1
|
Gajjar G, Huggins HP, Kim ES, Huang W, Bonnet FX, Updike DL, Keiper BD. Two germ granule eIF4E isoforms reside in different mRNPs to hand off C elegans mRNAs from translational repression to activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595216. [PMID: 38826235 PMCID: PMC11142241 DOI: 10.1101/2024.05.24.595216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We studied the function of translation factor eIF4E isoforms in regulating mRNAs in germ cell granules/condensates. Translational control of mRNAs plays an essential role in germ cell gene regulation. Messenger ribonucleoprotein (mRNP) complexes assemble on mRNAs as they move from the nucleus into perinuclear germ granules to exert both positive and negative post-transcriptional regulation in the cytoplasm. In C. elegans , germ granules are surprisingly dynamic mRNP condensates that remodel during development. Two eIF4E isoforms (called IFE-1 and IFE-3), eIF4E-Interacting Proteins (4EIPs), RBPs, DEAD-box helicases, polyadenylated mRNAs, Argonautes and miRNAs all occupy positions in germ granules. Affinity purification of IFE-1 and IFE-3 allowed mass spectrometry and mRNA-Seq to identify the proteins and mRNAs that populate stable eIF4E mRNPs. We find translationally controlled mRNAs (e.g. pos-1, mex-3, spn-4, etc.) enriched in IFE-3 mRNPs, but excluded from IFE-1 mRNPs. These mRNAs also require IFE-1 for efficient translation. The findings support a model in which oocytes and embryos utilize the two eIF4Es for opposite purposes on critically regulated germline mRNAs. Careful colocalization of the eIF4Es with other germ granule components suggests an architecture in which GLH-1, PGL-1 and the IFEs are stratified to facilitate sequential interactions for mRNAs. Biochemical characterization demonstrates opposing yet cooperative roles for IFE-3 and IFE-1 to hand-off of translationally controlled mRNAs from the repressed to the activated state, respectively. The model involves eIF4E mRNPs shuttling mRNAs through nuclear pore-associated granules/condensates to cytoplasmic ribosomes.
Collapse
|
2
|
Muslimov IA, Berardi V, Stephenson S, Ginzler EM, Hanly JG, Tiedge H. Autoimmune RNA dysregulation and seizures: therapeutic prospects in neuropsychiatric lupus. Life Sci Alliance 2022; 5:5/12/e202201496. [PMID: 36229064 PMCID: PMC9559755 DOI: 10.26508/lsa.202201496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus autoimmunity frequently presents with neuropsychiatric manifestations, but underlying etiology remains poorly understood. Human brain cytoplasmic 200 RNA (BC200 RNA) is a translational regulator in neuronal synapto-dendritic domains. Here, we show that a BC200 guanosine-adenosine dendritic transport motif is recognized by autoantibodies from a subset of neuropsychiatric lupus patients. These autoantibodies impact BC200 functionality by quasi irreversibly displacing two RNA transport factors from the guanosine-adenosine transport motif. Such anti-BC autoantibodies, which can gain access to brains of neuropsychiatric lupus patients, give rise to clinical manifestations including seizures. To establish causality, naive mice with a permeabilized blood-brain barrier were injected with anti-BC autoantibodies from lupus patients with seizures. Animals so injected developed seizure susceptibility with high mortality. Seizure activity was entirely precluded when animals were injected with lupus anti-BC autoantibodies together with BC200 decoy autoantigen. Seizures are a common clinical manifestation in neuropsychiatric lupus, and our work identifies anti-BC autoantibody activity as a mechanistic cause. The results demonstrate potential utility of BC200 decoys for autoantibody-specific therapeutic interventions in neuropsychiatric lupus.
Collapse
Affiliation(s)
- Ilham A Muslimov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| | - Valerio Berardi
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stacy Stephenson
- Division of Comparative Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Canada
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| |
Collapse
|
3
|
Ma J, Dissanayaka Mudiyanselage SD, Park WJ, Wang M, Takeda R, Liu B, Wang Y. A nuclear import pathway exploited by pathogenic noncoding RNAs. THE PLANT CELL 2022; 34:3543-3556. [PMID: 35877068 PMCID: PMC9516175 DOI: 10.1093/plcell/koac210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 05/15/2023]
Abstract
The prevailing view of intracellular RNA trafficking in eukaryotic cells is that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope, entering the cytoplasm for function. However, emerging evidence illustrates that numerous functional RNAs move in the reverse direction, from the cytoplasm to the nucleus. The mechanism underlying RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using Nicotiana benthamiana, tomato (Solanum lycopersicum), and nuclear-replicating viroids as a model, we showed that cellular IMPORTIN ALPHA-4 (IMPa-4) is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (viroid RNA-binding protein 1 [VIRP1]) that binds both IMPa-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs VIRP1 binding, viroid nuclear accumulation, and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on VIRP1 for nuclear import. These results advance our understanding of subviral RNA infection and the regulation of RNA nuclear import.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi 39762, USA
| | | | - Woong June Park
- Department of Molecular Biology, Dankook University, Chungnam 31116, Korea
| | - Mo Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi 39762, USA
| |
Collapse
|
4
|
Huber N, Korhonen S, Hoffmann D, Leskelä S, Rostalski H, Remes AM, Honkakoski P, Solje E, Haapasalo A. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration-Insights into disease mechanisms and current therapeutic approaches. Mol Psychiatry 2022; 27:1300-1309. [PMID: 34799692 PMCID: PMC9095474 DOI: 10.1038/s41380-021-01384-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of fatal neurodegenerative diseases and, to date, no validated diagnostic or prognostic biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. Current treatment strategies rely on the off-label use of medications for symptomatic treatment. Changes in several neurotransmitter systems including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems have been reported in FTLD spectrum disease patients. Many FTLD-related clinical and neuropsychiatric symptoms such as aggressive and compulsive behaviour, agitation, as well as altered eating habits and hyperorality can be explained by disturbances in these neurotransmitter systems, suggesting that their targeting might possibly offer new therapeutic options for treating patients with FTLD. This review summarizes the present knowledge on neurotransmitter system deficits and synaptic dysfunction in model systems and patients harbouring the most common genetic causes of FTLD, the hexanucleotide repeat expansion in C9orf72 and mutations in the granulin (GRN) and microtubule-associated protein tau (MAPT) genes. We also describe the current pharmacological treatment options for FLTD that target different neurotransmitter systems.
Collapse
Affiliation(s)
- Nadine Huber
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sonja Korhonen
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Dorit Hoffmann
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Stina Leskelä
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Hannah Rostalski
- grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anne M. Remes
- grid.10858.340000 0001 0941 4873Unit of Clinical Neuroscience, Neurology, University of Oulu, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland ,grid.412326.00000 0004 4685 4917MRC Oulu, Oulu University Hospital, P. O. Box 8000, University of Oulu, FI-90014 Oulu, Finland
| | - Paavo Honkakoski
- grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.10698.360000000122483208Department of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Eino Solje
- grid.9668.10000 0001 0726 2490Institute of Clinical Medicine—Neurology, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland ,grid.410705.70000 0004 0628 207XNeuro Center, Neurology, Kuopio University Hospital, P.O. Box 100, KYS, FI-70029 Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
5
|
Ma J, Wang Y. Studies on Viroid Shed Light on the Role of RNA Three-Dimensional Structural Motifs in RNA Trafficking in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:836267. [PMID: 35401640 PMCID: PMC8983868 DOI: 10.3389/fpls.2022.836267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/23/2022] [Indexed: 05/05/2023]
Abstract
RNAs play essential roles in various biological processes. Mounting evidence has demonstrated that RNA subcellular localization and intercellular/systemic trafficking govern their functions in coordinating plant growth at the organismal level. While numerous types of RNAs (i.e., mRNAs, small RNAs, rRNAs, tRNAs, and long noncoding RNAs) have been found to traffic in a non-cell-autonomous fashion within plants, the underlying regulatory mechanism remains unclear. Viroids are single-stranded circular noncoding RNAs, which entirely rely on their RNA motifs to exploit cellular machinery for organelle entry and exit, cell-to-cell movement through plasmodesmata, and systemic trafficking. Viroids represent an excellent model to dissect the role of RNA three-dimensional (3D) structural motifs in regulating RNA movement. Nearly two decades of studies have found multiple RNA 3D motifs responsible for viroid nuclear import as well as trafficking across diverse cellular boundaries in plants. These RNA 3D motifs function as "keys" to unlock cellular and subcellular barriers and guide RNA movement within a cell or between cells. Here, we summarize the key findings along this line of research with implications for future studies on RNA trafficking in plants.
Collapse
|
6
|
Khlebodarova TM. The molecular view of mechanical stress of brain cells, local translation, and neurodegenerative diseases. Vavilovskii Zhurnal Genet Selektsii 2021; 25:92-100. [PMID: 34901706 PMCID: PMC8629365 DOI: 10.18699/vj21.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
The assumption that chronic mechanical stress in brain cells stemming from intracranial hypertension,
arterial hypertension, or mechanical injury is a risk factor for neurodegenerative diseases was put forward in the
1990s and has since been supported. However, the molecular mechanisms that underlie the way from cell exposure to mechanical stress to disturbances in synaptic plasticity followed by changes in behavior, cognition, and
memory are still poorly understood. Here we review (1) the current knowledge of molecular mechanisms regulating local translation and the actin cytoskeleton state at an activated synapse, where they play a key role in the
formation of various sorts of synaptic plasticity and long-term memory, and (2) possible pathways of mechanical
stress intervention. The roles of the mTOR (mammalian target of rapamycin) signaling pathway; the RNA-binding
FMRP protein; the CYFIP1 protein, interacting with FMRP; the family of small GTPases; and the WAVE regulatory
complex in the regulation of translation initiation and actin cytoskeleton rearrangements in dendritic spines of the
activated synapse are discussed. Evidence is provided that chronic mechanical stress may result in aberrant activation of mTOR signaling and the WAVE regulatory complex via the YAP/TAZ system, the key sensor of mechanical
signals, and influence the associated pathways regulating the formation of F actin filaments and the dendritic spine
structure. These consequences may be a risk factor for various neurological conditions, including autistic spectrum
disorders and epileptic encephalopathy. In further consideration of the role of the local translation system in the
development of neuropsychic and neurodegenerative diseases, an original hypothesis was put forward that one
of the possible causes of synaptopathies is impaired proteome stability associated with mTOR hyperactivity and
formation of complex dynamic modes of de novo protein synthesis in response to synapse-stimulating factors,
including chronic mechanical stress.
Collapse
Affiliation(s)
- T M Khlebodarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomic Center of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Aleshkina D, Iyyappan R, Lin CJ, Masek T, Pospisek M, Susor A. ncRNA BC1 influences translation in the oocyte. RNA Biol 2021; 18:1893-1904. [PMID: 33491548 PMCID: PMC8583082 DOI: 10.1080/15476286.2021.1880181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 01/06/2023] Open
Abstract
Regulation of translation is essential for the diverse biological processes involved in development. Particularly, mammalian oocyte development requires the precisely controlled translation of maternal transcripts to coordinate meiotic and early embryo progression while transcription is silent. It has been recently reported that key components of mRNA translation control are short and long noncoding RNAs (ncRNAs). We found that the ncRNABrain cytoplasmic 1 (BC1) has a role in the fully grown germinal vesicle (GV) mouse oocyte, where is highly expressed in the cytoplasm associated with polysomes. Overexpression of BC1 in GV oocyte leads to a minute decrease in global translation with a significant reduction of specific mRNA translation via interaction with the Fragile X Mental Retardation Protein (FMRP). BC1 performs a repressive role in translation only in the GV stage oocyte without forming FMRP or Poly(A) granules. In conclusion, BC1 acts as the translational repressor of specific mRNAs in the GV stage via its binding to a subset of mRNAs and physical interaction with FMRP. The results reported herein contribute to the understanding of the molecular mechanisms of developmental events connected with maternal mRNA translation.
Collapse
Affiliation(s)
- D. Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - R. Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Ch. J. Lin
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - T. Masek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - M. Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - A. Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
8
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
9
|
Liu DC, Lee KY, Lizarazo S, Cook JK, Tsai NP. ER stress-induced modulation of neural activity and seizure susceptibility is impaired in a fragile X syndrome mouse model. Neurobiol Dis 2021; 158:105450. [PMID: 34303799 DOI: 10.1016/j.nbd.2021.105450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/18/2021] [Indexed: 01/29/2023] Open
Abstract
Imbalanced neuronal excitability homeostasis is commonly observed in patients with fragile X syndrome (FXS) and the animal model of FXS, the Fmr1 KO. While alterations of neuronal intrinsic excitability and synaptic activity at the steady state in FXS have been suggested to contribute to such a deficit and ultimately the increased susceptibility to seizures in FXS, it remains largely unclear whether and how the homeostatic response of neuronal excitability following extrinsic challenges is disrupted in FXS. Our previous work has shown that the acute response following induction of endoplasmic reticulum (ER) stress can reduce neural activity and seizure susceptibility. Because many signaling pathways associated with ER stress response are mediated by Fmr1, we asked whether acute ER stress-induced reduction of neural activity and seizure susceptibility are altered in FXS. Our results first revealed that acute ER stress can trigger a protein synthesis-dependent prevention of neural network synchronization in vitro and a reduction of susceptibility to kainic acid-induced seizures in vivo in wild-type but not in Fmr1 KO mice. Mechanistically, we found that acute ER stress-induced activation of murine double minute-2 (Mdm2), ubiquitination of p53, and the subsequent transient protein synthesis are all impaired in Fmr1 KO neurons. Employing a p53 inhibitor, Pifithrin-α, to mimic p53 inactivation, we were able to blunt the increase in neural network synchronization and reduce the seizure susceptibility in Fmr1 KO mice following ER stress induction. In summary, our data revealed a novel cellular defect in Fmr1 KO mice and suggest that an impaired response to common extrinsic challenges may contribute to imbalanced neuronal excitability homeostasis in FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessie K Cook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Brain Cytoplasmic RNAs in Neurons: From Biosynthesis to Function. Biomolecules 2020; 10:biom10020313. [PMID: 32079202 PMCID: PMC7072442 DOI: 10.3390/biom10020313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
Flexibility in signal transmission is essential for high-level brain function. This flexibility is achieved through strict spatial and temporal control of gene expression in neurons. Given the key regulatory roles of a variety of noncoding RNAs (ncRNAs) in neurons, studying neuron-specific ncRNAs provides an important basis for understanding molecular principles of brain function. This approach will have wide use in understanding the pathogenesis of brain diseases and in the development of therapeutic agents in the future. Brain cytoplasmic RNAs (BC RNAs) are a leading paradigm for research on neuronal ncRNAs. Since the first confirmation of brain-specific expression of BC RNAs in 1982, their investigation has been an area of active research. In this review, we summarize key studies on the characteristics and functions of BC RNAs in neurons.
Collapse
|
11
|
Zhu J, Tsai NP. Ubiquitination and E3 Ubiquitin Ligases in Rare Neurological Diseases with Comorbid Epilepsy. Neuroscience 2020; 428:90-99. [DOI: 10.1016/j.neuroscience.2019.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
|
12
|
Neuronal BC RNA Transport Impairments Caused by Systemic Lupus Erythematosus Autoantibodies. J Neurosci 2019; 39:7759-7777. [PMID: 31405929 DOI: 10.1523/jneurosci.1657-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
The etiology of the autoimmune disorder systemic lupus erythematosus (SLE) remains poorly understood. In neuropsychiatric SLE (NPSLE), autoimmune responses against neural self-antigens find expression in neurological and cognitive alterations. SLE autoantibodies often target nucleic acids, including RNAs and specifically RNA domains with higher-order structural content. We report that autoantibodies directed against neuronal regulatory brain cytoplasmic (BC) RNAs were generated in a subset of SLE patients. By contrast, anti-BC RNA autoantibodies (anti-BC abs) were not detected in sera from patients with autoimmune diseases other than SLE (e.g., rheumatoid arthritis or multiple sclerosis) or in sera from healthy subjects with no evidence of disease. SLE anti-BC abs belong to the IgG class of immunoglobulins and target both primate BC200 RNA and rodent BC1 RNA. They are specifically directed at architectural motifs in BC RNA 5' stem-loop domains that serve as dendritic targeting elements (DTEs). SLE anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for DTE access and significantly diminish BC RNA delivery to synapto-dendritic sites of function. In vivo experiments with male BALB/c mice indicate that, upon lipopolysaccharide-induced opening of the blood-brain barrier, SLE anti-BC abs are taken up by CNS neurons where they significantly impede localization of endogenous BC1 RNA to synapto-dendritic domains. Lack of BC1 RNA causes phenotypic abnormalities including epileptogenic responses and cognitive dysfunction. The combined data indicate a role for anti-BC RNA autoimmunity in SLE and its neuropsychiatric manifestations.SIGNIFICANCE STATEMENT Although clinical manifestations of neuropsychiatric lupus are well recognized, the underlying molecular-cellular alterations have been difficult to determine. We report that sera of a subset of lupus patients contain autoantibodies directed at regulatory brain cytoplasmic (BC) RNAs. These antibodies, which we call anti-BC abs, target the BC RNA 5' domain noncanonical motif structures that specify dendritic delivery. Lupus anti-BC abs effectively compete with RNA transport factor heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) for access to BC RNAs. As a result, hnRNP A2 is displaced, and BC RNAs are impaired in their ability to reach synapto-dendritic sites of function. The results reveal an unexpected link between BC RNA autoantibody recognition and dendritic RNA targeting. Cellular RNA dysregulation may thus be a contributing factor in the pathogenesis of neuropsychiatric lupus.
Collapse
|
13
|
Lee KY, Jewett KA, Chung HJ, Tsai NP. Loss of fragile X protein FMRP impairs homeostatic synaptic downscaling through tumor suppressor p53 and ubiquitin E3 ligase Nedd4-2. Hum Mol Genet 2019; 27:2805-2816. [PMID: 29771335 DOI: 10.1093/hmg/ddy189] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Synaptic scaling allows neurons to homeostatically readjust synaptic strength upon chronic neural activity perturbations. Although altered synaptic scaling has been implicated to underlie imbalanced brain excitability in neurological disorders such as autism spectrum disorders and epilepsy, the molecular dysregulation and restoration of synaptic scaling in those diseases have not been demonstrated. Here, we showed that the homeostatic synaptic downscaling is absent in the hippocampal neurons of Fmr1 KO mice, the mouse model of the most common inherited autism, fragile X syndrome (FXS). We found that the impaired homeostatic synaptic downscaling in Fmr1 KO neurons is caused by loss-of-function dephosphorylation of an epilepsy-associated ubiquitin E3 ligase, neural precursor cell expressed developmentally down-regulated gene 4-2, Nedd4-2. Such dephosphorylation of Nedd4-2 is surprisingly caused by abnormally stable tumor suppressor p53 and subsequently destabilized kinase Akt. Dephosphorylated Nedd4-2 fails to elicit 14-3-3-dependent ubiquitination and down-regulation of the GluA1 subunit of AMPA receptor, and therefore impairs synaptic downscaling. Most importantly, using a pharmacological inhibitor of p53, Nedd4-2 phosphorylation, GluA1 ubiquitination and synaptic downscaling are all restored in Fmr1 KO neurons. Together, our results discover a novel cellular mechanism underlying synaptic downscaling, and demonstrate the dysregulation and successful restoration of this mechanism in the FXS mouse model.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
DeVaux RS, Herschkowitz JI. Beyond DNA: the Role of Epigenetics in the Premalignant Progression of Breast Cancer. J Mammary Gland Biol Neoplasia 2018; 23:223-235. [PMID: 30306389 PMCID: PMC6244889 DOI: 10.1007/s10911-018-9414-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Ductal Carcinoma in Situ (DCIS) is an early breast cancer lesion that is considered a nonobligate precursor to development of invasive ductal carcinoma (IDC). Although only a small subset of DCIS lesions are predicted to progress into a breast cancer, distinguishing innocuous from minacious DCIS lesions remains a clinical challenge. Thus, patients diagnosed with DCIS will undergo surgery with the potential for radiation and hormone therapy. This has led to a current state of overdiagnosis and overtreatment. Interrogating the transcriptome alone has yet to define clear functional determinants of progression from DCIS to IDC. Epigenetic changes, critical for imprinting and tissue specific development, in the incorrect context can lead to global signaling rewiring driving pathological phenotypes. Epigenetic signaling pathways, and the molecular players that interpret and sustain their signals, are critical to understanding the underlying pathology of breast cancer progression. The types of epigenetic changes, as well as the molecular players, are expanding. In addition to DNA methylation, histone modifications, and chromatin remodeling, we must also consider enhancers as well as the growing field of noncoding RNAs. Herein we will review the epigenetic interactions that have been uncovered in early stage lesions that impact breast cancer progression, and how these players may be utilized as biomarkers to mitigate overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Rebecca S DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
15
|
Lin YH, Wu MH, Huang YH, Yeh CT, Chi HC, Tsai CY, Chuang WY, Yu CJ, Chung IH, Chen CY, Lin KH. Thyroid hormone negatively regulates tumorigenesis through suppression of BC200. Endocr Relat Cancer 2018; 25:967-979. [PMID: 30400024 DOI: 10.1530/erc-18-0176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
Abstract
Thyroid hormone (T3) and its receptor (TR) are involved in cancer progression. While deregulation of long non-coding RNA (lncRNA) expression has been detected in many tumor types, the mechanisms underlying specific involvement of lncRNAs in tumorigenicity remain unclear. Experiments from the current study revealed negative regulation of BC200 expression by T3/TR. BC200 was highly expressed in hepatocellular carcinoma (HCC) and effective as an independent prognostic marker. BC200 promoted cell growth and tumor sphere formation, which was mediated via regulation of cell cycle-related genes and stemness markers. Moreover, BC200 protected cyclin E2 mRNA from degradation. Cell growth ability was repressed by T3, but partially enhanced upon BC200 overexpression. Mechanistically, BC200 directly interacted with cyclin E2 and promoted CDK2-cyclin E2 complex formation. Upregulation of cell cycle-related genes in hepatoma samples was positively correlated with BC200 expression. Our collective findings support the utility of a potential therapeutic strategy involving targeting of BC200 for the treatment of HCC.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Yu Chuang
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - I-Hsiao Chung
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Ying Chen
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
16
|
Iacoangeli A, Adzovic L, Chen EQ, Latif Cattie R, Soff GA, Tiedge H. Regulatory BC200 RNA in peripheral blood of patients with invasive breast cancer. J Investig Med 2018; 66:1055-1063. [PMID: 29967012 DOI: 10.1136/jim-2018-000717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2018] [Indexed: 01/10/2023]
Abstract
Regulatory brain cytoplasmic 200 RNA (BC200 RNA) is highly expressed in human mammary carcinoma cells. Here, we ask whether BC200 RNA becomes detectable in peripheral blood of patients with invasive breast cancer. Using quantitative reverse-transcription PCR (qRT-PCR) methodology, we observed that BC200 RNA blood levels were significantly elevated, in comparison with healthy subjects, in patients with invasive breast cancer prior to tumorectomy (p=0.001) and in patients with metastatic breast cancer (p=0.003). In patients with invasive breast cancer who had recently undergone tumorectomy, BC200 RNA blood levels were not distinguishable from levels in healthy subjects. However, normality analysis revealed a heterogeneous distribution of patients in this group, including a subgroup of individuals with high residual BC200 RNA blood levels. In blood from patients with invasive breast cancer, BC200 RNA was specifically detected in the mononuclear leukocyte fraction. The qRT-PCR approach is sensitive enough to detect as few as three BC200 RNA-expressing tumor cells. Our work establishes the potential of BC200 RNA detection in blood to serve as a molecular indicator of invasive breast malignancy.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Linda Adzovic
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Emily Q Chen
- Department of Medicine, Division of Hematology/Oncology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Rabia Latif Cattie
- Department of Medicine, Division of Hematology/Oncology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Gerald A Soff
- Department of Medicine, Division of Hematology/Oncology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Henri Tiedge
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
17
|
Jewett KA, Lee KY, Eagleman DE, Soriano S, Tsai NP. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Neuropharmacology 2018; 138:182-192. [PMID: 29890190 DOI: 10.1016/j.neuropharm.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023]
Abstract
Chronic activity perturbations in neurons induce homeostatic plasticity through modulation of synaptic strength or other intrinsic properties to maintain the correct physiological range of excitability. Although similar plasticity can also occur at the population level, what molecular mechanisms are involved remain unclear. In the current study, we utilized a multielectrode array (MEA) recording system to evaluate homeostatic neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic elevation of neuronal activity through the inhibition of GABA(A) receptors elicits synchronization of neural network activity and homeostatic reduction of the amplitude of spontaneous neural network spikes. We subsequently showed that this phenomenon is mediated by the ubiquitination of tumor suppressor p53, which is triggered by murine double minute-2 (Mdm2). Using a mouse model of fragile X syndrome, in which fragile X mental retardation protein (FMRP) is absent (Fmr1 knockout), we found that Mdm2-p53 signaling, network synchronization, and the reduction of network spike amplitude upon chronic activity stimulation were all impaired. Pharmacologically inhibiting p53 with Pifithrin-α or genetically employing p53 heterozygous mice to enforce the inactivation of p53 in Fmr1 knockout cultures restored the synchronization of neural network activity after chronic activity stimulation and partially corrects the homeostatic reduction of neural network spike amplitude. Together, our findings reveal the roles of both Fmr1 and Mdm2-p53 signaling in the homeostatic regulation of neural network activity and provide insight into the deficits of excitability homeostasis seen when Fmr1 is compromised, such as occurs with fragile X syndrome.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Soriano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
Chang M, Lv H, Zhang W, Ma C, He X, Zhao S, Zhang ZW, Zeng YX, Song S, Niu Y, Tong WM. Region-specific RNA m 6A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol 2018; 7:rsob.170166. [PMID: 28931651 PMCID: PMC5627058 DOI: 10.1098/rsob.170166] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/22/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m6A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m6A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m6A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m6A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain.
Collapse
Affiliation(s)
- Mengqi Chang
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongyi Lv
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weilong Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Xue He
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Shunli Zhao
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Zhi-Wei Zhang
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yi-Xin Zeng
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Shuhui Song
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
19
|
Muslimov IA, Eom T, Iacoangeli A, Chuang SC, Hukema RK, Willemsen R, Stefanov DG, Wong RKS, Tiedge H. BC RNA Mislocalization in the Fragile X Premutation. eNeuro 2018; 5:ENEURO.0091-18.2018. [PMID: 29766042 PMCID: PMC5952321 DOI: 10.1523/eneuro.0091-18.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
Fragile X premutation disorder is caused by CGG triplet repeat expansions in the 5' untranslated region of FMR1 mRNA. The question of how expanded CGG repeats cause disease is a subject of continuing debate. Our work indicates that CGG-repeat structures compete with regulatory BC1 RNA for access to RNA transport factor hnRNP A2. As a result, BC1 RNA is mislocalized in vivo, as its synapto-dendritic presence is severely diminished in brains of CGG-repeat knock-in animals (a premutation mouse model). Lack of BC1 RNA is known to cause seizure activity and cognitive dysfunction. Our working hypothesis thus predicted that absence, or significantly reduced presence, of BC1 RNA in synapto-dendritic domains of premutation animal neurons would engender cognate phenotypic alterations. Testing this prediction, we established epileptogenic susceptibility and cognitive impairments as major phenotypic abnormalities of CGG premutation mice. In CA3 hippocampal neurons of such animals, synaptic release of glutamate elicits neuronal hyperexcitability in the form of group I metabotropic glutamate receptor-dependent prolonged epileptiform discharges. CGG-repeat knock-in animals are susceptible to sound-induced seizures and are cognitively impaired as revealed in the Attentional Set Shift Task. These phenotypic disturbances occur in young-adult premutation animals, indicating that a neurodevelopmental deficit is an early-initial manifestation of the disorder. The data are consistent with the notion that RNA mislocalization can contribute to pathogenesis.
Collapse
Affiliation(s)
- Ilham A. Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Taesun Eom
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Anna Iacoangeli
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Shih-Chieh Chuang
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Renate K. Hukema
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Dimitre G. Stefanov
- Statistical Design and Analysis, Research Division, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Robert K. S. Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
20
|
Starr A, Sattler R. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Res 2018; 1693:98-108. [PMID: 29453960 DOI: 10.1016/j.brainres.2018.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive degeneration of upper and lower motor neurons, resulting in fatal paralysis due to denervation of the muscle. Due to genetic, pathological and symptomatic overlap, ALS is now considered a spectrum disease together with frontotemporal dementia (FTD), the second most common cause of dementia in individuals under the age of 65. Interestingly, in both diseases, there is a large prevalence of RNA binding proteins (RBPs) that are mutated and considered disease-causing, or whose dysfunction contribute to disease pathogenesis. The most common shared genetic mutation in ALS/FTD is a hexanucleuotide repeat expansion within intron 1 of C9ORF72 (C9). Three potentially overlapping, putative toxic mechanisms have been proposed: loss of function due to haploinsufficient expression of the C9ORF72 mRNA, gain of function of the repeat RNA aggregates, or RNA foci, and repeat-associated non-ATG-initiated translation (RAN) of the repeat RNA into toxic dipeptide repeats (DPRs). Regardless of the causative mechanism, disease symptoms are ultimately caused by a failure of neurotransmission in three regions: the brain, the spinal cord, and the neuromuscular junction. Here, we review C9 ALS/FTD-associated synaptic dysfunction and aberrant neuronal excitability in these three key regions, focusing on changes in morphology and synapse formation, excitability, and excitotoxicity in patients, animal models, and in vitro models. We compare these deficits to those seen in other forms of ALS and FTD in search of shared pathways, and discuss the potential targeting of synaptic dysfunctions for therapeutic intervention in ALS and FTD patients.
Collapse
Affiliation(s)
- Alexander Starr
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Rita Sattler
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States.
| |
Collapse
|
21
|
Dynamic landscape of the local translation at activated synapses. Mol Psychiatry 2018; 23:107-114. [PMID: 29203851 PMCID: PMC5754473 DOI: 10.1038/mp.2017.245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is the central regulator of cap-dependent translation at the synapse. Disturbances in mTOR pathway have been associated with several neurological diseases, such as autism and epilepsy. RNA-binding protein FMRP, a negative regulator of translation initiation, is one of the key components of the local translation system. Activation and inactivation of FMRP occurs via phosphorylation by S6 kinase and dephosphorylation by PP2A phosphatase, respectively. S6 kinase and PP2A phosphatase are activated in response to mGluR receptor stimulation through different signaling pathways and at different rates. The dynamic aspects of this system are poorly understood. We developed a mathematical model of FMRP-dependent regulation of postsynaptic density (PSD) protein synthesis in response to mGluR receptor stimulation and conducted in silico experiments to study the regulatory circuit functioning. The modeling results revealed the possibility of generating oscillatory (cyclic and quasi-cyclic), chaotic and even hyperchaotic dynamics of postsynaptic protein synthesis as well as the presence of multiple attractors in a wide range of parameters of the local translation system. The results suggest that autistic disorders associated with mTOR pathway hyperactivation may be due to impaired proteome stability associated with the formation of complex dynamic regimes of PSD protein synthesis in response to stimulation of mGluR receptors on the postsynaptic membrane of excitatory synapses on pyramidal hippocampal cells.
Collapse
|
22
|
Chung A, Dahan N, Alarcon JM, Fenton AA. Effects of regulatory BC1 RNA deletion on synaptic plasticity, learning, and memory. Learn Mem 2017; 24:646-649. [PMID: 29142061 PMCID: PMC5688958 DOI: 10.1101/lm.045617.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022]
Abstract
Nonprotein coding dendritic BC1 RNA regulates translation of mRNAs in neurons. We examined two lines of BC1 knockout mice and report that loss of BC1 RNA exaggerates group I mGluR-stimulated LTD of the Schaffer collateral synapse, with one of the lines showing a much more enhanced DHPG-induced LTD than the other. When the animals were given the hippocampus-synaptic plasticity-dependent active place avoidance task, learning and memory were impaired in the BC1-KO line with the more severely altered DHPG-induced LTD. These findings indicate a role for BC1 RNA control of mGluR-dependent synaptic function in hippocampus and associated cognitive ability.
Collapse
Affiliation(s)
- Ain Chung
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Nessy Dahan
- Department of Pathology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Juan Marcos Alarcon
- The Robert F. Furchgott Center for Neural and Behavioral Science, Brooklyn, New York 11203, USA
- Department of Pathology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - André A Fenton
- Center for Neural Science, New York University, New York, New York 10003, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Brooklyn, New York 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
23
|
Drak Alsibai K, Meseure D. Tumor microenvironment and noncoding RNAs as co-drivers of epithelial-mesenchymal transition and cancer metastasis. Dev Dyn 2017; 247:405-431. [PMID: 28691356 DOI: 10.1002/dvdy.24548] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/31/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022] Open
Abstract
Reciprocal interactions between cancer cells and tumor microenvironment (TME) are crucial events in tumor progression and metastasis. Pervasive stromal reprogramming of TME modifies numerous cellular functions, including extracellular matrix (ECM) stiffness, inflammation, and immunity. These environmental factors allow selection of more aggressive cells that develop adaptive strategies associating plasticity and epithelial-mesenchymal transition (EMT), stem-like phenotype, invasion, immunosuppression, and resistance to therapies. EMT is a morphomolecular process that endows epithelial tumor cells with mesenchymal properties, including reduced adhesion and increased motility. Numerous studies have demonstrated involvement of noncoding RNAs (ncRNAs), such as miRNAs and lncRNAs, in tumor initiation, progression, and metastasis. NcRNAs regulate every hallmark of cancer and have now emerged as new players in induction and regulation of EMT. The reciprocal regulatory interactions between ncRNAs, TME components, and cancer cells increase the complexity of gene expression and protein translation in cancer. Thus, deeper understanding of molecular mechanisms controlling EMT will not only shed light on metastatic processes of cancer cells, but enhance development of new therapies targeting metastasis. In this review, we will provide recent findings on the role of known ncRNAs relevant to EMT and cancer metastasis and discuss the role of the interaction between ncRNAs and TME as co-drivers of EMT. Developmental Dynamics 247:405-431, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Didier Meseure
- Platform of Investigative Pathology, Curie Institute, Paris, France.,Department of Pathology, Curie Institute, Paris, France
| |
Collapse
|
24
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Iacoangeli A, Dosunmu A, Eom T, Stefanov DG, Tiedge H. Regulatory BC1 RNA in cognitive control. ACTA ACUST UNITED AC 2017; 24:267-277. [PMID: 28620074 PMCID: PMC5473108 DOI: 10.1101/lm.045427.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022]
Abstract
Dendritic regulatory BC1 RNA is a non-protein-coding (npc) RNA that operates in the translational control of gene expression. The absence of BC1 RNA in BC1 knockout (KO) animals causes translational dysregulation that entails neuronal phenotypic alterations including prolonged epileptiform discharges, audiogenic seizure activity in vivo, and excessive cortical oscillations in the γ frequency band. Here we asked whether BC1 RNA control is also required for higher brain functions such as learning, memory, or cognition. To address this question, we used odor/object attentional set shifting tasks in which prefrontal cortical performance was assessed in a series of discrimination and conflict learning sessions. Results obtained in these behavioral trials indicate that BC1 KO animals were significantly impaired in their cognitive flexibility. When faced with conflicting information sources, BC1 KO animals committed regressive errors as they were compromised in their ability to disengage from recently acquired memories even though recall of such memories was in conflict with new situational context. The observed cognitive deficits are reminiscent of those previously described in subtypes of human autism spectrum disorders.
Collapse
Affiliation(s)
- Anna Iacoangeli
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Aderemi Dosunmu
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Taesun Eom
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Dimitre G Stefanov
- Statistical Design and Analysis, Research Division, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA .,Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.,Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
26
|
Sudhakaran IP, Ramaswami M. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biol 2017; 14:568-586. [PMID: 27726526 PMCID: PMC5449092 DOI: 10.1080/15476286.2016.1244588] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs function in synapse specific plasticity underlying LTM.
Collapse
Affiliation(s)
- Indulekha P. Sudhakaran
- National Center for Biological Sciences, TIFR, Bangalore, India
- Manipal University, Manipal, India
| | - Mani Ramaswami
- National Center for Biological Sciences, TIFR, Bangalore, India
- School of Genetics and Microbiology and School of Natural Sciences, Smurfit Institute of Genetics and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Steinberger J, Chu J, Maïga RI, Sleiman K, Pelletier J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell Mol Life Sci 2017; 74:1681-1692. [PMID: 28004147 PMCID: PMC11107644 DOI: 10.1007/s00018-016-2430-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jennifer Chu
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Rayelle Itoua Maïga
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Katia Sleiman
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada.
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Oncology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
28
|
Shin H, Lee J, Kim Y, Jang S, Lee Y, Kim S, Lee Y. Knockdown of BC200 RNA expression reduces cell migration and invasion by destabilizing mRNA for calcium-binding protein S100A11. RNA Biol 2017; 14:1418-1430. [PMID: 28277927 DOI: 10.1080/15476286.2017.1297913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although BC200 RNA is best known as a neuron-specific non-coding RNA, it is overexpressed in various cancer cells. BC200 RNA was recently shown to contribute to metastasis in several cancer cell lines, but the underlying mechanism was not understood in detail. To examine this mechanism, we knocked down BC200 RNA in cancer cells, which overexpress the RNA, and examined cell motility, profiling of ribosome footprints, and the correlation between cell motility changes and genes exhibiting altered ribosome profiles. We found that BC200 RNA knockdown reduced cell migration and invasion, suggesting that BC200 RNA promotes cell motility. Our ribosome profiling analysis identified 29 genes whose ribosomal occupations were altered more than 2-fold by BC200 RNA knockdown. Many (> 30%) of them were directly or indirectly related to cancer progression. Among them, we focused on S100A11 (which showed a reduced ribosome footprint) because its expression was previously shown to increase cellular motility. S100A11 was decreased at both the mRNA and protein levels following knockdown of BC200 RNA. An actinomycin-chase experiment showed that BC200 RNA knockdown significantly decreased the stability of the S100A11 mRNA without changing its transcription rate, suggesting that the downregulation of S100A11 was mainly caused by destabilization of its mRNA. Finally, we showed that the BC200 RNA-knockdown-induced decrease in cell motility was mainly mediated by S100A11. Together, our results show that BC200 RNA promotes cell motility by stabilizing S100A11 transcripts.
Collapse
Affiliation(s)
- Heegwon Shin
- a Department of Chemistry , KAIST , Daejeon , Korea
| | - Jungmin Lee
- a Department of Chemistry , KAIST , Daejeon , Korea
| | - Youngmi Kim
- a Department of Chemistry , KAIST , Daejeon , Korea
| | | | - Yunhee Lee
- a Department of Chemistry , KAIST , Daejeon , Korea.,b Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Korea
| | - Semi Kim
- a Department of Chemistry , KAIST , Daejeon , Korea.,b Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Korea
| | | |
Collapse
|
29
|
Faus-Garriga J, Novoa I, Ozaita A. mTOR signaling in proteostasis and its relevance to autism spectrum disorders. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.1.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
El Fatimy R, Davidovic L, Tremblay S, Jaglin X, Dury A, Robert C, De Koninck P, Khandjian EW. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules. PLoS Genet 2016; 12:e1006192. [PMID: 27462983 PMCID: PMC4963131 DOI: 10.1371/journal.pgen.1006192] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/22/2016] [Indexed: 11/30/2022] Open
Abstract
Local translation at the synapse plays key roles in neuron development and activity-dependent synaptic plasticity. mRNAs are translocated from the neuronal soma to the distant synapses as compacted ribonucleoparticles referred to as RNA granules. These contain many RNA-binding proteins, including the Fragile X Mental Retardation Protein (FMRP), the absence of which results in Fragile X Syndrome, the most common inherited form of intellectual disability and the leading genetic cause of autism. Using FMRP as a tracer, we purified a specific population of RNA granules from mouse brain homogenates. Protein composition analyses revealed a strong relationship between polyribosomes and RNA granules. However, the latter have distinct architectural and structural properties, since they are detected as close compact structures as observed by electron microscopy, and converging evidence point to the possibility that these structures emerge from stalled polyribosomes. Time-lapse video microscopy indicated that single granules merge to form cargoes that are transported from the soma to distal locations. Transcriptomic analyses showed that a subset of mRNAs involved in cytoskeleton remodelling and neural development is selectively enriched in RNA granules. One third of the putative mRNA targets described for FMRP appear to be transported in granules and FMRP is more abundant in granules than in polyribosomes. This observation supports a primary role for FMRP in granules biology. Our findings open new avenues for the study of RNA granule dysfunctions in animal models of nervous system disorders, such as Fragile X syndrome. Fragile X syndrome is the most common form of inherited mental retardation affecting approximately 1 female out of 7000 and 1 male out of 4000 worldwide. The syndrome is due to the silencing of a single gene, the Fragile Mental Retardation 1 (FMR1), that codes for the Fragile X mental retardation protein (FMRP). This protein is highly expressed in brain and controls local protein synthesis essential for neuronal development and maturation as well as the formation of neural circuits. Several studies suggest a role for FMRP in the regulation of mRNA transport along axons and dendrites to distant synaptic locations in structures called RNA granules. Here we report the isolation of a particular subpopulation of these structures and the analysis of their architecture and composition in terms of RNA and protein. Also, using time-lapse video microscopy, we monitored granule transport and fusion throughout neuronal processes. These findings open new avenues for the study of RNA transport dysfunctions in animal models of nervous system disorders.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université de Nice-Sophia Antipolis, F-06560 Valbonne, France
| | - Sandra Tremblay
- Institut universitaire en santé mentale de Québec, Quebec, Canada
| | - Xavier Jaglin
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York, United States of America
| | - Alain Dury
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| | - Claude Robert
- Centre de recherche en biologie de la reproduction, Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, Quebec, Canada
| | - Paul De Koninck
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, Quebec, Canada
| | - Edouard W. Khandjian
- Institut universitaire en santé mentale de Québec, Quebec, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
- * E-mail:
| |
Collapse
|
31
|
Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth. Mol Cell Biol 2015; 35:2035-50. [PMID: 25825524 DOI: 10.1128/mcb.00133-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/24/2015] [Indexed: 12/28/2022] Open
Abstract
Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.
Collapse
|
32
|
Castaño J, Menendez P, Bruzos-Cidon C, Straccia M, Sousa A, Zabaleta L, Vazquez N, Zubiarrain A, Sonntag KC, Ugedo L, Carvajal-Vergara X, Canals JM, Torrecilla M, Sanchez-Pernaute R, Giorgetti A. Fast and efficient neural conversion of human hematopoietic cells. Stem Cell Reports 2014; 3:1118-31. [PMID: 25458894 PMCID: PMC4264063 DOI: 10.1016/j.stemcr.2014.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 01/15/2023] Open
Abstract
Neurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus. Upon SOX2 and c-MYC expression, CD133-positive cord blood cells rapidly adopt a neuroepithelial morphology and exhibit high expansion capacity. Under defined neurogenic culture conditions, they express mature neuronal markers and fire spontaneous action potentials that can be modulated with neurotransmitters. SOX2 and c-MYC are also sufficient to convert peripheral blood mononuclear cells into iNCs. However, the conversion process is less efficient and resulting iNCs have limited expansion capacity and electrophysiological activity upon differentiation. Our study demonstrates rapid and efficient generation of iNCs from hematopoietic cells while underscoring the impact of target cells on conversion efficiency.
Collapse
Affiliation(s)
- Julio Castaño
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Barcelona 08036, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Cristina Bruzos-Cidon
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Marco Straccia
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain; Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona 08036, Spain
| | - Amaia Sousa
- Laboratory of Stem Cells and Neural Repair, Inbiomed, San Sebastian 20009, Spain
| | - Lorea Zabaleta
- Cell Reprogramming and Differentiation Platform, Inbiomed, San Sebastian 20009, Spain
| | - Nerea Vazquez
- Laboratory of Stem Cells and Neural Repair, Inbiomed, San Sebastian 20009, Spain
| | - Amaia Zubiarrain
- Laboratory of Stem Cells and Neural Repair, Inbiomed, San Sebastian 20009, Spain; Cell Reprogramming and Differentiation Platform, Inbiomed, San Sebastian 20009, Spain
| | - Kai-Christian Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Josep Maria Canals
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain; Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona 08036, Spain
| | - Maria Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Alessandra Giorgetti
- Josep Carreras Leukemia Research Institute, Cell Therapy Program of the University of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|
33
|
Eom T, Muslimov IA, Tsokas P, Berardi V, Zhong J, Sacktor TC, Tiedge H. Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control. ACTA ACUST UNITED AC 2014; 207:237-52. [PMID: 25332164 PMCID: PMC4210447 DOI: 10.1083/jcb.201401005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Regulatory brain cytoplasmic RNAs cooperate with eukaryotic initiation factor 4B to couple translation to receptor activation in support of long-term plastic changes in neurons. In neurons, translational regulation of gene expression has been implicated in the activity-dependent management of synapto-dendritic protein repertoires. However, the fundamentals of stimulus-modulated translational control in neurons remain poorly understood. Here we describe a mechanism in which regulatory brain cytoplasmic (BC) RNAs cooperate with eukaryotic initiation factor 4B (eIF4B) to control translation in a manner that is responsive to neuronal activity. eIF4B is required for the translation of mRNAs with structured 5′ untranslated regions (UTRs), exemplified here by neuronal protein kinase Mζ (PKMζ) mRNA. Upon neuronal stimulation, synapto-dendritic eIF4B is dephosphorylated at serine 406 in a rapid process that is mediated by protein phosphatase 2A. Such dephosphorylation causes a significant decrease in the binding affinity between eIF4B and BC RNA translational repressors, enabling the factor to engage the 40S small ribosomal subunit for translation initiation. BC RNA translational control, mediated via eIF4B phosphorylation status, couples neuronal activity to translational output, and thus provides a mechanistic basis for long-term plastic changes in nerve cells.
Collapse
Affiliation(s)
- Taesun Eom
- Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203
| | - Ilham A Muslimov
- Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203
| | - Panayiotis Tsokas
- Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203 Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203
| | - Valerio Berardi
- Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203
| | - Jun Zhong
- Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203
| | - Todd C Sacktor
- Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203 Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203 Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203
| | - Henri Tiedge
- Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203 Department of Physiology and Pharmacology, Department of Anesthesiology, and Department of Neurology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
34
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
35
|
Non-coding RNA regulation of synaptic plasticity and memory: implications for aging. Ageing Res Rev 2014; 17:34-42. [PMID: 24681292 DOI: 10.1016/j.arr.2014.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
Advancing age is associated with the loss of cognitive ability and vulnerability to debilitating mental diseases. Although much is known about the development of cognitive processes in the brain, the study of the molecular mechanisms governing memory decline with aging is still in its infancy. Recently, it has become apparent that most of the human genome is transcribed into non-coding RNAs (ncRNAs) rather than protein-coding mRNAs. Multiple types of ncRNAs are enriched in the central nervous system, and this large group of molecules may regulate the molecular complexity of the brain, its neurons, and synapses. Here, we review the current knowledge on the role of ncRNAs in synaptic plasticity, learning, and memory in the broader context of the aging brain and associated memory loss. We also discuss future directions to study the role of ncRNAs in the aging process.
Collapse
|
36
|
Brosius J. The persistent contributions of RNA to eukaryotic gen(om)e architecture and cellular function. Cold Spring Harb Perspect Biol 2014; 6:a016089. [PMID: 25081515 DOI: 10.1101/cshperspect.a016089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery.
Collapse
Affiliation(s)
- Jürgen Brosius
- Institute of Experimental Pathology (ZMBE), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
37
|
Thomas MG, Pascual ML, Maschi D, Luchelli L, Boccaccio GL. Synaptic control of local translation: the plot thickens with new characters. Cell Mol Life Sci 2014; 71:2219-39. [PMID: 24212248 PMCID: PMC11113725 DOI: 10.1007/s00018-013-1506-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 12/18/2022]
Abstract
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Collapse
Affiliation(s)
- María Gabriela Thomas
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Malena Lucía Pascual
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Darío Maschi
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- Present Address: Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO USA
| | - Luciana Luchelli
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
| | - Graciela Lidia Boccaccio
- Instituto Leloir, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
- IIBBA-CONICET, C1405BWE Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
38
|
Muslimov IA, Tuzhilin A, Tang TH, Wong RKS, Bianchi R, Tiedge H. Interactions of noncanonical motifs with hnRNP A2 promote activity-dependent RNA transport in neurons. ACTA ACUST UNITED AC 2014; 205:493-510. [PMID: 24841565 PMCID: PMC4033767 DOI: 10.1083/jcb.201310045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+-dependent RNA–protein interactions enable activity-inducible RNA transport in dendrites. A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell’s activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca2+ levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca2+ through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca2+-dependent RNA–protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence.
Collapse
Affiliation(s)
- Ilham A Muslimov
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Aliya Tuzhilin
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Thean Hock Tang
- Advanced Medical and Dental Institute, Universiti Sains Malaysi, 13200 Kepala Batas, Penang, Malaysia
| | - Robert K S Wong
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Riccardo Bianchi
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| | - Henri Tiedge
- The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203The Robert F. Furchgott Center for Neural and Behavioral Science, Department of Physiology and Pharmacology, and Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
39
|
Lenzken SC, Achsel T, Carrì MT, Barabino SML. Neuronal RNA-binding proteins in health and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:565-76. [PMID: 24687864 DOI: 10.1002/wrna.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/12/2022]
Abstract
In mammalian cells in general and in neurons in particular, mRNA maturation, translation, and degradation are highly complex and dynamic processes. RNA-binding proteins (RBPs) play crucial roles in all these events. First, they participate in the choice of pre-mRNA splice sites and in the selection of the polyadenylation sites, determining which of the possible isoforms is produced from a given precursor mRNA. Then, once in the cytoplasm, the protein composition of the RNP particles determines whether the mature mRNA is transported along the dendrites or the axon of a neuron to the synapses, how efficiently it is translated, and how stable it is. In agreement with their importance for neuronal function, mutations in genes that code for RBPs are associated with various neurological diseases. In this review, we illustrate how individual RBPs determine the fate of an mRNA, and we discuss how mutations in RBPs or perturbations of the mRNA metabolism can cause neurodegenerative disorders.
Collapse
|
40
|
Shore AN, Rosen JM. Regulation of mammary epithelial cell homeostasis by lncRNAs. Int J Biochem Cell Biol 2014; 54:318-30. [PMID: 24680897 DOI: 10.1016/j.biocel.2014.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 01/02/2023]
Abstract
The epithelial cells of the mammary gland develop primarily after birth and undergo surges of hormonally regulated proliferation, differentiation, and apoptosis during both puberty and pregnancy. Thus, the mammary gland is a useful model to study fundamental processes of development and adult tissue homeostasis, such as stem and progenitor cell regulation, cell fate commitment, and differentiation. Long noncoding RNAs (lncRNAs) are emerging as prominent regulators of these essential processes, as their extraordinary versatility allows them to modulate gene expression via diverse mechanisms at both transcriptional and post-transcriptional levels. Not surprisingly, lncRNAs are also aberrantly expressed in cancer and promote tumorigenesis by disrupting vital cellular functions, such as cell cycle, survival, and migration. In this review, we first broadly summarize the functions of lncRNAs in mammalian development and cancer. Then we focus on what is currently known about the role of lncRNAs in mammary gland development and breast cancer. This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
41
|
Kim T, Do MHT, Lawson MA. Translational control of gene expression in the gonadotrope. Mol Cell Endocrinol 2014; 385:78-87. [PMID: 24035865 PMCID: PMC4009948 DOI: 10.1016/j.mce.2013.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022]
Abstract
The study of gene expression in gonadotropes has largely focused on the variety of mechanisms regulating transcription of the gonadotropin genes and ancillary factors that contribute to the overall phenotype and function of these cells in reproduction. However, there are aspects of the response to GNRH signaling that are not readily explained by changes at the level of transcription. As our understanding of regulation at the level of mRNA translation has increased, it has become evident that GNRH receptor signaling engages multiple aspects of translational regulation. This includes activation of cap-dependent translation initiation, translational pausing caused by the unfolded protein response and RNA binding protein interaction. Gonadotropin mRNAs and the mRNAs of other factors that control the transcriptional and signaling responses to GNRH have been identified as targets of regulation at the level of translation. In this review we examine the impact of translational control of the expression of gonadotropin genes and other genes relevant to GNRH-mediated control of gonadotrope function.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Minh-Ha T Do
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Mark A Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
42
|
Taha MS, Nouri K, Milroy LG, Moll JM, Herrmann C, Brunsveld L, Piekorz RP, Ahmadian MR. Subcellular fractionation and localization studies reveal a direct interaction of the fragile X mental retardation protein (FMRP) with nucleolin. PLoS One 2014; 9:e91465. [PMID: 24658146 PMCID: PMC3962360 DOI: 10.1371/journal.pone.0091465] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/11/2014] [Indexed: 12/31/2022] Open
Abstract
Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Kazem Nouri
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Lech G. Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr University Bochum, Bochum, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, the Netherlands
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
43
|
Di Liegro CM, Schiera G, Di Liegro I. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review). Int J Mol Med 2014; 33:747-62. [PMID: 24452120 PMCID: PMC3976132 DOI: 10.3892/ijmm.2014.1629] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), I-90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, I-90127 Palermo, Italy
| |
Collapse
|
44
|
Yogev O, Williams VC, Hinits Y, Hughes SM. eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation. PLoS Biol 2013; 11:e1001679. [PMID: 24143132 PMCID: PMC3797031 DOI: 10.1371/journal.pbio.1001679] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/04/2013] [Indexed: 01/12/2023] Open
Abstract
Muscle activity promotes muscle growth through the TOR-4EBP pathway by controlling the translation of specific mRNAs, including Mef2ca, a muscle transcription factor required for normal growth. Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins), regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3) and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively inhibiting translational initiation of mef2ca and other mRNAs, eIF4EBP3L reprograms the translational profile of muscle, enabling it to adjust to new environmental conditions. Most genes are transcribed into mRNA and then translated into proteins that function in various cellular processes. Initiation of mRNA translation is thus a fundamental control point in gene expression. Working in a zebrafish model, we have found that muscle activity (or inactivity) can differentially regulate the translation of specific mRNAs and thereby control the growth of skeletal muscle. Emerging evidence suggests that control of translational initiation of particular mRNAs by an intracellular signaling pathway acting through TORC1 is a major regulator of cell growth and function. We show here that muscle activity both activates the TORC1 pathway and suppresses the expression of a downstream TORC1 target—the translational inhibitor eIF4EBP3L. This removes a brake on translation of certain mRNAs. Conversely, we show that muscle inactivity can up-regulate this translational inhibitor, thereby causing reduced translation of these mRNAs. One of the mRNAs targeted in this manner by eIF4EBP3L is Mef2ca, which encodes a transcription factor that promotes assembly of muscle contractile apparatus. Our work thus reveals a mechanism by which muscle growth can be differentially influenced depending on the context of muscle activity (or lack thereof). If this pathway operates in people, it may help explain how exercise regulates muscle growth and performance.
Collapse
Affiliation(s)
- Orli Yogev
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|