1
|
Klein R, Brehm J, Wissig J, Heermann R, Unden G. A signaling complex of adenylate cyclase CyaC of Sinorhizobium meliloti with cAMP and the transcriptional regulators Clr and CycR. BMC Microbiol 2023; 23:236. [PMID: 37633907 PMCID: PMC10463352 DOI: 10.1186/s12866-023-02989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Adenylate cyclases (ACs) generate the second messenger cyclic AMP (cAMP), which is found in all domains of life and is involved in the regulation of various cell physiological and metabolic processes. In the plant symbiotic bacterium Sinorhizobium meliloti, synthesis of cAMP by the membrane-bound AC CyaC responds to the redox state of the respiratory chain and the respiratory quinones. However, nothing is known about the signaling cascade that is initiated by cAMP produced by CyaC. RESULTS Here, the CRP-like transcriptional regulator Clr and the TetR-like regulator CycR (TR01819 protein) were identified to interact with CyaC using the bacterial two-hybrid system (BACTH), co-sedimentation assays, and surface plasmon resonance spectroscopy. Interaction of CycR with Clr, and of CyaC with Clr requires the presence of cAMP and of ATP, respectively, whereas that of CyaC with CycR was independent of the nucleotides. CONCLUSION The data implicate a ternary CyaC×CycR×cAMP-Clr complex, functioning as a specific signaling cascade which is formed after activation of CyaC and synthesis of cAMP. cAMP-Clr is thought to work in complex with CycR to regulate a subset of genes of the cAMP-Clr regulon in S. meliloti.
Collapse
Affiliation(s)
- Robin Klein
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Jannis Brehm
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Juliane Wissig
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Ralf Heermann
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| | - Gottfried Unden
- Institute of Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
2
|
Elsabbagh S, Landau M, Gross H, Schultz A, Schultz JE. Heme b inhibits class III adenylyl cyclases. Cell Signal 2023; 103:110568. [PMID: 36565898 DOI: 10.1016/j.cellsig.2022.110568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Acidic lipid extracts from mouse liver, kidney, heart, brain, and lung inhibited human pseudoheterodimeric adenylyl cyclases (hACs) expressed in HEK293 cells. Using an acidic lipid extract from bovine lung, a combined MS- and bioassay-guided fractionation identified heme b as inhibitor of membrane-bound ACs. IC50 concentrations were 8-12 μM for the hAC isoforms. Hemopexin and bacterial hemophore attenuated heme b inhibition of hAC5. Structurally related compounds, such as hematin, protoporphyrin IX, and biliverdin, were significantly less effective. Monomeric bacterial class III ACs (mycobacterial ACs Rv1625c; Rv3645; Rv1264; cyanobacterial AC CyaG) were inhibited by heme b with similar efficiency. Surprisingly, structurally related chlorophyll a similarly inhibited hAC5. Heme b inhibited isoproterenol-stimulated cAMP accumulation in HEK293 cells. Using cortical membranes from mouse brain hemin efficiently and reversibly inhibited basal and Gsα-stimulated AC activity. The physiological relevance of heme b inhibition of the cAMP generating system in certain pathologies is discussed.
Collapse
Affiliation(s)
- Sherif Elsabbagh
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Marius Landau
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Harald Gross
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Anita Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Sheng J, Zhang S, Wu L, Kumar G, Liao Y, GK P, Fan H. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2022; 14:1019187. [PMID: 36268188 PMCID: PMC9577554 DOI: 10.3389/fnagi.2022.1019187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is ranked as the 6th leading cause of death in the US. The prevalence of AD and dementia is steadily increasing and expected cases in USA is 14.8 million by 2050. Neuroinflammation and gradual neurodegeneration occurs in Alzheimer's disease. However, existing medications has limitation to completely abolish, delay, or prevent disease progression. Phosphodiesterases (PDEs) are large family of enzymes to hydrolyze the 3'-phosphodiester links in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in signal-transduction pathways for generation of 5'-cyclic nucleotides. It plays vital role to orchestrate several pharmacological activities for proper cell functioning and regulating the levels of cAMP and cGMP. Several evidence has suggested that abnormal cAMP signaling is linked to cognitive problems in neurodegenerative disorders like AD. Therefore, the PDE family has become a widely accepted and multipotential therapeutic target for neurodegenerative diseases. Notably, modulation of cAMP/cGMP by phytonutrients has a huge potential for the management of AD. Natural compounds have been known to inhibit phosphodiesterase by targeting key enzymes of cGMP synthesis pathway, however, the mechanism of action and their therapeutic efficacy has not been explored extensively. Currently, few PDE inhibitors such as Vinpocetine and Nicergoline have been used for treatment of central nervous system (CNS) disorders. Considering the role of flavonoids to inhibit PDE, this review discussed the therapeutic potential of natural compounds with PDE inhibitory activity for the treatment of AD and related dementia.
Collapse
Affiliation(s)
- Jianwen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Lule Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yuanhang Liao
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Pratap GK
- Department of Biochemistry, Davangere University, Davangere, India
| | - Huizhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| |
Collapse
|
4
|
Schultz JE. The evolutionary conservation of eukaryotic membrane-bound adenylyl cyclase isoforms. Front Pharmacol 2022; 13:1009797. [PMID: 36238545 PMCID: PMC9552081 DOI: 10.3389/fphar.2022.1009797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The nine membrane-delimited eukaryotic adenylyl cyclases are pseudoheterodimers with an identical domain order of seven (nine) distinct subdomains. Bioinformatics show that the protein evolved from a monomeric bacterial progenitor by gene duplication and fusion probably in a primordial eukaryotic cell around 1.5 billion years ago. Over a timespan of about 1 billion years, the first fusion product diverged into nine highly distinct pseudoheterodimeric isoforms. The evolutionary diversification ended approximately 0.5 billion years ago because the present isoforms are found in the living fossil coelacanth, a fish. Except for the two catalytic domains, C1 and C2, the mAC isoforms are fully diverged. Yet, within each isoform a high extent of conservation of respective subdomains is found. This applies to the C- and N-termini, a long linker region between the protein halves (C1b), two short cyclase-transducing-elements (CTE) and notably to the two hexahelical membrane domains TM1 and TM2. Except for the membrane anchor all subdomains were previously implicated in regulatory modalities. The bioinformatic results unequivocally indicate that the membrane anchors must possess an important regulatory function specifically tailored for each mAC isoform.
Collapse
|
5
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
6
|
Seth A, Landau M, Shevchenko A, Traikov S, Schultz A, Elsabbagh S, Schultz JE. Distinct glycerophospholipids potentiate Gsα-activated adenylyl cyclase activity. Cell Signal 2022; 97:110396. [PMID: 35787445 DOI: 10.1016/j.cellsig.2022.110396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Nine mammalian adenylyl cyclases (AC) are pseudoheterodimers with two hexahelical membrane domains, which are isoform-specifically conserved. Previously we proposed that these membrane domains are orphan receptors (https://doi.org/10.7554/eLife.13098; https://doi.org/10.1016/j.cellsig.2020.109538). Lipids extracted from fetal bovine serum at pH 1 inhibited several mAC activities. Guided by a lipidomic analysis we tested glycerophospholipids as potential ligands. Contrary to expectations we surprisingly discovered that 1-stearoyl-2-docosahexaenoyl-phosphatidic acid (SDPA) potentiated Gsα-activated activity of human AC isoform 3 seven-fold. The specificity of fatty acyl esters at glycerol positions 1 and 2 was rather stringent. 1-Stearoyl-2-docosahexaenoyl-phosphatidylserine and 1-stearoyl-2-docosahexaenoyl-phosphatidylethanolamine significantly potentiated several Gsα-activated mAC isoforms to different extents. SDPA appears not interact with forskolin activation of AC isoform 3. SDPA enhanced Gsα-activated AC activities in membranes from mouse brain cortex. The action of SDPA was reversible. Unexpectedly, SDPA did not affect cAMP generation in HEK293 cells stimulated by isoproterenol, PGE2 and adenosine, virtually excluding a role as an extracellular ligand and, instead, suggesting an intracellular role. In summary, we discovered a new dimension of intracellular AC regulation by chemically defined glycerophospholipids.
Collapse
Affiliation(s)
- Anubha Seth
- Max-Planck-Institut für Biologie, Tübingen, Germany
| | - Marius Landau
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Andrej Shevchenko
- Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden, Germany
| | - Sofia Traikov
- Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden, Germany
| | - Anita Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Sherif Elsabbagh
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Hornos F, Feng HZ, Rizzuti B, Palomino-Schätzlein M, Wieczorek D, Neira JL, Jin JP. The muscle-relaxing C-terminal peptide from troponin I populates a nascent helix, facilitating binding to tropomyosin with a potent therapeutic effect. J Biol Chem 2021; 296:100228. [PMID: 33814345 PMCID: PMC7948816 DOI: 10.1074/jbc.ra120.016012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/06/2022] Open
Abstract
The conserved C-terminal end segment of troponin I (TnI) plays a critical role in regulating muscle relaxation. This function is retained in the isolated C-terminal 27 amino acid peptide (residues 184-210) of human cardiac TnI (HcTnI-C27): When added to skinned muscle fibers, HcTnI-C27 reduces the Ca2+-sensitivity of activated myofibrils and facilitates relaxation without decreasing the maximum force production. However, the underlying mechanism of HcTnI-C27 function is unknown. We studied the conformational preferences of HcTnI-C27 and a myopathic mutant, Arg192His, (HcTnI-C27-H). Both peptides were mainly disordered in aqueous solution with a nascent helix involving residues from Trp191 to Ile195, as shown by NMR analysis and molecular dynamics simulations. The population of nascent helix was smaller in HcTnI-C27-H than in HcTnI-C27, as shown by circular dichroism (CD) titrations. Fluorescence and isothermal titration calorimetry (ITC) showed that both peptides bound tropomyosin (αTm), with a detectably higher affinity (∼10 μM) of HcTnI-C27 than that of HcTnI-C27-H (∼15 μM), consistent with an impaired Ca2+-desensitization effect of the mutant peptide on skinned muscle strips. Upon binding to αTm, HcTnI-C27 acquired a weakly stable helix-like conformation involving residues near Trp191, as shown by transferred nuclear Overhauser effect spectroscopy and hydrogen/deuterium exchange experiments. With the potent Ca2+-desensitization effect of HcTnI-C27 on skinned cardiac muscle from a mouse model of hypertrophic cardiomyopathy, the data support that the C-terminal end domain of TnI can function as an isolated peptide with the intrinsic capacity of binding tropomyosin, providing a promising therapeutic approach to selectively improve diastolic function of the heart.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Binding Sites
- Calcium/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/prevention & control
- Disease Models, Animal
- Gene Expression
- Humans
- Kinetics
- Mice
- Molecular Docking Simulation
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Relaxation
- Mutation
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/pathology
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Peptides/pharmacology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Interaction Domains and Motifs
- Sequence Alignment
- Sequence Homology, Amino Acid
- Substrate Specificity
- Tropomyosin/chemistry
- Tropomyosin/genetics
- Tropomyosin/metabolism
- Troponin I/chemistry
- Troponin I/genetics
- Troponin I/metabolism
Collapse
Affiliation(s)
- Felipe Hornos
- IDIBE, Universidad Miguel Hernández, Alicante, Spain
| | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Cosenza, Italy
| | | | - David Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cinncinnnati, Ohio, USA
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
8
|
Li X, Eyles SJ, Thompson LK. Hydrogen exchange of chemoreceptors in functional complexes suggests protein stabilization mediates long-range allosteric coupling. J Biol Chem 2019; 294:16062-16079. [PMID: 31506298 DOI: 10.1074/jbc.ra119.009865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/08/2019] [Indexed: 11/06/2022] Open
Abstract
Bacterial chemotaxis receptors form extended hexagonal arrays that integrate and amplify signals to control swimming behavior. Transmembrane signaling begins with a 2-Å ligand-induced displacement of an α helix in the periplasmic and transmembrane domains, but it is unknown how the cytoplasmic domain propagates the signal an additional 200 Å to control the kinase CheA bound to the membrane-distal tip of the receptor. The receptor cytoplasmic domain has previously been shown to be highly dynamic as both a cytoplasmic fragment (CF) and within the intact chemoreceptor; modulation of its dynamics is thought to play a key role in signal propagation. This hydrogen deuterium exchange-MS (HDX-MS) study of functional complexes of CF, CheA, and CheW bound to vesicles in native-like arrays reveals that the CF is well-ordered only in its protein interaction region where it binds CheA and CheW. We observe rapid exchange throughout the rest of the CF, with both uncorrelated (EX2) and correlated (EX1) exchange patterns, suggesting the receptor cytoplasmic domain retains disorder even within functional complexes. HDX rates are increased by inputs that favor the kinase-off state. We propose that chemoreceptors achieve long-range allosteric control of the kinase through a coupled equilibrium: CheA binding in a kinase-on conformation stabilizes the cytoplasmic domain, and signaling inputs that destabilize this domain (ligand binding and demethylation) disfavor CheA binding such that it loses key contacts and reverts to a kinase-off state. This study reveals the mechanistic role of an intrinsically disordered region of a transmembrane receptor in long-range allostery.
Collapse
Affiliation(s)
- Xuni Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Lynmarie K Thompson
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 .,Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
9
|
Hill SE, Kwon MS, Martin MD, Suntharalingam A, Hazel A, Dickey CA, Gumbart JC, Lieberman RL. Stable calcium-free myocilin olfactomedin domain variants reveal challenges in differentiating between benign and glaucoma-causing mutations. J Biol Chem 2019; 294:12717-12728. [PMID: 31270212 PMCID: PMC6709634 DOI: 10.1074/jbc.ra119.009419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Nonsynonymous gene mutations can be beneficial, neutral, or detrimental to the stability, structure, and biological function of the encoded protein, but the effects of these mutations are often not readily predictable. For example, the β-propeller olfactomedin domain of myocilin (mOLF) exhibits a complex interrelationship among structure(s), stability, and aggregation. Numerous mutations within mOLF are linked to glaucoma; the resulting variants are less stable, aggregation-prone, and sequestered intracellularly, causing cytotoxicity. Here, we report the first stable mOLF variants carrying substitutions in the calcium-binding site that exhibit solution characteristics indistinguishable from those of glaucoma variants. Crystal structures of these stable variants at 1.8-2.0-Å resolution revealed features that we could not predict by molecular dynamics simulations, including loss of loop structure, helix unwinding, and a blade shift. Double mutants that combined a stabilizing substitution and a selected glaucoma-causing single-point mutant rescued in vitro folding and stability defects. In the context of full-length myocilin, secretion of stable single variants was indistinguishable from that of the WT protein, and the double mutants were secreted to varying extents. In summary, our finding that mOLF can tolerate particular substitutions that render the protein stable despite a conformational switch emphasizes the complexities in differentiating between benign and glaucoma-causing variants and provides new insight into the possible biological function of myocilin.
Collapse
Affiliation(s)
- Shannon E. Hill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Michelle S. Kwon
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Mackenzie D. Martin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amirthaa Suntharalingam
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - Anthony Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Chad A. Dickey
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, University of South Florida, Tampa, Florida 33613
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332,School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, To whom correspondence should be addressed:
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA 30332-0400. E-mail:
| |
Collapse
|
10
|
Wissig J, Grischin J, Bassler J, Schubert C, Friedrich T, Bähre H, Schultz JE, Unden G. CyaC, a redox‐regulated adenylate cyclase ofSinorhizobium melilotiwith a quinone responsive diheme‐B membrane anchor domain. Mol Microbiol 2019; 112:16-28. [DOI: 10.1111/mmi.14251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Juliane Wissig
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University of Mainz Becherweg 1555099Mainz Germany
| | - Julia Grischin
- Max‐Planck‐Institut für Entwicklungsbiologie, Abt. Proteinevolution Max‐Planck‐Ring 572076Tübingen Germany
| | - Jens Bassler
- Max‐Planck‐Institut für Entwicklungsbiologie, Abt. Proteinevolution Max‐Planck‐Ring 572076Tübingen Germany
| | - Christopher Schubert
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University of Mainz Becherweg 1555099Mainz Germany
| | | | - Heike Bähre
- Medizinische Hochschule Hannover Hannover Germany
| | - Joachim E. Schultz
- Pharmazeutisches Institut der Universität Tübingen Auf der Morgenstelle 872076Tübingen Germany
| | - Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology Johannes Gutenberg‐University of Mainz Becherweg 1555099Mainz Germany
| |
Collapse
|
11
|
Finkbeiner M, Grischin J, Seth A, Schultz JE. In search of a function for the membrane anchors of class IIIa adenylate cyclases. Int J Med Microbiol 2019; 309:245-251. [PMID: 30954381 DOI: 10.1016/j.ijmm.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/08/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022] Open
Abstract
Nine pseudoheterodimeric mammalian adenylate cyclases possess two dissimilar hexahelical membrane domains (TM1 and TM2), two dissimilar cyclase-transducing-elements (CTEs) and two complementary catalytic domains forming a catalytic dimer (often termed cyclase-homology-domain, CHD). Canonically, these cyclases are regulated by G-proteins which are released upon ligand activation of G-protein-coupled receptors. So far, a biochemical function of the membrane domains beyond anchoring has not been established. For almost 30 years, work in our laboratory was based on the hypothesis that these voluminous membrane domains possess an additional physiological, possibly regulatory function. Over the years, we have generated numerous artificial fusion proteins between the catalytic domains of various bacterial adenylate cyclases which are active as homodimers and the membrane receptor domains of known bacterial signaling proteins such as chemotaxis receptors and quorum-sensors which have known ligands. Here we summarize the current status of our experimental efforts. Taken together, the data allow the conclusion that the hexahelical mammalian membrane anchors as well as similar membrane anchors from bacterial adenylate cyclase congeners are orphan receptors. A search for as yet unknown ligands of membrane-delimited adenylate cyclases is now warranted.
Collapse
Affiliation(s)
| | - Julia Grischin
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Anubha Seth
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Mancl JM, Ray WK, Helm RF, Schubot FD. Helix Cracking Regulates the Critical Interaction between RetS and GacS in Pseudomonas aeruginosa. Structure 2019; 27:785-793.e5. [PMID: 30879888 DOI: 10.1016/j.str.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Recent paradigm shifting discoveries have demonstrated that bacterial signaling kinases engage in unexpected regulatory crosstalk, yet the underlying molecular mechanisms remain largely uncharacterized. The Pseudomonas aeruginosa RetS/GacS system constitutes an ideal model for studying these mechanisms. The in-depth analysis of the kinase region of RetS and RetS/GacS interactions presented here refutes a longstanding model, which posited the formation of a catalytically inactive RetS/GacS heterodimer. Crystallographic studies uncovered structurally dynamic features within the RetS kinase region, suggesting that RetS uses the reversible unfolding of a helix, or helix cracking, to control interactions with GacS. The pivotal importance of this helical region for regulating GacS and, by extension, Pseudomonas aeruginosa virulence, was corroborated via in vivo assays. The implications of this work extend beyond the RetS/GacS system because the helix cracking occurs right next to a highly conserved catalytic residue histidine-424, suggesting this model could represent an emergent archetype for histidine kinase regulation.
Collapse
Affiliation(s)
- Jordan M Mancl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - William K Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Rich F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Florian D Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Bassler J, Schultz JE, Lupas AN. Adenylate cyclases: Receivers, transducers, and generators of signals. Cell Signal 2018; 46:135-144. [PMID: 29563061 DOI: 10.1016/j.cellsig.2018.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022]
Abstract
Class III adenylate cyclases (ACs) are widespread signaling proteins, which translate diverse intracellular and extracellular stimuli into a uniform intracellular signal. They are typically composed of an N-terminal array of input domains and transducers, followed C-terminally by a catalytic domain, which, as a dimer, generates the second messenger cAMP. The input domains, which receive stimuli, and the transducers, which propagate the signals, are often found in other signaling proteins. The nature of stimuli and the regulatory mechanisms of ACs have been studied experimentally in only a few cases, and even in these, important questions remain open, such as whether eukaryotic ACs regulated by G protein-coupled receptors can also receive stimuli through their own membrane domains. Here we survey the current knowledge on regulation and intramolecular signal propagation in ACs and draw comparisons to other signaling proteins. We highlight the pivotal role of a recently identified cyclase-specific transducer element located N-terminally of many AC catalytic domains, suggesting an intramolecular signaling capacity.
Collapse
Affiliation(s)
- Jens Bassler
- Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Andrei N Lupas
- Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Tanwar N, Munde M. Thermodynamic and conformational analysis of the interaction between antibody binding proteins and IgG. Int J Biol Macromol 2018; 112:1084-1092. [PMID: 29410106 DOI: 10.1016/j.ijbiomac.2018.01.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 01/29/2023]
Abstract
Studying interaction of IgG with bacterial proteins such as proA (Protein A) and proG is essential for development in the areas of drug discovery and biotechnology. Some solution studies in the past have hinted at the possibility of variable binding ratios for IgG with proA and proG. Since earlier crystallographic studies focussed mostly on monomeric complexes, the knowledge about the binding interfaces and protein conformational changes involved in multimeric complexes is scarce. In this paper, we observed that single proA molecule was able to bind to three IgG molecules (1:3, proA:IgG) in ITC accentuating the presence of conformational flexibility in proA, corroborated also by CD results. By contrast, proG binds with 1:1 stoichiometry to IgG, which also involves key structural rearrangement within the binding interface of IgG-proG complex, confirmed by fluorescence KI quenching study. It is implicit from CD and fluorescence results that IgG does not undergo any significant conformational changes, which further suggests that proA and proG dictate the phenomenon of recognition in antibody complexes. ANS as a hydrophobic probe helped in revealing the distinctive antibody binding mechanism of proA and proG. Additionally, the binding competition experiments using ITC established that proA and proG cannot bind IgG concurrently.
Collapse
Affiliation(s)
- Neetu Tanwar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
16
|
Phosphorylation by protein kinase A disassembles the caspase-9 core. Cell Death Differ 2018; 25:1025-1039. [PMID: 29352269 DOI: 10.1038/s41418-017-0052-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023] Open
Abstract
Caspases, the cysteine proteases which facilitate the faithful execution of apoptosis, are tightly regulated by a number of mechanisms including phosphorylation. In response to cAMP, PKA phosphorylates caspase-9 at three sites preventing caspase-9 activation, and suppressing apoptosis progression. Phosphorylation of caspase-9 by PKA at the functionally relevant site Ser-183 acts as an upstream block of the apoptotic cascade, directly inactivating caspase-9 by a two-stage mechanism. First, Ser-183 phosphorylation prevents caspase-9 self-processing and directly blocks substrate binding. In addition, Ser-183 phosphorylation breaks the fundamental interactions within the caspase-9 core, promoting disassembly of the large and small subunits. This occurs despite Ser-183 being a surface residue distal from the interface between the large and small subunits. This phosphorylation-induced disassembly promotes the formation of ordered aggregates around 20 nm in diameter. Similar aggregates of caspase-9 have not been previously reported. This two-stage regulatory mechanism for caspase-9 has likewise not been reported previously but may be conserved across the caspases.
Collapse
|
17
|
Lehning CE, Heidelberger JB, Reinhard J, Nørholm MHH, Draheim RR. A Modular High-Throughput In Vivo Screening Platform Based on Chimeric Bacterial Receptors. ACS Synth Biol 2017; 6:1315-1326. [PMID: 28372360 DOI: 10.1021/acssynbio.6b00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug resistance (MDR) is a globally relevant problem that requires novel approaches. Two-component systems are a promising, yet untapped target for novel antibacterials. They are prevalent in bacteria and absent in mammals, and their activity can be modulated upon perception of various stimuli. Screening pre-existing compound libraries could reveal small molecules that inhibit stimulus-perception by virulence-modulating receptors, reduce signal output from essential receptors or identify artificial stimulatory ligands for novel SHKs that are involved in virulence. Those small molecules could possess desirable therapeutic properties to combat MDR. We propose that a modular screening platform in which the periplasmic domain of the targeted receptors are fused to the cytoplasmic domain of a well-characterized receptor that governs fluorescence reporter genes could be employed to rapidly screen currently existing small molecule libraries. Here, we have examined two previously created Tar-EnvZ chimeras and a novel NarX-EnvZ chimera. We demonstrate that it is possible to couple periplasmic stimulus-perceiving domains to an invariable cytoplasmic domain that governs transcription of a dynamic fluorescent reporter system. Furthermore, we show that aromatic tuning, or repositioning the aromatic residues at the end of the second transmembrane helix (TM2), modulates baseline signal output from the tested chimeras and even restores output from a nonfunctional NarX-EnvZ chimera. Finally, we observe an inverse correlation between baseline signal output and the degree of response to cognate stimuli. In summary, we propose that the platform described here, a fluorescent Escherichia coli reporter strain with plasmid-based expression of the aromatically tuned chimeric receptors, represents a synthetic biology approach to rapidly screen pre-existing compound libraries for receptor-modulating activities.
Collapse
Affiliation(s)
- Christina E. Lehning
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | | | - John Reinhard
- Buchmann
Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438, Frankfurt, Germany
| | - Morten H. H. Nørholm
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | | |
Collapse
|
18
|
Engelhard C, Diensthuber RP, Möglich A, Bittl R. Blue-light reception through quaternary transitions. Sci Rep 2017; 7:1385. [PMID: 28469162 PMCID: PMC5431215 DOI: 10.1038/s41598-017-01497-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Sensory photoreceptors absorb light via their photosensor modules and trigger downstream physiological adaptations via their effector modules. Light reception accordingly depends on precisely orchestrated interactions between these modules, the molecular details of which often remain elusive. Using electron-electron double resonance (ELDOR) spectroscopy and site-directed spin labelling, we chart the structural transitions facilitating blue-light reception in the engineered light-oxygen-voltage (LOV) histidine kinase YF1 which represents a paradigm for numerous natural signal receptors. Structural modelling based on pair-wise distance constraints derived from ELDOR pinpoint light-induced rotation and splaying apart of the two LOV photosensors in the dimeric photoreceptor. Resultant molecular strain likely relaxes as left-handed supercoiling of the coiled-coil linker connecting sensor and effector units. ELDOR data on a photoreceptor variant with an inverted signal response indicate a drastically altered dimer interface but light-induced structural transitions in the linker that are similar to those in YF1. Taken together, we provide mechanistic insight into the signal trajectories of LOV photoreceptors and histidine kinases that inform molecular simulations and the engineering of novel receptors.
Collapse
Affiliation(s)
- Christopher Engelhard
- Fachbereich Physik, Institut für Experimentalphysik, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ralph P Diensthuber
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany. .,Lehrstuhl für Biochemie and Research Center for Bio-Macromolecules, Universität Bayreuth, 95440, Bayreuth, Germany.
| | - Robert Bittl
- Fachbereich Physik, Institut für Experimentalphysik, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
19
|
Sukomon N, Widom J, Borbat PP, Freed JH, Crane BR. Stability and Conformation of a Chemoreceptor HAMP Domain Chimera Correlates with Signaling Properties. Biophys J 2017; 112:1383-1395. [PMID: 28402881 PMCID: PMC5390053 DOI: 10.1016/j.bpj.2017.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
HAMP domains are dimeric, four-helix bundles that transduce conformational signals in bacterial receptors. Genetic studies of the Escherichia coli serine receptor (Tsr) provide an opportunity to understand HAMP conformational behavior in terms of functional output. To increase its stability, the Tsr HAMP domain was spliced into a poly-HAMP unit from the Pseudomonas aeruginosa Aer2 receptor. Within the chimera, the Tsr HAMP undergoes a thermal melting transition at a temperature much lower than that of the Aer2 HAMP domains. Pulse-dipolar electron spin resonance spectroscopy and site-specific spin-labeling confirm that the Tsr HAMP maintains a four-helix bundle. Pulse-dipolar electron spin resonance spectroscopy was also used to study three well-characterized HAMP mutational phenotypes: those that cause flagella rotation that is counterclockwise (CCW) A and kinase-off; CCW B and also kinase-off; and, clockwise (CW) and kinase-on. Conformational properties of the three HAMP variants support a biphasic model of dynamic bundle stability, but also indicate distinct conformational changes within the helix bundle. Functional kinase-on (CW) and kinase-off (CCW A) states differ by concerted changes in the positions of spin-label sites at the base of the bundle. Opposite shifts in the subunit separation distances of neighboring residues at the C-termini of the α1 and α2 helices are consistent with a helix scissors motion or a gearbox rotational model of HAMP activation. In the drastic kinase-off lesion of CCW B, the α1 helices unfold and the α2 helices form a tight two-helix coiled-coil. The substitution of a critical residue in the Tsr N-terminal linker or control cable reduces conformational heterogeneity at the N-terminus of α1 but does not affect structure at the C-terminus of α2. Overall, the data suggest that transitions from on- to off-states involve decreased motional amplitudes of the Tsr HAMP coupled with helix rotations and movements toward a two-helix packing mode.
Collapse
Affiliation(s)
- Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
20
|
Ziegler M, Bassler J, Beltz S, Schultz A, Lupas AN, Schultz JE. Characterization of a novel signal transducer element intrinsic to class IIIa/b adenylate cyclases and guanylate cyclases. FEBS J 2017; 284:1204-1217. [PMID: 28222489 DOI: 10.1111/febs.14047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/09/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
Abstract
Adenylate cyclases (ACs) are signaling proteins that produce the second messenger cAMP. Class III ACs comprise four groups (class IIIa-d) of which class IIIa and IIIb ACs have been identified in bacteria and eukaryotes. Many class IIIa ACs are anchored to membranes via hexahelical domains. In eukaryotic ACs, membrane anchors are well conserved, suggesting that this region possesses important functional characteristics that are as yet unknown. To address this question, we replaced the hexahelical membrane anchor of the mycobacterial AC Rv1625c with the hexahelical quorum-sensing receptor from Legionella, LqsS. Using this chimera, we identified a novel 19-amino-acid cyclase transducer element (CTE) located N-terminally to the catalytic domain that links receptor stimulation to effector activation. Coupling of the receptor to the AC was possible at several positions distal to the membrane exit, resulting in stimulatory or inhibitory responses to the ligand Legionella autoinducer-1. In contrast, on the AC effector side functional coupling was only successful when starting with the CTE. Bioinformatics approaches established that distinct CTEs are widely present in class IIIa and IIIb ACs and in vertebrate guanylate cyclases. The data suggest that membrane-delimited receiver domains transduce regulatory signals to the downstream catalytic domains in an engineered AC model system. This may suggest a previously unknown mechanism for cellular cAMP regulation.
Collapse
Affiliation(s)
- Miriam Ziegler
- Pharmazeutisches Institut der Universität Tübingen, Germany
| | - Jens Bassler
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | - Anita Schultz
- Pharmazeutisches Institut der Universität Tübingen, Germany
| | - Andrei N Lupas
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | |
Collapse
|
21
|
Gourinchas G, Etzl S, Göbl C, Vide U, Madl T, Winkler A. Long-range allosteric signaling in red light-regulated diguanylyl cyclases. SCIENCE ADVANCES 2017; 3:e1602498. [PMID: 28275738 PMCID: PMC5336353 DOI: 10.1126/sciadv.1602498] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/10/2017] [Indexed: 05/06/2023]
Abstract
Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light-sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate-producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light-regulated optogenetic tools.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Christoph Göbl
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Uršula Vide
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
- Corresponding author.
| |
Collapse
|
22
|
Ishchenko A, Round E, Borshchevskiy V, Grudinin S, Gushchin I, Klare JP, Remeeva A, Polovinkin V, Utrobin P, Balandin T, Engelhard M, Büldt G, Gordeliy V. New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep 2017; 7:41811. [PMID: 28165484 PMCID: PMC5292967 DOI: 10.1038/srep41811] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
The complex of two membrane proteins, sensory rhodopsin II (NpSRII) with its cognate transducer (NpHtrII), mediates negative phototaxis in halobacteria N. pharaonis. Upon light activation NpSRII triggers a signal transduction chain homologous to the two-component system in eubacterial chemotaxis. Here we report on crystal structures of the ground and active M-state of the complex in the space group I212121. We demonstrate that the relative orientation of symmetrical parts of the dimer is parallel (“U”-shaped) contrary to the gusset-like (“V”-shaped) form of the previously reported structures of the NpSRII/NpHtrII complex in the space group P21212, although the structures of the monomers taken individually are nearly the same. Computer modeling of the HAMP domain in the obtained “V”- and “U”-shaped structures revealed that only the “U”-shaped conformation allows for tight interactions of the receptor with the HAMP domain. This is in line with existing data and supports biological relevance of the “U” shape in the ground state. We suggest that the “V”-shaped structure may correspond to the active state of the complex and transition from the “U” to the “V”-shape of the receptor-transducer complex can be involved in signal transduction from the receptor to the signaling domain of NpHtrII.
Collapse
Affiliation(s)
- A Ishchenko
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany
| | - E Round
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - V Borshchevskiy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - S Grudinin
- CNRS, Laboratoire Jean Kuntzmann, BP 53, Grenoble Cedex 9, France.,NANO-D, INRIA Grenoble-Rhone-Alpes Research Center, 38334 Saint Ismier Cedex, Montbonnot, France
| | - I Gushchin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - J P Klare
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany.,Department of Physics, University of Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, Germany
| | - A Remeeva
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - V Polovinkin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France
| | - P Utrobin
- Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - T Balandin
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany
| | - M Engelhard
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - G Büldt
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| | - V Gordeliy
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425 Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Jägerstraße 17-19, 52056 Aachen, Germany.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, F-38000 Grenoble, France.,Moscow Institute of Physics and Technology, 141700 Dolgoprudniy, Russia
| |
Collapse
|
23
|
Abstract
Coiled coils appear in countless structural contexts, as appendages to small proteins, as parts of multi-domain proteins, and as building blocks of filaments. Although their structure is unpretentious and their basic properties are understood in great detail, the spectrum of functional properties they provide in different proteins has become increasingly complex. This chapter aims to depict this functional spectrum, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany.
| |
Collapse
|
24
|
Trajtenberg F, Imelio JA, Machado MR, Larrieux N, Marti MA, Obal G, Mechaly AE, Buschiazzo A. Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. eLife 2016; 5:e21422. [PMID: 27938660 PMCID: PMC5231405 DOI: 10.7554/elife.21422] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/09/2016] [Indexed: 01/19/2023] Open
Abstract
Two-component systems (TCS) are protein machineries that enable cells to respond to input signals. Histidine kinases (HK) are the sensory component, transferring information toward downstream response regulators (RR). HKs transfer phosphoryl groups to their specific RRs, but also dephosphorylate them, overall ensuring proper signaling. The mechanisms by which HKs discriminate between such disparate directions, are yet unknown. We now disclose crystal structures of the HK:RR complex DesK:DesR from Bacillus subtilis, comprising snapshots of the phosphotransfer and the dephosphorylation reactions. The HK dictates the reactional outcome through conformational rearrangements that include the reactive histidine. The phosphotransfer center is asymmetric, poised for dissociative nucleophilic substitution. The structural bases of HK phosphatase/phosphotransferase control are uncovered, and the unexpected discovery of a dissociative reactional center, sheds light on the evolution of TCS phosphotransfer reversibility. Our findings should be applicable to a broad range of signaling systems and instrumental in synthetic TCS rewiring.
Collapse
Affiliation(s)
- Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Juan A Imelio
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Matías R Machado
- Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Marti
- Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo Obal
- Protein Biophysics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ariel E Mechaly
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
25
|
Ahmad S, Pecqueur L, Dreier B, Hamdane D, Aumont-Nicaise M, Plückthun A, Knossow M, Gigant B. Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin. Sci Rep 2016; 6:28922. [PMID: 27380724 PMCID: PMC4933879 DOI: 10.1038/srep28922] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 01/10/2023] Open
Abstract
Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-specific designed ankyrin repeat protein (DARPin). Structural analysis indicated that in the progenitor DARPin the C-terminal capping repeat (C-cap) undergoes a 25° rotation to avoid a clash with tubulin upon binding. Additionally, the C-cap appears to be involved in electrostatic repulsion with tubulin. Biochemical and structural characterizations demonstrated that the evolved mutants achieved a gain in affinity through destabilization of the C-cap, which relieves the need of a DARPin conformational change upon tubulin binding and removes unfavorable interactions in the complex. Therefore, this specific case of an order-to-disorder transition led to a 100-fold tighter complex with a subnanomolar equilibrium dissociation constant, remarkably associated with a 30% decrease of the binding surface.
Collapse
Affiliation(s)
- Shoeb Ahmad
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Ludovic Pecqueur
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Magali Aumont-Nicaise
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Marcel Knossow
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Benoît Gigant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
26
|
Beltz S, Bassler J, Schultz JE. Regulation by the quorum sensor from Vibrio indicates a receptor function for the membrane anchors of adenylate cyclases. eLife 2016; 5:e13098. [PMID: 26920221 PMCID: PMC4821796 DOI: 10.7554/elife.13098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/26/2016] [Indexed: 01/19/2023] Open
Abstract
Adenylate cyclases convert intra- and extracellular stimuli into a second messenger cAMP signal. Many bacterial and most eukaryotic ACs possess membrane anchors with six transmembrane spans. We replaced the anchor of the AC Rv1625c by the quorum-sensing receptor from Vibrio harveyi which has an identical 6TM design and obtained an active, membrane-anchored AC. We show that a canonical class III AC is ligand-regulated in vitro and in vivo. At 10 µM, the cholera-autoinducer CAI-1 stimulates activity 4.8-fold. A sequence based clustering of membrane domains of class III ACs and quorum-sensing receptors established six groups of potential structural and functional similarities. The data support the notion that 6TM AC membrane domains may operate as receptors which directly regulate AC activity as opposed and in addition to the indirect regulation by GPCRs in eukaryotic congeners. This adds a completely novel dimension of potential AC regulation in bacteria and vertebrates.
Collapse
Affiliation(s)
- Stephanie Beltz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| | - Jens Bassler
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Joachim E Schultz
- Pharmazeutisches Institut der Universität Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Bains W. Low potency toxins reveal dense interaction networks in metabolism. BMC SYSTEMS BIOLOGY 2016; 10:19. [PMID: 26897366 PMCID: PMC4761184 DOI: 10.1186/s12918-016-0262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/29/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. RESULTS Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. CONCLUSIONS The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved.
Collapse
Affiliation(s)
- William Bains
- Earth, Atmospheric and Planetary Sciences Department, MIT, 77 Mass Avenue, Cambridge, MA, 02139, USA.
- Rufus Scientific Ltd., 37 The Moor, Melbourn, Royston, Herts, SG8 6ED, UK.
| |
Collapse
|
28
|
Garcia D, Watts KJ, Johnson MS, Taylor BL. Delineating PAS-HAMP interaction surfaces and signalling-associated changes in the aerotaxis receptor Aer. Mol Microbiol 2016; 100:156-72. [PMID: 26713609 DOI: 10.1111/mmi.13308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 11/27/2022]
Abstract
The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output.
Collapse
Affiliation(s)
- Darysbel Garcia
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Barry L Taylor
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| |
Collapse
|
29
|
Yusuf R, Draheim RR. Employing aromatic tuning to modulate output from two-component signaling circuits. J Biol Eng 2015; 9:7. [PMID: 26000034 PMCID: PMC4440246 DOI: 10.1186/s13036-015-0003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
Two-component signaling circuits (TCSs) govern the majority of environmental, pathogenic and industrial processes undertaken by bacteria. Therefore, controlling signal output from these circuits in a stimulus-independent manner is of central importance to synthetic microbiologists. Aromatic tuning, or repositioning the aromatic residues commonly found at the cytoplasmic end of the final TM helix has been shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor (EnvZ) of Escherichia coli. Aromatic residues are found in a similar location within other bacterial membrane-spanning receptors, suggesting that aromatic tuning could be harnessed for a wide-range of applications. Here, a brief synopsis of the data underpinning aromatic tuning, the initial successes with the method and the inherent advantages over those previously employed for modulating TCS signal output are presented.
Collapse
Affiliation(s)
- Rahmi Yusuf
- Division of Pharmacy, Durham University, Queen's Campus, Stockton-on-Tees, TS17 6BH England UK
| | - Roger R Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, England UK
| |
Collapse
|
30
|
Biswas KH, Badireddy S, Rajendran A, Anand GS, Visweswariah SS. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2. PeerJ 2015; 3:e882. [PMID: 25922789 PMCID: PMC4411481 DOI: 10.7717/peerj.882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/01/2023] Open
Abstract
GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.
Collapse
Affiliation(s)
- Kabir Hassan Biswas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Suguna Badireddy
- Department of Biological Sciences, National University of Singapore , Singapore , Singapore
| | - Abinaya Rajendran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| |
Collapse
|
31
|
Nørholm MHH, von Heijne G, Draheim RR. Forcing the issue: aromatic tuning facilitates stimulus-independent modulation of a two-component signaling circuit. ACS Synth Biol 2015; 4:474-81. [PMID: 25162177 PMCID: PMC4410910 DOI: 10.1021/sb500261t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-component signaling circuits allow bacteria to detect and respond to external stimuli. Unfortunately, the input stimulus remains unidentified for the majority of these circuits. Therefore, development of a synthetic method for stimulus-independent modulation of these circuits is highly desirable because particular physiological or developmental processes could be controlled for biotechnological purposes without the need to identify the stimulus itself. Here, we demonstrate that aromatic tuning, i.e., repositioning the aromatic residues commonly found at the cytoplasmic end of the receptor (EnvZ) transmembrane domain, facilitates stimulus-independent modulation of signal output from the EnvZ/OmpR osmosensing circuit of Escherichia coli. We found that these osmosensing circuits retained the ability to respond appropriately to increased external osmolarity, suggesting that the tuned receptors were not locked in a single conformation. We also noted that circuits containing aromatically tuned variants became more sensitive to changes in the receptor concentration than their wild-type counterpart, suggesting a new way to study mechanisms underpinning receptor concentration-dependent robustness. We believe that aromatic tuning has several advantages compared to previous methods aimed at stimulus-independent modulation of receptors and that it will be generally applicable to a wide-range of two-component circuits.
Collapse
Affiliation(s)
- Morten H. H. Nørholm
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, DK-2970 Hørsholm, Denmark
| | - Gunnar von Heijne
- Department
of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius
väg 16C, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
32
|
Bacterial chemoreceptor dynamics correlate with activity state and are coupled over long distances. Proc Natl Acad Sci U S A 2015; 112:2455-60. [PMID: 25675479 DOI: 10.1073/pnas.1414155112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dynamics are hypothesized to play an important role in the transmission of signals across membranes by receptors. Bacterial chemoreceptors are long helical proteins that consist of a periplasmic ligand-binding domain; a transmembrane region; a cytoplasmic HAMP (histidine kinase, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) domain; and a kinase-control module (KCM). The KCM is further composed of adaptation, hinge, and protein interaction regions (PIRs), the latter of which binds the histidine kinase CheA and adaptor CheW. Fusions of the Escherichia coli aspartate receptor KCM to HAMP domains of defined structure (H1-Tar vs. H1-2-Tar) give opposite responses in phosphotransfer and cellular assays, despite similar binding to CheA and CheW. Pulsed dipolar ESR spectroscopy (PDS) of these isolated on and off dimeric effectors reveals that, in the kinase-on state, the HAMP is more conformationally destabilized compared with the PIR, whereas in the kinase-off state, the HAMP is more compact, and the PIR samples a greater breadth of conformations. On and off HAMP states produce different conformational effects at the KCM junction, but these differences decrease through the adaptation region and into the hinge only to return with the inverted relationship in the PIR. Continuous wave-ESR of the spin-labeled proteins confirms that broader PDS distance distributions correlate with increased rates of dynamics. Conformational breadth in the adaptation region changes with charge alterations caused by modification enzymes. Activating modifications broaden the HAMP conformational ensemble but correspondingly, compact the PIR. Thus, chemoreceptors behave as coupled units, in which dynamics in regions proximal and distal to the membrane change coherently but with opposite sign.
Collapse
|
33
|
Schmidt D, Cho YK. Natural photoreceptors and their application to synthetic biology. Trends Biotechnol 2015; 33:80-91. [DOI: 10.1016/j.tibtech.2014.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 01/22/2023]
|
34
|
Abstract
Research in Tübingen on bacterial cell walls began in 1951 and continues to this day. The studies over the decades reflect the development in the field, which was strongly influenced by the design of suitable biochemical and genetic methods used to unravel the highly complex envelope structure. At the beginning of this period, improper crude extraction and solubilization methods were employed in an attempt to isolate pure components. Nevertheless, progress was steady and culminated in major insights into the structure and function of individual cell wall components and the cell wall as a whole. The "cell wall" has various definitions. In this short overview, the term includes the cell wall of gram-positive bacteria in the strict sense, and also the outer membrane, the murein (peptidoglycan) and the outer membrane of gram-negative bacteria and the cytoplasmic membranes.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
35
|
Schultz JE, Kanchan K, Ziegler M. Intraprotein signal transduction by HAMP domains: a balancing act. Int J Med Microbiol 2014; 305:243-51. [PMID: 25595022 DOI: 10.1016/j.ijmm.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
HAMP domains are small protein modules that predominantly operate as signal transducers in bacterial sensor proteins most of which are membrane delimited. The domain organization of such sensors has the HAMPs localized at the intersection between the membrane-anchored input sensor and the cytosolic output machinery. The data summarized here indicate that HAMP modules use a universal signaling language in balancing the communication between diverse membrane-bound input domains and cytosolic output domains that are completely foreign to each other.
Collapse
Affiliation(s)
- Joachim E Schultz
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen H 4032, Hungary
| | - Miriam Ziegler
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 2014; 519:106-9. [PMID: 25533957 DOI: 10.1038/nature13999] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 10/24/2014] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLΦ motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded β-domain that sequesters the helical YXXXXLΦ motif into a partly buried β-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.
Collapse
Affiliation(s)
- Alaji Bah
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert M Vernon
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zeba Siddiqui
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Mickaël Krzeminski
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ranjith Muhandiram
- 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charlie Zhao
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Lewis E Kay
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Julie D Forman-Kay
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
37
|
Botelho SC, Enquist K, von Heijne G, Draheim RR. Differential repositioning of the second transmembrane helices from E. coli Tar and EnvZ upon moving the flanking aromatic residues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:615-21. [PMID: 25445668 DOI: 10.1016/j.bbamem.2014.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/29/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
Aromatic tuning, i.e. repositioning aromatic residues found at the cytoplasmic end of transmembrane (TM) domains within bacterial receptors, has been previously shown to modulate signal output from the aspartate chemoreceptor (Tar) and the major osmosensor EnvZ of Escherichia coli. In the case of Tar, changes in signal output consistent with the vertical position of the native Trp-Tyr aromatic tandem within TM2 were observed. In contrast, within EnvZ, where a Trp-Leu-Phe aromatic triplet was repositioned, the surface that the triplet resided upon was the major determinant governing signal output. However, these studies failed to determine whether moving the aromatic residues was sufficient to physically reposition the TM helix within a membrane. Recent coarse-grained molecular dynamics (CG-MD) simulations predicted displacement of Tar TM2 upon moving the aromatic residues at the cytoplasmic end of the helix. Here, we demonstrate that repositioning the Trp-Tyr tandem within Tar TM2 displaces the C-terminal boundary of the helix relative to the membrane. In a similar analysis of EnvZ, an abrupt initial displacement of TM2 was observed but no subsequent movement was seen, suggesting that the vertical position of TM2 is not governed by the location of the Trp-Leu-Phe triplet. Our results also provide another set of experimental data, i.e. the resistance of EnvZ TM2 to being displaced upon aromatic tuning, which could be useful for subsequent refinement of the initial CG-MD simulations. Finally, we discuss the limitations of these methodologies, how moving flanking aromatic residues might impact steady-state signal output and the potential to employ aromatic tuning in other bacterial membrane-spanning receptors.
Collapse
Affiliation(s)
- Salomé C Botelho
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Karl Enquist
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Roger R Draheim
- Division of Pharmacy, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, England, UK; Wolfson Research Institute for Health and Wellbeing, Durham University, Queen's Campus, Stockton-on-Tees, TS17 6BH, England, UK.
| |
Collapse
|
38
|
Molnar KS, Bonomi M, Pellarin R, Clinthorne GD, Gonzalez G, Goldberg SD, Goulian M, Sali A, DeGrado WF. Cys-scanning disulfide crosslinking and bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ. Structure 2014; 22:1239-1251. [PMID: 25087511 PMCID: PMC4322757 DOI: 10.1016/j.str.2014.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/17/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023]
Abstract
Bacteria transduce signals across the membrane using two-component systems (TCSs), consisting of a membrane-spanning sensor histidine kinase and a cytoplasmic response regulator. In gram-negative bacteria, the PhoPQ TCS senses cations and antimicrobial peptides, yet little is known about the structural changes involved in transmembrane signaling. We construct a model of PhoQ signal transduction using Bayesian inference, based on disulfide crosslinking data and homologous crystal structures. The data are incompatible with a single conformation but are instead consistent with two interconverting structures. These states differ in membrane depth of the periplasmic acidic patch and the reciprocal displacement of diagonal helices along the dimer interface. Studies of multiple histidine kinases suggest this repacking might be a common mode of signal transduction in sensor His-kinase receptors. Because a similar scissors model has been ruled out in CheA-linked chemoreceptors, the evidence suggests that sensor His-kinase and CheA-linked receptors possess different signaling mechanisms.
Collapse
Affiliation(s)
- Kathleen S Molnar
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group19104, USA, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Massimiliano Bonomi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Graham D Clinthorne
- Pharmacological Sciences Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriel Gonzalez
- Biochemistry and Molecular Biophysics Graduate Group19104, USA, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shalom D Goldberg
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Natarajan J, Schultz A, Kurz U, Schultz JE. Biochemical characterization of the tandem HAMP domain fromNatronomonas pharaonisas an intraprotein signal transducer. FEBS J 2014; 281:3218-27. [DOI: 10.1111/febs.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/17/2014] [Accepted: 05/16/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Janani Natarajan
- Pharmazeutische Biochemie, Pharmazeutisches Institut, Universität Tübingen, Germany
| | | | | | | |
Collapse
|
40
|
Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc Natl Acad Sci U S A 2014; 111:8803-8. [PMID: 24889611 DOI: 10.1073/pnas.1321600111] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensory photoreceptors elicit vital physiological adaptations in response to incident light. As light-regulated actuators, photoreceptors underpin optogenetics, which denotes the noninvasive, reversible, and spatiotemporally precise perturbation by light of living cells and organisms. Of particular versatility, naturally occurring photoactivated adenylate cyclases promote the synthesis of the second messenger cAMP under blue light. Here, we have engineered a light-activated phosphodiesterase (LAPD) with complementary light sensitivity and catalytic activity by recombining the photosensor module of Deinococcus radiodurans bacterial phytochrome with the effector module of Homo sapiens phosphodiesterase 2A. Upon red-light absorption, LAPD up-regulates hydrolysis of cAMP and cGMP by up to sixfold, whereas far-red light can be used to down-regulate activity. LAPD also mediates light-activated cAMP and cGMP hydrolysis in eukaryotic cell cultures and in zebrafish embryos; crucially, the biliverdin chromophore of LAPD is available endogenously and does not need to be provided exogenously. LAPD thus establishes a new optogenetic modality that permits light control over diverse cAMP/cGMP-mediated physiological processes. Because red light penetrates tissue more deeply than light of shorter wavelengths, LAPD appears particularly attractive for studies in living organisms.
Collapse
|