissue, liver, brain, and body fluids. In addition, knowing the modifications induced by miRNAs and relating them to the results of prescribed physical exercise with different protocols and intensities can serve as markers of physical adaptation to training and responses to the effects of physical exercise for some types of chronic diseases. This narrative review consists of randomized exercise training experiments with humans and/or animals, combined with analyses of miRNA modulation.
Collapse
Affiliation(s)
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cara Beth Suggett
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
18
|
Qin X, Yin Q, Gao J, Shi X, Tang J, Hao L, Li P, Zhu J, Wang Y. Prognostic role of SPRY4-IT1 in female breast carcinoma and malignant tumors of the reproductive system: A meta-analysis. Medicine (Baltimore) 2022; 101:e28969. [PMID: 35482980 PMCID: PMC9276090 DOI: 10.1097/md.0000000000028969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The prognostic value of SPRY4-Intronic transcript 1 (SPRY4-IT1) in women suffering from breast carcinoma and malignant tumors of the reproductive system remains to be ascertained. Therefore, this paper attempted to assess the relationship between SPRY4-IT1 with the clinicopathological indicators and survival analysis in women suffering from breast carcinoma and malignant tumors of their reproductive organs through meta-analysis. METHOD Related literature retrieved from Cochrane Library, Ovid, Embase, PubMed, the CNKI, and the Web of Science databases were reviewed. The latest article search was updated to September 1, 2021. The outcome indicators included as effective measures in the study were hazard ratio (HR), odds ratio (OR), and 95% confidence interval (CI). The Stata 12.0 software was used to analyze the data. RESULTS The elevated SPRY4-IT1 levels were indicative of poor overall survival (OS) [HR = 2.44, 95% CI = 1.35-4.43, P < .05], and were not related to Disease-Free Survival (DFS) [HR = 1.61, 95% CI = 0.50-5.18, P = .43] in female patients suffering from malignant tumors. In terms of lymph node metastasis (LNM) for the association between long noncoding RNA SPRY4-IT1(LncRNA SPRY4-IT1) and OS, elevated LncRNA SPRY4-IT1 implied poor OS with LNM [HR = 2.79, 95% CI: 1.81-4.28, P < .001]. Based on the aspect of the LNM for the association between LncRNA SPRY4-IT1 and DFS, SPRY4-IT1 was not correlated with DFS [HR = 0.97, 95% CI: 0.73-1.28, P = .81]. SPRY4-IT1 in the TNM stage was not related to OS [HR = 1.43, 95% CI: 0.55-3.70, P = .46]. In the TNM stage, SPRY4-IT1 was not related to DFS [HR = 1.68, 95% CI: 0.92-3.06, P = .09]. SPRY4-IT1 was found to be associated with lymph node metastasis (OR = 4.15, 95% CI: 2.75-6.25, P = .000) and TNM stage (OR = 2.89, 95% CI: 1.51-7.27 P = .02). No significant correlation was noted between SPRY4-IT1 and the age of the patients (OR = 0.89, 95% CI: 0.61-1.29 P = .54). CONCLUSIONS Thus, this study provides evidence-based medical evidence for the target treatment of female breast carcinoma and malignant tumors of the reproductive system. The elevated level of SPRY4-IT1 was associated with poor prognosis of female breast cancer patients and of those having malignant tumors in their reproductive organs. In addition, the SPRY4-IT1 expression was also associated with the disease progression and metastasis.
Collapse
Affiliation(s)
- Xiaoru Qin
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Qifan Yin
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Jin Gao
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Xiaoming Shi
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Jiachen Tang
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Lingling Hao
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Pengfei Li
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Jia Zhu
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
- North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Yuexin Wang
- Hebei General Hospital, Shijiazhuang, Hebei, PR China
| |
Collapse
|
19
|
Liao W, Du J, Wang Z, Feng Q, Liao M, Liu H, Yuan K, Zeng Y. The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma. Int J Cancer 2022; 151:337-347. [PMID: 35460073 PMCID: PMC9325518 DOI: 10.1002/ijc.34040] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Metabolic reprogramming is considered to be an important hallmark of cancer. Emerging studies have demonstrated that noncoding RNAs (ncRNAs) are closely associated with metabolic reprogramming of HCC. NcRNAs can directly regulate the expressions or functions of metabolic enzymes or indirectly regulate the metabolism of HCC cells through some vital signaling pathways. Until now, the mechanisms of HCC development and progression remain largely unclear, and understanding the regulatory mechanism of ncRNAs on metabolic reprogramming of HCC may provide an important basis for breakthrough progress in the treatment of HCC. In this review, we summarize the ncRNAs involved in regulating metabolic reprogramming of HCC. Specifically, the regulatory roles of ncRNAs in glucose, lipid and amino acid metabolism are elaborated. In addition, we discuss the molecular mechanism of ncRNAs in regulation of metabolic reprogramming and possible therapeutic strategies that target the metabolism of cancer cells by modulating the expressions of specific ncRNAs.
Collapse
Affiliation(s)
- Wenwei Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinpeng Du
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Huixian Liu
- Department of Postanesthesia Care Unit & Surgical Anesthesia Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
20
|
Ruan X, Zhang R, Zhu H, Ye C, Wang Z, Dong E, Li R, Cheng Z, Peng H. Research progress on epigenetics of small B-cell lymphoma. Clin Transl Oncol 2022; 24:1501-1514. [PMID: 35334078 DOI: 10.1007/s12094-022-02820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Small B-cell lymphoma is the classification of B-cell chronic lymphoproliferative disorders that include chronic lymphocytic leukaemia/small lymphocytic lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. The clinical presentation is somewhat heterogeneous, and its occurrence and development mechanisms are not yet precise and may involve epigenetic changes. Epigenetic alterations mainly include DNA methylation, histone modification, and non-coding RNA, which are essential for genetic detection, early diagnosis, and assessment of treatment resistance in small B-cell lymphoma. As chronic lymphocytic leukemia/small lymphocytic lymphoma has already been reported in the literature, this article focuses on small B-cell lymphomas such as follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma, and Waldenstrom macroglobulinemia. It discusses recent developments in epigenetic research to diagnose and treat this group of lymphomas. This review provides new ideas for the treatment and prognosis assessment of small B-cell lymphoma by exploring the connection between small B-cell lymphoma and epigenetics.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - En Dong
- Blood Center, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Targeted Therapy for Hematopoietic Malignancies, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Zhang L, Gao J, Gong A, Dong Y, Hao X, Wang X, Zheng J, Ma W, Song Y, Zhang J, Xu W. The Long Noncoding RNA LINC00963 Inhibits Corneal Fibrosis Scar Formation by Targeting miR-143-3p. DNA Cell Biol 2022; 41:400-409. [PMID: 35262384 PMCID: PMC9063159 DOI: 10.1089/dna.2021.1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Corneal fibrosis is a complication of severe corneal injury, one of the major causes of vision loss. The formation of myofibroblasts has emerged as a key stimulative factor of corneal fibrosis. In the current study, we focused on the role of LINC00963 in regulating corneal fibrosis. Transforming growth factor β1 (TGF-β1) was used to induce human corneal stromal cells differentiating into corneal myofibroblasts, and the significant increase of α-smooth muscle actin (α-SMA) was verified by quantitative real-time PCR (qRT-PCR), western blot, and immunofluorescence, respectively. LINC00963 was identified to be one-half decreased compared with nonstimulated human corneal stromal cells, indicating that it might play a role in corneal fibrosis. Interestingly, overexpression of LINC00963 resulted in decreased formation of myofibroblasts indicating that it might exhibit an inhibiting effect. Moreover, bioinformatics tool was applied to predict the downstream target of LINC00963. We investigated that LINC00963 suppressed α-SMA induced by TGF-β1 in corneal fibroblasts, at least in part, by downregulating the expression of miR-143-3p. In addition, either LINC00963 promotion or miR-143-3p inhibition could significantly decrease myofibroblast contractility and collagen I and III secretion, which are the key to contribute to corneal fibrosis. Taken together, our study identified LINC00963 as a promising therapeutic target.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Anjing Gong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanhan Dong
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaodan Hao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xuekang Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Zheng
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenmeng Ma
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yiying Song
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jie Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Fang Y, Zheng W, Peng Y, Liu J, Gao J, Tu Y, Sun S, Huang X, She J, Chen C, Xu S, Yue Y. Differentiate Thermal Property of Mammary Glands for Precise Photothermal Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuxin Fang
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Yuxuan Peng
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Jianhua Liu
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Jianshu Gao
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Yi Tu
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Xiaona Huang
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
| | - Jinjuan She
- Department of Mechanical and Manufacturing Engineering Miami University Ohio 45056 USA
| | - Chuang Chen
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan 430060 China
| | - Shen Xu
- School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai 201620 China
| | - Yanan Yue
- Key Laboratory of Hydraulic Machinery Transients (MOE) School of Power and Mechanical Engineering Wuhan University Wuhan 430072 China
- Department of Mechanical and Manufacturing Engineering Miami University Ohio 45056 USA
| |
Collapse
|
23
|
Sideris N, Dama P, Bayraktar S, Stiff T, Castellano L. LncRNAs in breast cancer: a link to future approaches. Cancer Gene Ther 2022; 29:1866-1877. [PMID: 35788171 PMCID: PMC9750866 DOI: 10.1038/s41417-022-00487-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Breast cancer affects millions of women each year. Despite recent advances in targeted treatments breast cancer remains a significant threat to women's health. In recent years the development of high-throughput sequencing technologies has advanced the field of transcriptomics shedding light on the role of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs), in human cellular function and disease. LncRNAs are classified as transcripts longer than 200nt with no coding potential. These transcripts constitute a diverse group of regulatory molecules essential to the modulation of crucial cellular processes, which dysregulation of leads to disease. LncRNAs exert their regulatory functions through their sequences and by forming complex secondary and tertiary structures that interact with other transcripts, chromatin and/or proteins. Numerous studies have provided evidence of the involvement of LncRNAs in tumor development and disease progression. They possess multiple characteristics that make them novel therapeutic and diagnostic targets. Indeed, the discovery of a novel mechanism by which lncRNAs associated with proteins can induce the formation of phase-separated droplets broadens our understanding of the spatiotemporal control of cellular processes and opens up developing a new treatment. Nevertheless, the role and the molecular mechanisms of many lncRNAs in the regulation of cellular processes and cancer still remain elusive. This is due to the absence of a thorough characterization of the regulatory role of their loci and the functional impact of their aberrations in cancer biology. Here, we present some of the latest advances concerning the role of LncRNAs in breast cancer.
Collapse
Affiliation(s)
- Nikolaos Sideris
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Paola Dama
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Salih Bayraktar
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Thomas Stiff
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Leandro Castellano
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK ,grid.7445.20000 0001 2113 8111Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
24
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
25
|
Pham TP, van Bergen AS, Kremer V, Glaser SF, Dimmeler S, Boon RA. LncRNA AERRIE Is Required for Sulfatase 1 Expression, but Not for Endothelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158088. [PMID: 34360851 PMCID: PMC8347915 DOI: 10.3390/ijms22158088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Endothelial cells can acquire a mesenchymal phenotype through a process called Endothelial-to-Mesenchymal transition (EndMT). This event is found in embryonic development, but also in pathological conditions. Blood vessels lose their ability to maintain vascular homeostasis and ultimately develop atherosclerosis, pulmonary hypertension, or fibrosis. An increase in inflammatory signals causes an upregulation of EndMT transcription factors, mesenchymal markers, and a decrease in endothelial markers. In our study, we show that the induction of EndMT results in an increase in long non-coding RNA AERRIE expression. JMJD2B, a known EndMT regulator, induces AERRIE and subsequently SULF1. Silencing of AERRIE shows a partial regulation of SULF1 but showed no effect on the endothelial and mesenchymal markers. Additionally, the overexpression of AERRIE results in no significant changes in EndMT markers, suggesting that AERRIE is marginally regulating mesenchymal markers and transcription factors. This study identifies AERRIE as a novel factor in EndMT, but its mechanism of action still needs to be elucidated.
Collapse
Affiliation(s)
- Tan Phát Pham
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.P.P.); (A.S.v.B.); (V.K.)
| | - Anke S. van Bergen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.P.P.); (A.S.v.B.); (V.K.)
| | - Veerle Kremer
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.P.P.); (A.S.v.B.); (V.K.)
| | - Simone F. Glaser
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany; (S.F.G.); (S.D.)
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany; (S.F.G.); (S.D.)
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Reinier A. Boon
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.P.P.); (A.S.v.B.); (V.K.)
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany; (S.F.G.); (S.D.)
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
26
|
Liu J, Liu S, Han L, Sheng Y, Zhang Y, Kim IM, Wan J, Yang L. LncRNA HBL1 is required for genome-wide PRC2 occupancy and function in cardiogenesis from human pluripotent stem cells. Development 2021; 148:268341. [PMID: 34027990 PMCID: PMC8276986 DOI: 10.1242/dev.199628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Polycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1−/− and JARID2−/− hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved ‘microRNA-1-JARID2’ axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis. Summary: This study reveals the indispensable role of the lncRNA HBL1 in guiding PRC2 function during early human cardiogenesis, and uncovers the crosstalk of the cytosolic and nuclear regions of HBL1 to orchestrate human cardiac development.
Collapse
Affiliation(s)
- Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yucheng Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA, Braga EA. Long Noncoding RNA GAS5 in Breast Cancer: Epigenetic Mechanisms and Biological Functions. Int J Mol Sci 2021; 22:ijms22136810. [PMID: 34202777 PMCID: PMC8267719 DOI: 10.3390/ijms22136810] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified as contributors to the development and progression of cancer through various functions and mechanisms. LncRNA GAS5 is downregulated in multiple cancers and acts as a tumor suppressor in breast cancer. GAS5 interacts with various proteins (e.g., E2F1, EZH2, and YAP), DNA (e.g., the insulin receptor promoter), and various microRNAs (miRNAs). In breast cancer, GAS5 binds with miR-21, miR-222, miR-221-3p, miR-196a-5p, and miR-378a-5p that indicates the presence of several elements for miRNA binding (MREs) in GAS5. Mediated by the listed miRNAs, GAS5 is involved in the upregulation of a number of mRNAs of suppressor proteins such as PTEN, PDCD4, DKK2, FOXO1, and SUFU. Furthermore, the aberrant promoter methylation is involved in the regulation of GAS5 gene expression in triple-negative breast cancer and some other carcinomas. GAS5 can stimulate apoptosis in breast cancer via diverse pathways, including cell death receptors and mitochondrial signaling pathways. GAS5 is also a key player in the regulation of some crucial signal pathways in breast cancer, such as PI3K/AKT/mTOR, Wnt/β-catenin, and NF-κB signaling. Through epigenetic and other mechanisms, GAS5 can increase sensitivity to multiple drugs and improve prognosis. GAS5 is thus a promising target in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
- Correspondence:
| |
Collapse
|
28
|
Daulatabad SV, Srivastava R, Janga SC. Lantern: an integrative repository of functional annotations for lncRNAs in the human genome. BMC Bioinformatics 2021; 22:279. [PMID: 34039271 PMCID: PMC8157669 DOI: 10.1186/s12859-021-04207-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND With advancements in omics technologies, the range of biological processes where long non-coding RNAs (lncRNAs) are involved, is expanding extensively, thereby generating the need to develop lncRNA annotation resources. Although, there are a plethora of resources for annotating genes, despite the extensive corpus of lncRNA literature, the available resources with lncRNA ontology annotations are rare. RESULTS We present a lncRNA annotation extractor and repository (Lantern), developed using PubMed's abstract retrieval engine and NCBO's recommender annotation system. Lantern's annotations were benchmarked against lncRNAdb's manually curated free text. Benchmarking analysis suggested that Lantern has a recall of 0.62 against lncRNAdb for 182 lncRNAs and precision of 0.8. Additionally, we also annotated lncRNAs with multiple omics annotations, including predicted cis-regulatory TFs, interactions with RBPs, tissue-specific expression profiles, protein co-expression networks, coding potential, sub-cellular localization, and SNPs for ~ 11,000 lncRNAs in the human genome, providing a one-stop dynamic visualization platform. CONCLUSIONS Lantern integrates a novel, accurate semi-automatic ontology annotation engine derived annotations combined with a variety of multi-omics annotations for lncRNAs, to provide a central web resource for dissecting the functional dynamics of long non-coding RNAs and to facilitate future hypothesis-driven experiments. The annotation pipeline and a web resource with current annotations for human lncRNAs are freely available on sysbio.lab.iupui.edu/lantern.
Collapse
Affiliation(s)
- Swapna Vidhur Daulatabad
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Informatics and Communications Technology Complex, 535 W Michigan St., IT 475H, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Informatics and Communications Technology Complex, 535 W Michigan St., IT 475H, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN, 46202, USA.
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, IN, 46202, USA.
| |
Collapse
|
29
|
Comparative genomics in the search for conserved long noncoding RNAs. Essays Biochem 2021; 65:741-749. [PMID: 33885137 PMCID: PMC8564735 DOI: 10.1042/ebc20200069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as prominent regulators of gene expression in eukaryotes. The identification of lncRNA orthologs is essential in efforts to decipher their roles across model organisms, as homologous genes tend to have similar molecular and biological functions. The relatively high sequence plasticity of lncRNA genes compared with protein-coding genes, makes the identification of their orthologs a challenging task. This is why comparative genomics of lncRNAs requires the development of specific and, sometimes, complex approaches. Here, we briefly review current advancements and challenges associated with four levels of lncRNA conservation: genomic sequences, splicing signals, secondary structures and syntenic transcription.
Collapse
|
30
|
Tang J, Huang F, Wang H, Cheng F, Pi Y, Zhao J, Li Z. Knockdown of TPT1-AS1 inhibits cell proliferation, cell cycle G1/S transition, and epithelial-mesenchymal transition in gastric cancer. Bosn J Basic Med Sci 2021; 21:39-46. [PMID: 32156253 PMCID: PMC7861632 DOI: 10.17305/bjbms.2020.4470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs are considered to be critical regulators of tumor progression. Tumor protein translationally controlled 1 antisense RNA 1 (TPT1-AS1) was shown to have an oncogenic role in cervical and ovarian cancer. The clinical significance and biological function of TPT1-AS1 in gastric cancer (GC) are not clear. In this study, we analyzed the expression of TPT1-AS1 in GC tissues and cell lines and performed functional and mechanistic analysis of TPT1-AS1 effects on GC cell proliferation, migration, and invasion. TPT1-AS1 expression was determined in 76 pairs of GC tissues vs. matched adjacent normal tissues and in four GC cell lines (SGC-7901, AGS, BGC-823, and MGC-803) vs. GES-1 cell line by quantitative reverse transcription PCR. SGC-7901 and MGC-803 cells were transfected with small interfering RNA or scrambled negative control, and cell proliferation, colony formation, migration, invasion and cell cycle assays were performed. The expression of proteins involved in cell cycle progression and epithelial-mesenchymal transition was analyzed by Western blot. TPT1-AS1 expression was significantly higher in GC tissues and cell lines compared to controls. The overexpression of TPT1-AS1 was significantly correlated with TNM stage and lymph node metastasis, and it was associated with worse prognosis of GC patients according to the Kaplan-Meier survival analysis and Cox proportional hazard regression analysis. The knockdown of TPT1-AS1 significantly inhibited proliferation, cell cycle G1/S transition, migration, and invasion of SGC-7901 and MGC-803 cells. Moreover, TPT1-AS1 knockdown downregulated the expression of cyclin-dependent kinase (CDK) 4, cyclin D1, and vimentin and upregulated the expression of p21 and E-cadherin. Our findings suggest that TPT1-AS1 may be a promising therapeutic target in GC.
Collapse
Affiliation(s)
- Jun Tang
- Department of General Surgery, The Center Hospital of Ezhou, Ezhou, China
| | - Fei Huang
- Department of Medical Laboratory, The Center Hospital of Ezhou, Ezhou, China
| | - Hui Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Cheng
- Department of Medical Laboratory, The Center Hospital of Ezhou, Ezhou, China
| | - Yaping Pi
- Department of General Surgery, The Center Hospital of Ezhou, Ezhou, China
| | - Juanjuan Zhao
- Department of Pathology, The Center Hospital of Ezhou, Ezhou, China
| | - Zhihong Li
- Department of General Surgery, The Center Hospital of Ezhou, Ezhou, China
| |
Collapse
|
31
|
Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol 2021; 220:e202009045. [PMID: 33464299 PMCID: PMC7816648 DOI: 10.1083/jcb.202009045] [Citation(s) in RCA: 721] [Impact Index Per Article: 240.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Subcellular localization of RNAs has gained attention in recent years as a prevalent phenomenon that influences numerous cellular processes. This is also evident for the large and relatively novel class of long noncoding RNAs (lncRNAs). Because lncRNAs are defined as RNA transcripts >200 nucleotides that do not encode protein, they are themselves the functional units, making their subcellular localization critical to their function. The discovery of tens of thousands of lncRNAs and the cumulative evidence involving them in almost every cellular activity render assessment of their subcellular localization essential to fully understanding their biology. In this review, we summarize current knowledge of lncRNA subcellular localization, factors controlling their localization, emerging themes, including the role of lncRNA isoforms and the involvement of lncRNAs in phase separation bodies, and the implications of lncRNA localization on their function and on cellular behavior. We also discuss gaps in the current knowledge as well as opportunities that these provide for novel avenues of investigation.
Collapse
Affiliation(s)
| | | | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
32
|
Yu Y, Chen Q, Zhang X, Yang J, Lin K, Ji C, Xu A, Yang L, Miao L. Long noncoding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression. Cancer Sci 2020; 111:2297-2309. [PMID: 32378752 PMCID: PMC7385372 DOI: 10.1111/cas.14447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently been verified to have significant regulatory functions in many types of human cancers. The lncRNA ANRIL is transcribed from the INK4b-ARF-INK4a gene cluster in the opposite direction. Whether ANRIL can act as an oncogenic molecule in cholangiocarcinoma (CCA) remains unknown. Our data show that ANRIL knockdown greatly inhibited CCA cell proliferation and migration in vitro and in vivo. According to the results of RNA sequencing analysis, ANRIL knockdown dramatically altered target genes associated with the cell cycle, cell proliferation, and apoptosis. By binding to a component of the epigenetic modification complex enhancer of zeste homolog 2 (EZH2), ANRIL could maintain lysine residue 27 of histone 3 (H3K27me3) levels in the promoter of ERBB receptor feedback inhibitor 1 (ERRFI1), which is a tumor suppressor gene in CCA. In this way, ERRFI1 expression was suppressed in CCA cells. These data verified the key role of the epigenetic regulation of ANRIL in CCA oncogenesis and indicate its potential as a target for CCA intervention.
Collapse
Affiliation(s)
- Yang Yu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Qiaoyu Chen
- Department of Pathology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Xunlei Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jian Yang
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kaibo Lin
- Department of Assisted Reproduction, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Congfei Ji
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Aibing Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Lei Yang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Bryzghalov O, Szcześniak MW, Makałowska I. SyntDB: defining orthologues of human long noncoding RNAs across primates. Nucleic Acids Res 2020; 48:D238-D245. [PMID: 31728519 PMCID: PMC7145678 DOI: 10.1093/nar/gkz941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
SyntDB (http://syntdb.amu.edu.pl/) is a collection of data on long noncoding RNAs (lncRNAs) and their evolutionary relationships in twelve primate species, including humans. This is the first database dedicated to primate lncRNAs, thousands of which are uniquely stored in SyntDB. The lncRNAs were predicted with our computational pipeline using publicly available RNA-Seq data spanning diverse tissues and organs. Most of the species included in SyntDB still lack lncRNA annotations in public resources. In addition to providing users with unique sets of lncRNAs and their characteristics, SyntDB provides data on orthology relationships between the lncRNAs of humans and other primates, which are not available on this scale elsewhere. Keeping in mind that only a small fraction of currently known human lncRNAs have been functionally characterized and that lncRNA conservation is frequently used to identify the most relevant lncRNAs for functional studies, we believe that SyntDB will contribute to ongoing research aimed at deciphering the biological roles of lncRNAs.
Collapse
Affiliation(s)
- Oleksii Bryzghalov
- Adam Mickiewicz University in Poznan, Faculty of Biology, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Michał Wojciech Szcześniak
- Adam Mickiewicz University in Poznan, Faculty of Biology, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Izabela Makałowska
- Adam Mickiewicz University in Poznan, Faculty of Biology, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
34
|
Li J, Zou J, Wan X, Sun C, Chu Z, Hu Y. Roles of noncoding RNAs in drug resistance in multiple myeloma. J Cell Physiol 2020; 235:7681-7695. [PMID: 32324301 DOI: 10.1002/jcp.29726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Despite the administration of new effective drugs in recent years, relapse and drug resistance are still the main obstacles in multiple myeloma (MM) treatment, making MM an incurable disease. To overcome drug resistance in MM, it is critical to understand the underlying mechanisms of malfunctioning gene expression and develop novel targeted therapies. During the past few decades, with the discovery and characterization of noncoding RNAs (ncRNAs), the landscape of dysregulated ncRNAs of cancers as well as their biological and pathobiological functions in tumorigenesis and drug resistance have been recognized. Studies about ncRNAs improved the understanding of variations of drug response among individuals at a level distinguished from genetic polymorphism, and provided with new orientations for targeted therapies. In this review, we will summarize the emerging impact and underlying molecular mechanisms of the most relevant classes of ncRNAs in drug resistance of MM, and discuss the potential as well as strategies of treating ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Zhu Y, Luo C, Korakkandan AA, Fatma YHA, Tao Y, Yi T, Hu S, Liao Q. Function and regulation annotation of up-regulated long non-coding RNA LINC01234 in gastric cancer. J Clin Lab Anal 2020; 34:e23210. [PMID: 32011780 PMCID: PMC7246363 DOI: 10.1002/jcla.23210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background Accumulated evidences indicate that long non‐coding RNAs (lncRNAs) participate in many biological mechanisms. Moreover, it acts as an essential regulator in various human diseases such as gastric cancer (GC). Nevertheless, the comprehensive regulatory roles and clinical significance of most lncRNAs in GC are not fully understood. Methods In this research, our aim was to investigate the underlying mechanism of lncRNA LINC01234 in GC. Firstly, the usage of qRT‐PCR helped to establish expression pattern of LINC01234 in GC tissues. Following this, appropriate statistical tests were applied to analyze the relation between expression level and clinicopathological factors. Ultimately, potential functions and regulatory network of LINC01234 were concluded via GSEA and a series of bioinformatics tools or databases, respectively. Results Consequently, at the end of research we found LINC01234 is up‐regulated in GC tissues in comparison with adjacent normal tissues. Furthermore, its expression level is correlated with differentiation of patients with GC. It is also important to highlight bioinformatics analysis revealed that LINC01234 is involved in cancer‐associated pathways such as cell cycle and mismatch repair. Also, regulatory network of LINC01234 presented a probability in the involvement of tumorigenesis through regulating cancer‐associated genes. Conclusion Overall, our results suggested that LINC01234 may play a crucial role in GC.
Collapse
Affiliation(s)
- Yinyin Zhu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Cong Luo
- Department of Abdominal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Arshad Ali Korakkandan
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yislam Hadi Ahmed Fatma
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yang Tao
- Ningbo Yinzhou People's Hospital, Ningbo, China
| | - Tianfei Yi
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Qi Liao
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
36
|
Idiopathic Pulmonary Fibrosis: Pathogenesis and the Emerging Role of Long Non-Coding RNAs. Int J Mol Sci 2020; 21:ijms21020524. [PMID: 31947693 PMCID: PMC7013390 DOI: 10.3390/ijms21020524] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disease characterized by excessing scarring of the lungs leading to irreversible decline in lung function. The aetiology and pathogenesis of the disease are still unclear, although lung fibroblast and epithelial cell activation, as well as the secretion of fibrotic and inflammatory mediators, have been strongly associated with the development and progression of IPF. Significantly, long non-coding RNAs (lncRNAs) are emerging as modulators of multiple biological processes, although their function and mechanism of action in IPF is poorly understood. LncRNAs have been shown to be important regulators of several diseases and their aberrant expression has been linked to the pathophysiology of fibrosis including IPF. This review will provide an overview of this emerging role of lncRNAs in the development of IPF.
Collapse
|
37
|
Luo L, Wang M, Li X, Tian J, Zhang K, Tan S, Luo C. Long non-coding RNA LOC285194 in cancer. Clin Chim Acta 2019; 502:1-8. [PMID: 31837299 DOI: 10.1016/j.cca.2019.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are non-protein-encoding RNAs that are usually over 200 nucleotides-long. The development of whole-genome sequencing has enabled the identification of several lncRNAs, and the determination of their critical roles in the human tumor process. LOC285194, also known as LSAMP antisense RNA 3 and tumor suppressor candidate 7 (TUSC7), is a >2-kb-long lncRNA comprised of four exons (gene ID: 285194), and located in chr3q13.31. LOC285194 expression is reported to be consistently low in tumor cells and often associated with poor clinical outcomes. Functionally, LOC285194 overexpression has been shown to inhibit cell proliferation, invasion, and migration in vitro and in vivo. Further, LOC285194 mainly suppressed or promoted the expression of related genes through direct or indirect pathways, suggesting that LOC285194 might be a feasible biomarker or therapeutic target in human cancers. Here, we reviewed and summarized existing literature on the functions and mechanisms of LOC285194 in human cancers.
Collapse
Affiliation(s)
- Lingli Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Jingjing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Kan Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Shan Tan
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
38
|
Hu P, Cui H, Lei T, Li S, Mai E, Jia F. Linc00511 Indicates A Poor Prognosis Of Liver Hepatocellular Carcinoma. Onco Targets Ther 2019; 12:9367-9376. [PMID: 31807017 PMCID: PMC6850899 DOI: 10.2147/ott.s228231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
Objective To uncover the specific function of linc00511 in the progression of liver hepatocellular carcinoma (LIHC) and the underlying mechanism. Patients and methods GEPIA dataset containing 9736 LIHC samples and 857 normal samples were downloaded from TCGA. Expression pattern and prognostic potential of linc00511 in LIHC were analyzed. Subsequently, expression level of linc00511 in LIHC tissues collected in our hospital and cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Differential expressions of linc00511 in LIHC with different tumor grades and metastatic status were compared. After transfection of si-linc00511, proliferative and migratory changes in Huh7 and Hep3B cells were assessed by cell counting kit-8 (CCK-8), 5-ethynyl-2ʹ-deoxyuridine (EdU) and Transwell assay. Lastly, Pearson correlation analysis and qRT-PCR were conducted to investigate the interaction between linc00511 and miR-29c. Results Linc00511 was upregulated in LIHC tissues and cell lines. Its level was positively correlated to TNM staging, lymphatic metastasis and poor prognosis in LIHC patients. Knockdown of linc00511 attenuated proliferative and migratory abilities in Huh7 and Hep3B cells. In addition, miR-29c was downregulated in LIHC and negatively linked to linc00511 level. A negative interaction between linc00511 and miR-29c could be a regulatory feedback influencing the progression of LIHC. Conclusion Linc00511 accelerates the proliferation and migration in LIHC, thus aggravating tumor progression. Meanwhile, linc00511 could be utilized as a hallmark predicting poor prognosis in LIHC patients.
Collapse
Affiliation(s)
- Pingan Hu
- Department of Hepatobiliary Surgery, Luoyang Center Hospital, Luoyang, People's Republic of China
| | - Huxiao Cui
- Department of Hepatobiliary Surgery, Xuchang Central Hospital, Xuchang, People's Republic of China
| | - Ting Lei
- Department of Hepatobiliary Surgery, Luoyang Center Hospital, Luoyang, People's Republic of China
| | - Siqiao Li
- Department of Hepatobiliary Surgery, Luoyang Center Hospital, Luoyang, People's Republic of China
| | - Erhui Mai
- Department of Hepatobiliary Surgery, Luoyang Center Hospital, Luoyang, People's Republic of China
| | - Fuxin Jia
- Department of Hepatobiliary Surgery, Luoyang Center Hospital, Luoyang, People's Republic of China
| |
Collapse
|
39
|
Xiao H, Ding N, Liao H, Yao Z, Cheng X, Zhang J, Zhao M. Prediction of relapse and prognosis by expression levels of long noncoding RNA PEG10 in glioma patients. Medicine (Baltimore) 2019; 98:e17583. [PMID: 31702614 PMCID: PMC6855493 DOI: 10.1097/md.0000000000017583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Long noncoding RNA paternally expressed 10 (lncRNA PEG10) is highly expressed in a variety of human cancers and related to the clinical prognosis of patients. However, to date there has been no previous study evaluating the prognostic significance of lncRNA PEG10 in gliomas. In the present study, we investigated the expression levels of lncRNA PEG10 to determine the prognostic value of this oncogene in human gliomas. METHODS Expression levels of lncRNA PEG10 were detected by real-time polymerase chain reaction in a hospital-based study cohort of 147 glioma patients and 23 cases of patients with craniocerebral trauma tissues. Associations of lncRNA PEG10 expression with clinicopathological variables and clinical outcome of glioma patients were investigated. RESULTS The results indicated that expression levels of lncRNA PEG10 were significantly increased in human gliomas compared to normal control brain tissues. In addition, lncRNA PEG10 expression was progressively increased from pathologic grade I to IV (P = .009) and correlated with the Karnofsky performance status (P = .018) in glioma patients. Furthermore, we also found that glioma patients with increased expression of lncRNA PEG10 had a higher risk to relapse and a statistically significant shorter overall survival (OS) than patients with reduced expression of lncRNA PEG10. In multivariate analysis, expression level of lncRNA PEG10 was found to be an independent prognostic factor for both progression-free survival and OS in glioma patients. CONCLUSIONS LncRNA PEG10 served as an oncogene and played crucial roles in the progression of glioma. Molecular therapy targeted on lncRNA PEG10 might bring significant benefits to the clinical outcome of malignant glioma.
Collapse
Affiliation(s)
| | - Ning Ding
- Outpatient Department, The Second Hospital of Shandong University, Shandong University
| | - Hang Liao
- Clinical laboratory, The Second Blood Insurance Center of Jinan
| | - Zhigang Yao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Jian Zhang
- School of Life Science, Shandong Universit, Qingdao, Shandong Province, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| |
Collapse
|
40
|
Overexpression of PURPL and downregulation of NONHSAT062994 as potential biomarkers in gastric cancer. Life Sci 2019; 237:116904. [PMID: 31606380 DOI: 10.1016/j.lfs.2019.116904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023]
Abstract
AIMS Long non-coding RNAs (LncRNAs) play central roles in the formation and development of gastric cancer (GC). The aim of this study was to evaluate the expression of PURPL and NONHSAT062994 and the relationship between their expressions with clinical characteristics in GC. MAIN METHODS PURPL and NONHSAT062994 LncRNAs and p53 gene expression levels were analyzed both in 50 pairs of cancerous and adjacent noncancerous tissue samples in GC patients using qRT-PCR and in four sets of data obtained from Gene Expression Omnibus (GEO) database. Chi-square (χ2) test was used to determine the relationship between PURPL, NONHSAT062994 RNA levels and the clinicopathological characteristics of GC. Receiver operating characteristic (ROC) curves were drawn to represent sensitivity and specificity of PURPL and NONHSAT062994 expression as markers of GC. KEY FINDINGS Expression of PURPL was significantly upregulated in 50 GC samples as well as in GC tissues from GSE13911 and GSE27342 datasets. Our results demonstrated that PURPL RNA level in GC was significantly related to tumor size and histopathological grade. p53 expression at both protein and mRNA levels were significantly decreased in GC tissues compared to adjacent control samples. NONHSAT062994 expression was downregulated in 50-pair GC and GC tissues from GSE13915 dataset. However, NONHSAT062994 showed no consistently differential expression in GSE2637dataset. NONHSAT062994 was significantly associated with histological grade and tumor size. SIGNIFICANCE Overall, these results suggest that PURPL and NONHSAT062994 may play critical roles in the progression of GC and therefore might be considered as candidate tumor markers for therapeutic goals.
Collapse
|
41
|
Pang W, Zhai M, Wang Y, Li Z. Long noncoding RNA SNHG16 silencing inhibits the aggressiveness of gastric cancer via upregulation of microRNA-628-3p and consequent decrease of NRP1. Cancer Manag Res 2019; 11:7263-7277. [PMID: 31447585 PMCID: PMC6682761 DOI: 10.2147/cmar.s211856] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNA-628-3p (miR-628) has been reported to play important roles in the progression of multiple human cancer types. Nonetheless, whether the expression profile of miR-628 is altered in gastric cancer remains unclear and whether its aberrant expression plays a crucial part in the aggressiveness of gastric cancer is yet to be determined. Therefore, in this study, we systematically investigated the involvement of miR-628 in gastric cancer progression. Materials and methods MiR-628 expression in gastric cancer tissues and cell lines were determined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A CCK-8 assay, flow-cytometric analysis, Transwell assays, and a xenograft model experiment were performed to evaluate the influence of miR-628 overexpression on gastric cancer cells. Notably, the mechanisms underlying the tumor-suppressive activity of miR-628 in gastric cancer cells were explored by bioinformatics analysis, a luciferase reporter assay, RT-qPCR, and Western blotting. Results MiR-628 expression was low in gastric cancer tissue samples and cell lines. The low expression of miR-628 was closely associated with the lymph node metastasis, invasive depth and TNM stage among patients with gastric cancer. Further clinical analysis indicated that patients with gastric cancer underexpressing miR-628 had a worse prognosis than did the patients with high miR-628 expression in the tumor. Overexpressed miR-628 restrained proliferation, migration, and invasion; induced apoptosis; and impaired tumor growth of gastric cancer cells. In addition, neuropilin 1 (NRP1) mRNA was validated as the direct target of miR-628 in gastric cancer. Long noncoding RNA small nucleolar RNA host gene 16 (SNHG16) was demonstrated to sponge miR-628 in gastric cancer. Moreover, miR-628 knockdown abrogated the influence of SNHG16 silencing on gastric cancer cells. Conclusion Our findings elucidate how the SNHG16–miR-628–NRP1 pathway serves as a regulatory network playing crucial roles in gastric cancer progression, suggesting that this pathway may be a novel target of anticancer therapy.
Collapse
Affiliation(s)
- Weifeng Pang
- Department of Internal Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Mingcui Zhai
- Department of Burn, Heilongjiang Province Hospital, Harbin, People's Republic of China
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, Fairborn, OH, USA
| | - Zhiqiang Li
- Department of General Surgery, Suihua First Hospital in Heilongjiang Province, Suihua, People's Republic of China
| |
Collapse
|
42
|
Li X, Li C, Wureli H, Ni W, Zhang M, Li H, Xu Y, Rizabek K, Bolatkhan M, Askar D, Gulzhan K, Hou X, Hu S. Screening and evaluating of long non-coding RNAs in prenatal and postnatal pituitary gland of sheep. Genomics 2019; 112:934-942. [PMID: 31200027 DOI: 10.1016/j.ygeno.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs are transcribed into RNA molecules that are >200 nucleotides in length. However, the expression and function analysis of lncRNAs in the sheep pituitary gland are still lacking. In this study, we identified 1755 lncRNAs (545 annotated lncRNAs and 1210 novel lncRNAs) from RNA-seq data in the pituitary gland of embryonic and adult sheep. A total of 235 lncRNAs were differentially expressed between embryonic and adult group. We verified the presence of some lncRNAs using RT-PCR and DNA sequencing, and identified some differentially expressed lncRNAs using qPCR. We also investigated the role of cis-acting lncRNAs on target genes. GO and KEGG enrichment analysis revealed that the target genes of lncRNAs were involved in the regulation of hormones secretion and some signaling pathways in the sheep pituitary gland. Our study provides comprehensive expression profiles of lncRNAs and valuable resource for understanding their function in the pituitary gland.
Collapse
Affiliation(s)
- Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hazi Wureli
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kadyken Rizabek
- Department of Food Engineering, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Makhatov Bolatkhan
- Department of Technology and Biological Resources, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Dzhunysov Askar
- Department of Technology and Biological Resources, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Kulmanova Gulzhan
- Department of Technology and Biological Resources, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Xiaoxu Hou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
43
|
Szcześniak MW, Wanowska E, Mukherjee N, Ohler U, Makałowska I. Towards a deeper annotation of human lncRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194385. [PMID: 31128317 DOI: 10.1016/j.bbagrm.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
Abstract
A substantial fraction of the human transcriptome is composed of the so-called long noncoding RNAs (lncRNAs), yet the available catalogs of known lncRNAs are far from complete. Moreover, functional studies of these RNAs are challenged by several factors, such as their tissue-specific expression and functional heterogeneity, resulting in only ca. 1% of them being well characterized. Here, we describe a set of 41,400 novel lncRNAs discovered with RNA-Seq data from 1463 samples encompassing diverse tissues and cell lines. We utilized publicly available transcriptomic and genomic data to provide their characteristics, such as tissue specificity, cellular abundance, polyA status, cellular localization, evolutionary conservation and transcript stability, which allowed us to speculate on their possible biological roles. We also pinpointed 24 novel lncRNAs as candidates for breast cancer biomarkers. The results bring us closer to a comprehensive annotation of human lncRNAs, though vast amounts of further work are needed to validate the predictions and fully decipher their biology. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Michał Wojciech Szcześniak
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Elżbieta Wanowska
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Neelanjan Mukherjee
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany; Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany; Humboldt University, Department of Computer Science, Unter den Linden 6, 10099 Berlin, Germany
| | - Izabela Makałowska
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.
| |
Collapse
|
44
|
Mirhosseini SA, Sarfi M, Samavarchi Tehrani S, Mirazakhani M, Maniati M, Amani J. Modulation of cancer cell signaling by long noncoding RNAs. J Cell Biochem 2019; 120:12224-12246. [PMID: 31069841 DOI: 10.1002/jcb.28847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Cellular signaling pathways play a very important role in almost all molecular processes in the cell, and are generally composed of a complex set of cascades in which enzymes and proteins play a key role. These signaling pathways include different types of cellular signaling classified based on their receptors and effector proteins such as enzyme-linked receptors, cytokine receptors, and G-protein-coupled receptors each of which is subdivided into different classes. Signaling pathways are tightly controlled by different mechanisms mostly thorough inhibiting/activating their receptors or effector proteins. In the last two decades, our knowledge of molecular biology has changed dramatically and today we know that more than 85% of the human genome expresses noncoding RNAs most of which are crucial in the cellular and molecular mechanisms of cells. One of these noncoding RNAs are long noncoding RNAs (lncRNA) containing more than 200 nucleotides. LncRNAs participate in the progression of cancer growth through several mechanism including signaling pathways. In this review, we summarize some of the most important of lncRNAs and their effect on important signaling pathways.
Collapse
Affiliation(s)
- Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Yang L, Liu G. lncRNA BANCR suppresses cell viability and invasion and promotes apoptosis in non-small-cell lung cancer cells in vitro and in vivo. Cancer Manag Res 2019; 11:3565-3574. [PMID: 31114383 PMCID: PMC6497868 DOI: 10.2147/cmar.s194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background: As a leading cause of deaths worldwide, lung cancer is a collection of diseases with diverse etiologies which includes non-small-cell lung cancer (NSCLC). Increasing evidence reported that aberrant expression of BRAF activated non-coding RNA (BANCR) was involved in the tumorigenesis and progression of various malignancies. Purpose and methods: However, its role in NSCLC has not been completely clarified. In the present study, we identified the role of BANCR in the regulation of NSCLC cell viability, invasion, and apoptosis. Down-regulation of BANCR expression was significantly observed in different NSCLC cell lines (A549, H1299, H1650, H1975, SPC-A1, and PC-9), tumor tissue from NSCLC mouse model and 30 human NSCLC tissues compared with adjacent normal tissues. Result: Overexpression of BANCR in these six NSCLC cell lines attenuated the cell viability and invasion. An increased apoptotic level caused by BANCR overexpression was also detected and displayed a conversed influence on Bcl-2 and Bax expression in mRNA and protein level. Furthermore, we identified the effect of BANCR overexpression on tumor growth in NSCLC mouse model. The restoration of BANCR expression inhibits NSCLC. Conclusion: Taken together, our findings shed an insight on the novel molecular mechanisms of lung NSCLC oncogenesis and provide the information for new therapeutic approaches on the disease.
Collapse
Affiliation(s)
- Liu Yang
- Sterile Supply Center, Mudanjiang Medical College, Hongqi Hospital, Mudanjiang City 157011, Heilongjiang Province, People's Republic of China
| | - Guiting Liu
- Department of Thoracic Surgery, Mudanjiang Medical College, Hongqi Hospital, Mudanjiang City 157011, Heilongjiang Province, People's Republic of China
| |
Collapse
|
46
|
Zhang L, Dong Y, Wang Y, Gao J, Lv J, Sun J, Li M, Wang M, Zhao Z, Wang J, Xu W. Long non-coding RNAs in ocular diseases: new and potential therapeutic targets. FEBS J 2019; 286:2261-2272. [PMID: 30927500 DOI: 10.1111/febs.14827] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) are non-protein coding transcripts containing more than 200 nucleotides. In the past, lncRNAs were considered as 'transcript noise' or 'pseudogenes' and were thus ignored. However, in recent years, lncRNAs have been proven to regulate gene expression at the epigenetic, transcriptional and translational level, and thereby influence cell proliferation, apoptosis, viability, immune response and oxidative stress. Furthermore, increasing evidence points to their involvement in different diseases, including cancer and heart diseases. Recently, lncRNAs were shown to be differentially expressed in ocular tissues and play a significant role in the pathogenesis of ophthalmological disorders such as glaucoma, corneal diseases, cataract, diabetic retinopathy, proliferative vitreoretinopathy and ocular tumors. In this review, we summarize the classification and mechanisms of known lncRNAs, while detailing their biological functions and roles in ocular diseases. Moreover, we provide a concise review of the clinical relevance of lncRNAs as novel, potential therapeutic targets in the treatment of eye diseases.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Yanhan Dong
- Institute for Translational Medicine, Qingdao University, China
| | - Yujie Wang
- The Clinical Laboratory of Qingdao Municipal Hospital, China
| | - Jinning Gao
- Institute for Translational Medicine, Qingdao University, China
| | - Jiayi Lv
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Jingguo Sun
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Mengjie Li
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Meng Wang
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Zhihong Zhao
- Department of Inspection, The Medical Faculty of Qingdao University, China
| | - Jianxun Wang
- Institute for Translational Medicine, Qingdao University, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, China
| |
Collapse
|
47
|
LncRNA NORAD is repressed by the YAP pathway and suppresses lung and breast cancer metastasis by sequestering S100P. Oncogene 2019; 38:5612-5626. [PMID: 30967631 DOI: 10.1038/s41388-019-0812-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Metastasis is responsible for most cancer mortality, but its molecular mechanism has not been completely understood. In addition to coding genes and miRNAs, the contribution of long noncoding RNAs (lncRNAs) to tumor metastatic dissemination and the mechanisms controlling their expression are areas of intensive investigation. Here, we show that lncRNA NORAD is downregulated in lung and breast cancers, and that NORAD low expression in these cancer types is associated with lymph node metastasis and poor prognosis. NORAD is transcriptionally repressed by the Hippo pathway transducer YAP/TAZ-TEAD complex in conjunction with the action of NuRD complex. Functionally, NORAD elicits potent inhibitory effects on migration and invasion of multiple lung and breast cancer cell lines, and repression of NORAD expression participates in the migration- and invasion-stimulatory effects of the YAP pathway. Mechanistically, NORAD exploits its multiple repeated sequences to function as a multivalent platform for binding and sequestering S100P, thereby suppressing S100P-elicited pro-metastatic signaling network. Using cell and mouse models, we show that the S100P decoy function of NORAD suppresses lung and breast cancer migration, invasion, and metastasis. Together, our study identifies NORAD as a novel metastasis suppressor, elucidates its regulatory and functional mechanisms, and highlights its prognostic value.
Collapse
|
48
|
Ji J, Dai X, Yeung SCJ, He X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag Res 2019; 11:2729-2737. [PMID: 31114330 PMCID: PMC6497482 DOI: 10.2147/cmar.s189052] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have shown potential as a biomarker in the diagnosis and prognosis in multiple cancers. LncRNAs are dysregulated in various cancers, playing either oncogenic or tumor suppressive roles. Emerging evidences have proved that the growth arrest-specific 5 (GAS5) lncRNA can function as a tumor suppressor in several cancers. LncRNA GAS5 is downregulated in many types of cancer, regulating cellular processes such as cell proliferation, apoptosis and invasion. The low level of GAS5 expression often elevates capacity of proliferation and predicts poorer prognosis in some cancers. This review aims to summarize the recent published literature on the biogenesis, regulation mechanism and function of GAS5 in different types of cancers and explore its potential for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Jiali Ji
- Department of Medical Oncology, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaolan Dai
- Department of Pharmacy, School of Medicine, Shantou University, Shantou, Guangdong, People’s Republic of China
| | - Sai-Ching Jim Yeung
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuexin He
- Department of Medical Oncology, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
49
|
Potential Role of lncRNA H19 as a Cancer Biomarker in Human Cancers Detection and Diagnosis: A Pooled Analysis Based on 1585 Subjects. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9056458. [PMID: 31016202 PMCID: PMC6444267 DOI: 10.1155/2019/9056458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to serve as diagnostic and prognostic biomarkers of cancers, which play vital roles in tumorigenesis and tumor progression. Several studies have been performed to explore diagnostic value of lncRNA H19 in cancer detection and diagnosis. However, there are still inconsistent results in diagnostic accuracy and reliability in individual studies. Therefore, the present study was performed to summarize the overall diagnostic performance of lncRNA H19 in cancer detection and diagnosis. A total of eight studies with 770 cases and 815 controls were included in this pooled analysis. The pooled diagnostic results were as follows: sensitivity, 0.69 (95%CI=0.62-0.76), specificity, 0.79 (95% CI=0.70-0.86), positive likelihood ratio (PLR), 3.31 (95%CI=2.29-4.78), negative likelihood (NLR), 0.39 (95%CI=0.31-0.49), diagnostic odds ratio (DOR), 8.53 (95%CI=4.99-14.60), and area under the curve (AUC), 0.79 (95%CI=0.76-0.83). Deeks' funnel plot asymmetry test (P=0.13) suggested no potential publication bias. Our results indicated that lncRNA H19 had a relatively moderate accuracy in cancer detection and diagnosis. Further comprehensive prospective studies with large sample sizes are urgently required to validate our findings.
Collapse
|
50
|
Zhao X, Tian X. Retracted
: Knockdown of long noncoding RNA HOTAIR inhibits cell growth of human lymphoma cells by upregulation of miR‐148b. J Cell Biochem 2019; 120:12348-12359. [DOI: 10.1002/jcb.28500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Xianxian Zhao
- Department of Blood Transfusion Jining No. 1 People’s Hospital Jining Shandong China
| | - Xiaoyan Tian
- Department of Blood Transfusion Jining No. 1 People’s Hospital Jining Shandong China
| |
Collapse
|