1
|
Nawa F, Sai M, Vietor J, Schwarzenbach R, Bitić A, Wolff S, Ildefeld N, Pabel J, Wein T, Marschner JA, Heering J, Merk D. Tuning RXR Modulators for PGC1α Recruitment. J Med Chem 2024; 67:16338-16354. [PMID: 39258574 DOI: 10.1021/acs.jmedchem.4c01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The molecular activation mechanism of the nuclear retinoid X receptors (RXRs) crucially involves ligand-induced corepressor release and coactivator recruitment which mediate transcriptional repression or activation. The ability of RXR to bind diverse coactivators suggests that a coregulator-selective modulation by ligands may open an avenue to tissue- or gene-selective RXR activation. Here, we identified strong induction of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) binding to RXR by a synthetic agonist but not by the endogenous ligand 9-cis retinoic acid. Structure-guided diversification of this lead resulted in a set of three structurally related RXR agonists with different ability to promote PGC1α recruitment in cell-free and cellular context. These results demonstrate that selective modulation of coregulator recruitment to RXR can be achieved with molecular glues and potentially open new therapeutic opportunities by targeting the ligand-induced RXR-PGC1α interaction.
Collapse
Affiliation(s)
- Felix Nawa
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Minh Sai
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Vietor
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Roman Schwarzenbach
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Anesa Bitić
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sina Wolff
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Niklas Ildefeld
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Thomas Wein
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| |
Collapse
|
2
|
Penkov S, Fedorova M. Membrane Epilipidome-Lipid Modifications, Their Dynamics, and Functional Significance. Cold Spring Harb Perspect Biol 2024; 16:a041417. [PMID: 38253416 PMCID: PMC11216179 DOI: 10.1101/cshperspect.a041417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Lipids are characterized by extremely high structural diversity translated into a wide range of physicochemical properties. As such, lipids are vital for many different functions including organization of cellular and organelle membranes, control of cellular and organismal energy metabolism, as well as mediating multiple signaling pathways. To maintain the lipid chemical diversity and to achieve rapid lipid remodeling required for the responsiveness and adaptability of cellular membranes, living systems make use of a network of chemical modifications of already existing lipids that complement the rather slow biosynthetic pathways. Similarly to biopolymers, which can be modified epigenetically and posttranscriptionally (for nucleic acids) or posttranslationally (for proteins), lipids can also undergo chemical alterations through oxygenation, nitration, phosphorylation, glycosylation, etc. In this way, an expanded collective of modified lipids that we term the "epilipidome," provides the ultimate level of complexity to biological membranes and delivers a battery of active small-molecule compounds for numerous regulatory processes. As many lipid modifications are tightly controlled and often occur in response to extra- and intracellular stimuli at defined locations, the emergence of the epilipidome greatly contributes to the spatial and temporal compartmentalization of diverse cellular processes. Accordingly, epilipid modifications are observed in all living organisms and are among the most consistent prerequisites for complex life.
Collapse
Affiliation(s)
- Sider Penkov
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| | - Maria Fedorova
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| |
Collapse
|
3
|
Zhang W, Hu H, Zhu Y, He Y, Yu M, Du W, Huang J. In silico study of androgen receptor N-terminal domain and exploration of its modulators. J Biomol Struct Dyn 2024:1-13. [PMID: 38661004 DOI: 10.1080/07391102.2024.2333454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
The androgen receptor (AR, Uniprot: P10275) signaling plays a key role in the progression of prostate cancer, various AR-related ligands have been reported to treat prostate cancer. However, some resistance mechanisms limited the treating effect of these ligands. Since DBD binding or the allosteric binding sites in LBD of AR may allow the circumvention of some drug resistance mechanisms, anti-resistance is expected especially through the NTD (N-terminal domain) targeting. What's more, studies have shown that compounds including EPI-001 and its derivatives which bind to the Tau-5 region on NTD could be promising molecules for AR-based therapeutics. Herein, we employed aMD (accelerated molecular dynamics) simulation to fold Tau-5 unit proteins into native structure correctly. Subsequently, based on the predicted structural features of Tau-5, the virtual screening was conducted to discover new compounds targeting AR-NTD. We picked up 8 compounds (according to their docking scores and partly similar structural consists as known AR ligands) and analyzed their interaction with Tau-5, compared with the positive control EPI-001, four of the pick-up compounds showed better glide scores. Interestingly, although compound 8 had a lower docking score, it consisted of a similar component as the ligand EIQPN and the amide derivatives, this predicts that compound 8 has also the potential to be modified into an excellent AR-NTD binding molecule. These 8 compounds were all commercially available and could be tested to check whether there was a hit compound to bind the AR-NTD and to regulate its bio-activities. Together, this study described an in silico VLS approach to discover AR-NTD ligands and provided more choices for developing AR-targeted therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi, China
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Mingyue Yu
- Xingzhi College, Zhejiang Normal University, Lanxi, China
| | - Wenjun Du
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiangang Huang
- Xingzhi College, Zhejiang Normal University, Lanxi, China
| |
Collapse
|
4
|
Li J, Mascarinas P, McGlinn E. The expanding roles of Nr6a1 in development and evolution. Front Cell Dev Biol 2024; 12:1357968. [PMID: 38440075 PMCID: PMC10909835 DOI: 10.3389/fcell.2024.1357968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
The Nuclear Receptor (NR) family of transcriptional regulators possess the ability to sense signalling molecules and directly couple that to a transcriptional response. While this large class of proteins are united by sequence and structural homology, individual NR functional output varies greatly depending on their expression, ligand selectivity and DNA binding sequence specificity. Many NRs have remained somewhat enigmatic, with the absence of a defined ligand categorising them as orphan nuclear receptors. One example is Nuclear Receptor subfamily 6 group A member 1 (Nr6a1), an orphan nuclear receptor that has no close evolutionary homologs and thus is alone in subfamily 6. Nonetheless, Nr6a1 has emerged as an important player in the regulation of key pluripotency and developmental genes, as functionally critical for mid-gestational developmental progression and as a possible molecular target for driving evolutionary change in animal body plan. Here, we review the current knowledge on this enigmatic nuclear receptor and how it impacts development and evolution.
Collapse
|
5
|
Hampton CS, Sitaula S, Billon C, Haynes K, Avdagic A, Wanninayake U, Adeyemi CM, Chatterjee A, Griffett K, Banerjee S, Burris SL, Schoepke E, Boehm T, Bess A, de Vera IMS, Burris TP, Walker JK. Development and pharmacological evaluation of a new chemical series of potent pan-ERR agonists, identification of SLU-PP-915. Eur J Med Chem 2023; 258:115582. [PMID: 37421886 PMCID: PMC10399613 DOI: 10.1016/j.ejmech.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/10/2023]
Abstract
Estrogen-related receptors (ERR) are an orphan nuclear receptor sub-family that play a critical role in regulating gene transcription for several physiological processes including mitochondrial function, cellular energy utilization and homeostasis. They have also been implicated to play a role in several pathological conditions. Herein, we report the identification, synthesis, structure-activity relationships and pharmacological evaluation of a new chemical series of potent pan-ERR agonists. This template was designed for ERRγ starting from the known acyl hydrazide template and compounds such as agonist GSK-4716 employing a structure-based drug design approach. This led to the preparation of a series of 2,5-disubstituted thiophenes from which several were found to be potent agonists of ERRγ in cell-based co-transfection assays. Additionally, direct binding to ERRγ was established through 1H NMR protein-ligand binding experiments. Compound optimization revealed that the phenolic or aniline groups could be replaced with a boronic acid moiety, which was able to maintain activity and demonstrated improved metabolic stability in microsomal in vitro assays. Further pharmacological evaluation of these compounds showed that they had roughly equivalent agonist activity on ERR isoforms α and β representing an ERR pan-agonist profile. One potent agonist, SLU-PP-915 (10s), which contained a boronic acid moiety was profiled in gene expression assays and found to significantly upregulate the expression of ERR target genes such as peroxisome-proliferator activated receptor γ co-activators-1α, lactate dehydrogenase A, DNA damage inducible transcript 4 and pyruvate dehydrogenase kinase 4 both in vitro and in vivo.
Collapse
Affiliation(s)
- Carissa S Hampton
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Sadichha Sitaula
- Center for Clinical Pharmacology, St. Louis College of Pharmacy, Saint Louis, Missouri, 63110, United States
| | - Cyrielle Billon
- Center for Clinical Pharmacology, St. Louis College of Pharmacy, Saint Louis, Missouri, 63110, United States
| | - Keith Haynes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Amer Avdagic
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Udayanga Wanninayake
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Christiana M Adeyemi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Arindam Chatterjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Kristine Griffett
- Center for Clinical Pharmacology, St. Louis College of Pharmacy, Saint Louis, Missouri, 63110, United States
| | - Subhashis Banerjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Sheryl L Burris
- Center for Clinical Pharmacology, St. Louis College of Pharmacy, Saint Louis, Missouri, 63110, United States
| | - Emmalie Schoepke
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Terri Boehm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Alex Bess
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Ian Mitchelle S de Vera
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32310, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, United States; Institute for Translational Neuroscience, Saint Louis University, St. Louis MO, 63110, United States.
| |
Collapse
|
6
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
7
|
Willems S, Merk D. Medicinal Chemistry and Chemical Biology of Nurr1 Modulators: An Emerging Strategy in Neurodegeneration. J Med Chem 2022; 65:9548-9563. [PMID: 35797147 DOI: 10.1021/acs.jmedchem.2c00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor with neuroprotective and antineuroinflammatory properties. Observations from genetic studies and human patients support potential of Nurr1 as a therapeutic target in neurodegeneration, but due to a lack of high-quality chemical tools for pharmacological control of Nurr1, its target validation is pending. Nevertheless, considerable progress has recently been made in elucidating structural and functional characteristics of Nurr1, and several ligand scaffolds have been discovered. Here, we analyze Nurr1's structure and mechanisms compared to other nuclear receptors, summarize the known small molecule Nurr1 ligands, and discuss the available evidence for the therapeutic potential of Nurr1 in neurodegeneration.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
8
|
Trindade da Silva CA, Clemente-Napimoga JT, Abdalla HB, Basting RT, Napimoga MH. Peroxisome proliferator-activated receptor-gamma (PPARγ) and its immunomodulation function: current understanding and future therapeutic implications. Expert Rev Clin Pharmacol 2022; 15:295-303. [PMID: 35481412 DOI: 10.1080/17512433.2022.2071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Pain is a multidimensional experience involving the biological, psychological, and social dimensions of each individual. Particularly, the biological aspects of pain conditions are a response of the neuroimmunology system and the control of painful conditions is a worldwide challenge for researchers. Although years of investigation on pain experience and treatment exist, the high prevalence of chronic pain is still a fact. AREAS COVERED : Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It regulates several metabolic pathways, including lipid biosynthesis and glucose metabolism, when activated. However, PPARγ activation also has a critical immunomodulatory and neuroprotective effect. EXPERT OPINION : This review summarizes the evidence of synthetic or natural PPARγ ligands such as 15d-PGJ2, epoxyeicosatrienoic acids, thiazolidinediones, and specialized pro-resolving mediators, representing an interesting therapeutic tool for pain control.
Collapse
Affiliation(s)
- Carlos Antonio Trindade da Silva
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Henrique Ballassini Abdalla
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Rosanna Tarkany Basting
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| |
Collapse
|
9
|
Safe S, Shrestha R, Mohankumar K. Orphan nuclear receptor 4A1 (NR4A1) and novel ligands. Essays Biochem 2021; 65:877-886. [PMID: 34096590 PMCID: PMC11410023 DOI: 10.1042/ebc20200164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
The nuclear receptor (NR) superfamily of transcription factors encodes expression of 48 human genes that are important for maintaining cellular homeostasis and in pathophysiology, and this has been observed for all sub-families including orphan receptors for which endogenous ligands have not yet been identified. The orphan NR4A1 (Nur77 and TR3) and other members of this sub-family (NR4A2 and NR4A3) are immediate early genes induced by diverse stressors, and these receptors play an important role in the immune function and are up-regulated in some inflammatory diseases including solid tumors. Although endogenous ligands for NR4A have not been identified, several different classes of compounds have been characterized as NR4A1 ligands that bind the receptor. These compounds include cytosporone B and structurally related analogs, bis-indole derived (CDIM) compounds, the triterpenoid celastrol and a number of other chemicals including polyunsaturated fatty acids. NR4A1 ligands bind different regions/surfaces of NR4A1 and exhibit selective NR4A1 modulator (SNR4AM) activities that are dependent on ligand structure and cell/tissue context. NR4A1 ligands exhibit pharmacologic activities in studies on cancer, endometriosis metabolic and inflammatory diseases and are promising agents with clinical potential for treating multiple diseases.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, U.S.A
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
10
|
Cadmium hijacks the high zinc response by binding and activating the HIZR-1 nuclear receptor. Proc Natl Acad Sci U S A 2021; 118:2022649118. [PMID: 34649987 DOI: 10.1073/pnas.2022649118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. In Caenorhabditis elegans, high zinc homeostasis is regulated by the high zinc activated nuclear receptor (HIZR-1) transcription factor. To define relationships between the responses to high zinc and cadmium, we analyzed transcription. Many genes were activated by both high zinc and cadmium, and hizr-1 was necessary for activation of a subset of these genes; in addition, many genes activated by cadmium did not require hizr-1, indicating there are at least two mechanisms of cadmium-regulated transcription. Cadmium directly bound HIZR-1, promoted nuclear accumulation of HIZR-1 in intestinal cells, and activated HIZR-1-mediated transcription via the high zinc activation (HZA) enhancer. Thus, cadmium binding promotes HIZR-1 activity, indicating that cadmium acts as a zinc mimetic to hijack the high zinc response. To elucidate the relationships between high zinc and cadmium detoxification, we analyzed genes that function in three pathways: the pcs-1/phytochelatin pathway strongly promoted cadmium resistance but not high zinc resistance, the hizr-1/HZA pathway strongly promoted high zinc resistance but not cadmium resistance, and the mek-1/sek-1/kinase signaling pathway promoted resistance to high zinc and cadmium. These studies identify resistance pathways that are specific for high zinc and cadmium, as well as a shared pathway.
Collapse
|
11
|
Pulakazhi Venu VK, Alston L, Iftinca M, Tsai YC, Stephens M, Warriyar K V V, Rehal S, Hudson G, Szczepanski H, von der Weid PY, Altier C, Hirota SA. Nr4A1 modulates inflammation-associated intestinal fibrosis and dampens fibrogenic signaling in myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2021; 321:G280-G297. [PMID: 34288735 DOI: 10.1152/ajpgi.00338.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs), contributing to tissue stiffening and luminal narrowing. Human nuclear receptor 4A 1 (NR4A1) was previously reported to regulate mesenchymal cell function and dampen fibrogenic signaling. NR4A1 gene variants are associated with IBD risk, and it has been shown to regulate intestinal inflammation. Here, we tested the hypothesis that NR4A1 acts as a negative regulator of intestinal fibrosis through regulating myofibroblast function. Using the SAMP1/YitFc mouse, we tested whether two pharmacological agents known to enhance NR4A1 signaling, cytosporone B (Csn-B) or 6-mercaptopurine (6-MP), could reduce fibrosis. We also used the dextran sulfate sodium (DSS) model of colitis and assessed the magnitude of colonic fibrosis in mouse nuclear receptor 4A 1 (Nr4a1-/-) and their wild-type littermates (Nr4a1+/+). Lastly, intestinal myofibroblasts isolated from Nr4a1-/- and Nr4a1+/+ mice or primary human intestinal myofibroblasts were stimulated with transforming growth factor-β1 (TGF-β1), in the presence or absence of Csn-B or 6-MP, and proliferation and ECM gene expression assessed. Csn-B or 6-MP treatment significantly reduced ileal thickness, collagen, and overall ECM content in SAMP1/YitFc mice. This was associated with a reduction in proliferative markers within the mesenchymal compartment. Nr4a1-/- mice exposed to DSS exhibited increased colonic thickening and ECM content. Nr4a1-/- myofibroblasts displayed enhanced TGF-β1-induced proliferation. Furthermore, Csn-B or 6-MP treatment was antiproliferative in Nr4a1+/+ but not Nr4a1-/- cells. Lastly, activating NR4A1 in human myofibroblasts reduced TGF-β1-induced collagen deposition and fibrosis-related gene expression. Our data suggest that NR4A1 can attenuate fibrotic processes in intestinal myofibroblasts and could provide a valuable clinical target to treat inflammation-associated intestinal fibrosis.NEW & NOTEWORTHY Fibrosis and increased muscle thickening contribute to stricture formation and intestinal obstruction, a complication that occurs in 30%-50% of patients with CD within 10 yr of disease onset. More than 50% of those who undergo surgery to remove the obstructed bowel will experience stricture recurrence. To date, there are no drug-based approaches approved to treat intestinal strictures. In the current submission, we identify NR4A1 as a novel target to treat inflammation-associated intestinal fibrosis.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Cheng Tsai
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Stephens
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Vineetha Warriyar K V
- Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Sonia Rehal
- Department of Advanced Diagnostics, University Health Network, Toronto, Ontario, Canada
| | - Grace Hudson
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Holly Szczepanski
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Immunology, Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Kanamori S, Ohashi N, Ishida H, Yamamoto K, Itoh T. HNF4α Is a Covalent Bond-Forming Receptor. J Nutr Sci Vitaminol (Tokyo) 2021; 67:126-129. [PMID: 33952733 DOI: 10.3177/jnsv.67.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HNF4α is a nuclear receptor whose ligands are fatty acids. HNF4α is a target molecule for drug discovery research and thus we tested its covalent binding ability to investigate the possible development of covalent modifiers of HNF4α. Oxidized polyunsaturated fatty acids (oxo-PUFAs) have moderate flexibility and possess a Michael acceptor that participates in conjugate addition reactions with nucleophilic amino acid residues. Thus, oxo-PUFAs were used as probes and their covalent binding abilities to HNF4α were verified. Several oxo-PUFAs, such as 4-oxoDHA, were shown to be covalent modifiers of HNF4α and therefore we concluded that HNF4α can form covalent bonds to ligands.
Collapse
|
13
|
Feng L, Lu S, Zheng Z, Chen Y, Zhao Y, Song K, Xue H, Jin L, Li Y, Huang C, Li YM, Zhang J. Identification of an allosteric hotspot for additive activation of PPARγ in antidiabetic effects. Sci Bull (Beijing) 2021; 66:1559-1570. [PMID: 36654285 DOI: 10.1016/j.scib.2021.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Thiazolidinediones (TZDs), such as rosiglitazone (RSG), which activates peroxisome proliferator activated receptor-γ (PPARγ), are a potent class of oral antidiabetic agents with good durability. However, the clinical use of TZDs is challenging because of their side effects, including weight gain and hepatotoxicity. Here, we found that bavachinin (BVC), a lead natural product, additively activates PPARγ with low-dose RSG to preserve the maximum antidiabetic effects while reducing weight gain and hepatotoxicity in db/db mice caused by RSG monotherapy. Structural and biochemical assays demonstrated that an unexplored hotspot around Met329 and Ser332 in helix 5 is triggered by BVC cobinding to RSG-bound PPARγ, thereby allosterically stabilizing the active state of the activation-function 2 motif responsible for additive activation with RSG. Based on this hotspot, we discovered a series of new classes of allosteric agonists inducing the activity of TZDs in the same manner as BVC. Together, our data illustrate that the hotspot of PPARγ is druggable for the discovery of new allosteric synergists, and the combination therapy of allosteric synergists and TZD drugs may provide a potential alternative approach to the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Li Feng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhen Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
14
|
Mechanistic insights into the synergistic activation of the RXR-PXR heterodimer by endocrine disruptor mixtures. Proc Natl Acad Sci U S A 2021; 118:2020551118. [PMID: 33361153 PMCID: PMC7817120 DOI: 10.1073/pnas.2020551118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many environmental pollutants act as endocrine disruptors that interfere with normal endocrine regulation and promote adverse effects in humans. As a major target of xenobiotics, the pregnane X receptor (PXR) is known to play opposite roles by both facilitating their clearance and mediating their toxic effects. Here, we use structural and functional approaches to describe two converging mechanisms leading to a robust synergistic stimulation of the PXR pathway by mixtures of three chemicals exhibiting very low efficacy when administered separately. This “cocktail effect” relies on two cooperative binding processes that enhance both ligand binding affinity and recruitment of transcriptional coactivators. Our findings show how chemical mixtures may alter physiology and homeostasis at concentrations where individual components are considered safe. Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior. In its heterodimeric form with the retinoid X receptor (RXR), the pregnane X receptor (PXR) plays an essential role in controlling the mammalian xenobiotic response and mediates both beneficial and detrimental effects. Our previous work shed light on a mechanism by which a binary mixture of xenobiotics activates PXR in a synergistic fashion. Structural analysis revealed that mutual stabilization of the compounds within the ligand-binding pocket of PXR accounts for the enhancement of their binding affinity. In order to identify and characterize additional active mixtures, we combined a set of cell-based, biophysical, structural, and in vivo approaches. Our study reveals features that confirm the binding promiscuity of this receptor and its ability to accommodate bipartite ligands. We reveal previously unidentified binding mechanisms involving dynamic structural transitions and covalent coupling and report four binary mixtures eliciting graded synergistic activities. Last, we demonstrate that the robust activity obtained with two synergizing PXR ligands can be enhanced further in the presence of RXR environmental ligands. Our study reveals insights as to how low-dose EDC mixtures may alter physiology through interaction with RXR–PXR and potentially several other nuclear receptor heterodimers.
Collapse
|
15
|
Kassotis CD, Herkert NJ, Hammel SC, Hoffman K, Xia Q, Kullman SW, Sosa JA, Stapleton HM. Thyroid Receptor Antagonism of Chemicals Extracted from Personal Silicone Wristbands within a Papillary Thyroid Cancer Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15296-15312. [PMID: 33185092 PMCID: PMC7819617 DOI: 10.1021/acs.est.0c05972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Research suggests that thyroid cancer incidence rates are increasing, and environmental exposures have been postulated to be playing a role. To explore this possibility, we conducted a pilot study to investigate the thyroid disrupting bioactivity of chemical mixtures isolated from personal silicone wristband samplers within a thyroid cancer cohort. Specifically, we evaluated TRβ antagonism of chemical mixtures extracted from wristbands (n = 72) worn by adults in central North Carolina participating in a case-control study on papillary thyroid cancer. Sections of wristbands were solvent-extracted and analyzed via mass spectrometry to quantify a suite of semivolatile chemicals. A second extract from each wristband was used in a bioassay to quantify TRβ antagonism in human embryonic kidney cells (HEK293/17) at concentrations ranging from 0.1 to 10% of the original extract (by volume). Approximately 70% of the sample extracts tested at a 1% extract concentration exhibited significant TRβ antagonism, with a mean of 30% and a range of 0-100%. Inhibited cell viability was noted in >20% of samples that were tested at 5 and 10% concentrations. Antagonism was positively associated with wristband concentrations of several phthalates, organophosphate esters, and brominated flame retardants. These results suggest that personal passive samplers may be useful in evaluating the bioactivities of mixtures that people contact on a daily basis. We also report tentative associations between thyroid receptor antagonism, chemical concentrations, and papillary thyroid cancer case status. Future research utilizing larger sample sizes, prospective data collection, and measurement of serum thyroid hormone levels (which were not possible in this study) should be utilized to more comprehensively evaluate these associations.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Stephanie C Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Qianyi Xia
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Seth W Kullman
- Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Julie Ann Sosa
- Department of Surgery, University of California at San Francisco, San Francisco, California 94143, United States
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
16
|
Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARγ. Cancers (Basel) 2020; 12:cancers12123580. [PMID: 33266062 PMCID: PMC7761077 DOI: 10.3390/cancers12123580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been revealed to regulate tumor microenvironments. In particular, genetic alterations of PPARγ found in various cancers have been reported to play important roles in tumorigenesis by affecting PPARγ transactivation. In this study, we found that helix H3 of the PPARγ ligand-binding domain (LBD) has a number of sites that are mutated in cancers. To uncover underlying molecular mechanisms between helix H3 mutations and tumorigenesis, we performed structure‒function studies on the PPARγ LBDs containing helix H3 mutations found in cancers. Interestingly, PPARγ Q286E found in bladder cancer induces a constitutively active conformation of PPARγ LBD and thus abnormal activation of PPARγ/RXRα pathway, which suggests tumorigenic roles of PPARγ in bladder cancer. In contrast, other helix H3 mutations found in various cancers impair ligand binding essential for transcriptional activity of PPARγ. These data indicate that cancer-associated mutations clustered in helix H3 of PPARγ LBD exhibit differential effects in PPARγ-mediated tumorigenesis and provide a basis for the development of new biomarkers targeting tumor microenvironments.
Collapse
|
17
|
Karaboga H, Huang W, Srivastava S, Widmann S, Addanki S, Gamage KT, Mazhar Z, Ebalunode JO, Briggs JM, Gustafsson JÅ, Filgueira CS, Gilbertson SR, Lin CY. Screening of Focused Compound Library Targeting Liver X Receptors in Pancreatic Cancer Identified Ligands with Inverse Agonist and Degrader Activity. ACS Chem Biol 2020; 15:2916-2928. [PMID: 33074669 DOI: 10.1021/acschembio.0c00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the predominant form of pancreatic cancer. PDACs harbor oncogenic mutations in the KRAS gene, and ongoing efforts to directly target its mutant protein product to inhibit tumor growth are a priority not only in pancreatic cancer but in other malignancies such as lung and colorectal cancers where KRAS is also commonly mutated. An alternative strategy to directly targeting KRAS is to identify and target druggable receptors involved in dysregulated cancer hallmarks downstream of KRAS dysregulation. Liver X receptors (LXRs) are members of the nuclear receptor family of ligand-modulated transcription factors and are involved in the regulation of genes which function in key cancer-related processes, including cholesterol transport, lipid and glucose metabolism, and inflammatory and immune responses. Modulation of LXRs via small molecule ligands has emerged as a promising approach for directly targeting tumor cells or the stromal and immune cells within the tumor microenvironment. We have previously shown that only one of the two LXR subtypes (LXRβ) is expressed in pancreatic cancer cells, and targeting LXR with available synthetic ligands blocked the proliferation of PDAC cells and tumor formation. In a screen of a focused library of drug-like small molecules predicted to dock in the ligand-binding pocket of LXRβ, we identified two novel LXR ligands with more potent antitumor activity than current LXR agonists used in our published studies. Characterization of the two lead compounds (GAC0001E5 and GAC0003A4) indicates that they function as LXR inverse agonists which inhibit their transcriptional activity. Prolonged treatments with novel ligands further revealed their function as LXR "degraders" which significantly reduced LXR protein levels in all three PDAC cell lines tested. These findings support the utility of these novel inhibitors in basic research on ligand design, allosteric mechanisms, and LXR functions and their potential application as treatments for advanced pancreatic cancer and other recalcitrant malignancies.
Collapse
Affiliation(s)
| | - Wentao Huang
- College of Pharmacy, Guangxi Medical University, Qingxiu District, Nanning, Guangxi, China
| | | | | | | | | | | | | | | | | | - Carly S. Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | | | | |
Collapse
|
18
|
Yao B, Zhang S, Wei Y, Tian S, Lu Z, Jin L, He Y, Xie W, Li Y. Structural Insights into the Specificity of Ligand Binding and Coactivator Assembly by Estrogen-Related Receptor β. J Mol Biol 2020; 432:5460-5472. [PMID: 32795533 DOI: 10.1016/j.jmb.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/20/2023]
Abstract
Estrogen-related receptor β (ERRβ) is a nuclear receptor critical for many biological processes. Despite the biological and pharmaceutical importance of ERRβ, deciphering the structure of ERRβ has been hampered by the difficulties in obtaining a pure and stable protein for structural studies. In fact, the ERRβ ligand-binding domain remains the last unsolved ERR structure and also one of only a few unknown nuclear receptor structures. Here, we report the identification of a critical single-residue mutation resulted in robust solubility and stability of an active ERRβ ligand-binding domain, thereby providing a protein tool enabling the first probe into the biochemical and structural studies of this important receptor. The crystal structure reveals key structural features that have enabled the integration of the molecular determinants of signals transduced across the ligand binding and coregulator recruitment by all three ERR subtypes, which also provides a framework for the rational design of selective and potent ligands for the treatment of various ERR-mediated diseases.
Collapse
Affiliation(s)
- Benqiang Yao
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Shuchi Zhang
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Yijuan Wei
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Siyu Tian
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Zhou Lu
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Lihua Jin
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Ying He
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China.
| |
Collapse
|
19
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
20
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
21
|
Structural Basis for the Regulation of PPARγ Activity by Imatinib. Molecules 2019; 24:molecules24193562. [PMID: 31581474 PMCID: PMC6803859 DOI: 10.3390/molecules24193562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Imatinib is an effective anticancer drug for the treatment of leukemia. Interestingly, when an FDA-approved drug library was tested for agents that block peroxisome proliferator-activated receptor γ (PPARγ) phosphorylation at Ser245 to evaluate possibilities of antidiabetic drug repositioning, imatinib was determined as a PPARγ antagonist ligand. However, it is not well understood how imatinib binds to PPARγ or would improve insulin sensitivity without classical agonism. Here, we report the crystal structure of the PPARγ R288A mutant in complex with imatinib. Imatinib bound to Arm2 and Arm3 regions in the ligand-binding domain (LBD) of PPARγ, of which the Arm3 region is closely related to the inhibition of PPARγ phosphorylation at Ser245. The binding of imatinib in LBD induced a stable conformation of helix H2′ and the Ω loop compared with the ligand-free state. In contrast, imatinib does not interact with Tyr473 on PPARγ helix H12, which is important for the classical agonism associated with side effects. Our study provides new structural insights into the PPARγ regulation by imatinib and may contribute to the development of new antidiabetic drugs targeting PPARγ while minimizing known side effects.
Collapse
|
22
|
Lao C, Zhou X, Chen H, Wei F, Huang Z, Bai C. 5,6,7,8-Tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as inhibitors of full-length RORγt. Bioorg Chem 2019; 90:103077. [DOI: 10.1016/j.bioorg.2019.103077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
|
23
|
Jang JY, Kim H, Kim HJ, Suh SW, Park SB, Han BW. Structural basis for the inhibitory effects of a novel reversible covalent ligand on PPARγ phosphorylation. Sci Rep 2019; 9:11168. [PMID: 31371757 PMCID: PMC6671948 DOI: 10.1038/s41598-019-47672-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a major therapeutic target for the treatment of type 2 diabetes. However, the use of PPARγ-targeted drugs, such as rosiglitazone and pioglitazone, is limited owing to serious side effects caused by classical agonism. Using a rational drug discovery approach, we recently developed SB1495, a novel reversible covalent inhibitor of the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245, a key factor in the insulin-sensitizing effect of PPARγ-targeted drugs. In this study, we report the crystal structures of PPARγ in complex with SB1495 and its enantiomeric analogue SB1494, which rarely exhibits inhibitory activity, to visualize the mechanistic basis for their distinct activities. SB1495 occupies the Arm3 region near the Ω loop of the PPARγ ligand-binding domain, whereas its enantiomeric analogue SB1494 binds to the Arm2 region. In addition, the piperazine moiety of SB1495 directly pushes the helix H2′, resulting in the stabilization of the Ω loop just behind the helix H2′. Our results may contribute to the development of a new generation of antidiabetic drugs that selectively block PPARγ phosphorylation without classical agonism.
Collapse
Affiliation(s)
- Jun Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsoo Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
24
|
Merk D, Sreeramulu S, Kudlinzki D, Saxena K, Linhard V, Gande SL, Hiller F, Lamers C, Nilsson E, Aagaard A, Wissler L, Dekker N, Bamberg K, Schubert-Zsilavecz M, Schwalbe H. Molecular tuning of farnesoid X receptor partial agonism. Nat Commun 2019; 10:2915. [PMID: 31266946 PMCID: PMC6606567 DOI: 10.1038/s41467-019-10853-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
The bile acid-sensing transcription factor farnesoid X receptor (FXR) regulates multiple metabolic processes. Modulation of FXR is desired to overcome several metabolic pathologies but pharmacological administration of full FXR agonists has been plagued by mechanism-based side effects. We have developed a modulator that partially activates FXR in vitro and in mice. Here we report the elucidation of the molecular mechanism that drives partial FXR activation by crystallography- and NMR-based structural biology. Natural and synthetic FXR agonists stabilize formation of an extended helix α11 and the α11-α12 loop upon binding. This strengthens a network of hydrogen bonds, repositions helix α12 and enables co-activator recruitment. Partial agonism in contrast is conferred by a kink in helix α11 that destabilizes the α11-α12 loop, a critical determinant for helix α12 orientation. Thereby, the synthetic partial agonist induces conformational states, capable of recruiting both co-repressors and co-activators leading to an equilibrium of co-activator and co-repressor binding.
Collapse
Affiliation(s)
- Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, 60348, Germany.
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, 60438, Germany
| | - Denis Kudlinzki
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, 60438, Germany.,German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Krishna Saxena
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, 60438, Germany.,German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, 60438, Germany
| | - Santosh L Gande
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, 60438, Germany.,German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Fabian Hiller
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, 60438, Germany
| | - Christina Lamers
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, 60348, Germany
| | - Ewa Nilsson
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, 43183, Sweden
| | - Anna Aagaard
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, 43183, Sweden
| | - Lisa Wissler
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, 43183, Sweden
| | - Niek Dekker
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, 43183, Sweden
| | - Krister Bamberg
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, 43183, Sweden
| | | | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, 60438, Germany. .,German Cancer Consortium (DKTK), Heidelberg, 69120, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
25
|
Bruning JM, Wang Y, Oltrabella F, Tian B, Kholodar SA, Liu H, Bhattacharya P, Guo S, Holton JM, Fletterick RJ, Jacobson MP, England PM. Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chem Biol 2019; 26:674-685.e6. [PMID: 30853418 PMCID: PMC7185887 DOI: 10.1016/j.chembiol.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/06/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Nurr1, a nuclear receptor essential for the development, maintenance, and survival of midbrain dopaminergic neurons, is a potential therapeutic target for Parkinson's disease, a neurological disorder characterized by the degeneration of these same neurons. Efforts to identify Nurr1 agonists have been hampered by the recognition that it lacks several classic regulatory elements of nuclear receptor function, including the canonical ligand-binding pocket. Here we report that the dopamine metabolite 5,6-dihydroxyindole (DHI) binds directly to and modulates the activity of Nurr1. Using biophysical assays and X-ray crystallography, we show that DHI binds to the ligand-binding domain within a non-canonical pocket, forming a covalent adduct with Cys566. In cultured cells and zebrafish, DHI stimulates Nurr1 activity, including the transcription of target genes underlying dopamine homeostasis. These findings suggest avenues for developing synthetic Nurr1 ligands to ameliorate the symptoms and progression of Parkinson's disease.
Collapse
Affiliation(s)
- John M Bruning
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Francesca Oltrabella
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Boxue Tian
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Svetlana A Kholodar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Harrison Liu
- Bioengineering Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paulomi Bhattacharya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - James M Holton
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Pamela M England
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Meijer FA, Leijten-van de Gevel IA, de Vries RMJM, Brunsveld L. Allosteric small molecule modulators of nuclear receptors. Mol Cell Endocrinol 2019; 485:20-34. [PMID: 30703487 DOI: 10.1016/j.mce.2019.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Nuclear Receptors (NRs) are multi-domain proteins, whose natural regulation occurs via ligands for a classical, orthosteric, binding pocket and via intra- and inter-domain allosteric mechanisms. Allosteric modulation of NRs via synthetic small molecules has recently emerged as an interesting entry to address the need for small molecules targeting NRs in pathology, via novel modes of action and with beneficial profiles. In this review the general concept of allosteric modulation in drug discovery is first discussed, serving as a background and inspiration for NRs. Subsequently, the review focuses on examples of small molecules that allosterically modulate NRs, with a strong focus on structural information and the ligand binding domain. Recently discovered nanomolar potent allosteric site NR modulators are catapulting allosteric targeting of NRs to the center of attention. The obtained insights serve as a basis for recommendations for the next steps to take in allosteric small molecular targeting of NRs.
Collapse
Affiliation(s)
- Femke A Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Iris A Leijten-van de Gevel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Rens M J M de Vries
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ, Eindhoven, the Netherlands.
| |
Collapse
|
27
|
Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. eLife 2018; 7:43320. [PMID: 30575522 PMCID: PMC6317912 DOI: 10.7554/elife.43320] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω)-loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω-loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Richard Brust
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Sarah A Mosure
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Summer Undergraduate Research Fellows (SURF) program, The Scripps Research Institute, Jupiter, United States.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, United States
| | - Jared Bass
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Travis S Hughes
- Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, United States.,Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, United States
| | - Miru Tang
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, United States
| | - Theodore M Kamenekca
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
28
|
de Vera IMS, Munoz-Tello P, Zheng J, Dharmarajan V, Marciano DP, Matta-Camacho E, Giri PK, Shang J, Hughes TS, Rance M, Griffin PR, Kojetin DJ. Defining a Canonical Ligand-Binding Pocket in the Orphan Nuclear Receptor Nurr1. Structure 2018; 27:66-77.e5. [PMID: 30416039 DOI: 10.1016/j.str.2018.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/17/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Nuclear receptor-related 1 protein (Nurr1/NR4A2) is an orphan nuclear receptor (NR) that is considered to function without a canonical ligand-binding pocket (LBP). A crystal structure of the Nurr1 ligand-binding domain (LBD) revealed no physical space in the conserved region where other NRs with solvent accessible apo-protein LBPs bind synthetic and natural ligands. Using solution nuclear magnetic resonance spectroscopy, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we show that the putative canonical Nurr1 LBP is dynamic with high solvent accessibility, exchanges between two or more conformations on the microsecond-to-millisecond timescale, and can expand from the collapsed crystallized conformation to allow binding of unsaturated fatty acids. These findings should stimulate future studies to probe the ligandability and druggability of Nurr1 for both endogenous and synthetic ligands, which could lead to new therapeutics for Nurr1-related diseases, including Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - David P Marciano
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edna Matta-Camacho
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Pankaj Kumar Giri
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Travis S Hughes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
29
|
de Vera IMS. Advances in Orphan Nuclear Receptor Pharmacology: A New Era in Drug Discovery. ACS Pharmacol Transl Sci 2018; 1:134-137. [PMID: 32219209 DOI: 10.1021/acsptsci.8b00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 02/01/2023]
Abstract
Over the past decade, advances in biophysical chemistry, genomic analysis, and structural biology have resulted in the exponential growth of knowledge and critical insight into the function and regulation of orphan nuclear receptors. This article summarizes the current progress in illuminating the structure, function, and regulation of orphan nuclear receptors and their involvement in the physiology, development and molecular mechanism of different pathological conditions. Moreover, current strategies for discovering endogenous ligands, downstream NR-regulated target genes, and new drugs for future therapeutics will be discussed.
Collapse
Affiliation(s)
- Ian Mitchelle S de Vera
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| |
Collapse
|
30
|
Orphan Nuclear Receptors in Colorectal Cancer. Pathol Oncol Res 2018; 24:815-819. [DOI: 10.1007/s12253-018-0440-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/30/2018] [Indexed: 12/30/2022]
|
31
|
Rakers C, Najnin RA, Polash AH, Takeda S, Brown J. Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families. ChemMedChem 2018; 13:511-521. [DOI: 10.1002/cmdc.201700677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/04/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Christin Rakers
- Institute of Transformative bio-Molecules, WPI-ITbM; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| | - Rifat Ara Najnin
- Department of Radiation Genetics; Kyoto University Graduate School of Medicine; Sakyo, Yoshida-konoemachi Building D, 3F Kyoto 606-8501 Japan
| | - Ahsan Habib Polash
- Department of Radiation Genetics; Kyoto University Graduate School of Medicine; Sakyo, Yoshida-konoemachi Building D, 3F Kyoto 606-8501 Japan
| | - Shunichi Takeda
- Department of Radiation Genetics; Kyoto University Graduate School of Medicine; Sakyo, Yoshida-konoemachi Building D, 3F Kyoto 606-8501 Japan
| | - J.B. Brown
- Laboratory for Molecular Biosciences; Kyoto University Graduate School of Medicine; Yoshida-konoemachi Building E 606-8501 Kyoto Sakyo Japan
| |
Collapse
|
32
|
Structural Basis for the Enhanced Anti-Diabetic Efficacy of Lobeglitazone on PPARγ. Sci Rep 2018; 8:31. [PMID: 29311579 PMCID: PMC5758645 DOI: 10.1038/s41598-017-18274-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, insulin resistance, and inflammation. Here, we report the crystal structures of PPARγ in complex with lobeglitazone, a novel PPARγ agonist, and with rosiglitazone for comparison. The thiazolidinedione (TZD) moiety of lobeglitazone occupies the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) in ligand-binding domain as the TZD moiety of rosiglitazone does. However, the elongated p-methoxyphenol moiety of lobeglitazone interacts with the hydrophobic pocket near the alternate binding site of PPARγ. The extended interaction of lobeglitazone with the hydrophobic pocket enhances its binding affinity and could affect the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). Lobeglitazone inhibited the phosphorylation of PPARγ at Ser245 in a dose-dependent manner and exhibited a better inhibitory effect on Ser245 phosphorylation than rosiglitazone did. Our study provides new structural insights into the PPARγ regulation by TZD drugs and could be useful for the discovery of new PPARγ ligands as an anti-diabetic drug, minimizing known side effects.
Collapse
|
33
|
Roosjen M, Paque S, Weijers D. Auxin Response Factors: output control in auxin biology. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:179-188. [PMID: 28992135 DOI: 10.1093/jxb/erx237] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Collapse
Affiliation(s)
- Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Sébastien Paque
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| |
Collapse
|
34
|
Li X, Anderson M, Collin D, Muegge I, Wan J, Brennan D, Kugler S, Terenzio D, Kennedy C, Lin S, Labadia ME, Cook B, Hughes R, Farrow NA. Structural studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of RORγt inhibitors. J Biol Chem 2017; 292:11618-11630. [PMID: 28546429 DOI: 10.1074/jbc.m117.789024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/23/2017] [Indexed: 12/31/2022] Open
Abstract
The nuclear receptor retinoid acid receptor-related orphan receptor γt (RORγt) is a master regulator of the Th17/IL-17 pathway that plays crucial roles in the pathogenesis of autoimmunity. RORγt has recently emerged as a highly promising target for treatment of a number of autoimmune diseases. Through high-throughput screening, we previously identified several classes of inverse agonists for RORγt. Here, we report the crystal structures for the ligand-binding domain of RORγt in both apo and ligand-bound states. We show that apo RORγt adopts an active conformation capable of recruiting coactivator peptides and present a detailed analysis of the structural determinants that stabilize helix 12 (H12) of RORγt in the active state in the absence of a ligand. The structures of ligand-bound RORγt reveal that binding of the inverse agonists disrupts critical interactions that stabilize H12. This destabilizing effect is supported by ab initio calculations and experimentally by a normalized crystallographic B-factor analysis. Of note, the H12 destabilization in the active state shifts the conformational equilibrium of RORγt toward an inactive state, which underlies the molecular mechanism of action for the inverse agonists reported here. Our findings highlight that nuclear receptor structure and function are dictated by a dynamic conformational equilibrium and that subtle changes in ligand structures can shift this equilibrium in opposite directions, leading to a functional switch from agonists to inverse agonists.
Collapse
Affiliation(s)
- Xiang Li
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368.
| | - Marie Anderson
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Delphine Collin
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Ingo Muegge
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - John Wan
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Debra Brennan
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Stanley Kugler
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Donna Terenzio
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Charles Kennedy
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Siqi Lin
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Mark E Labadia
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368
| | - Brian Cook
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Robert Hughes
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| | - Neil A Farrow
- Departments of Small Molecule Discovery Research, Ridgefield, Connecticut 06877-0368
| |
Collapse
|
35
|
Brust R, Lin H, Fuhrmann J, Asteian A, Kamenecka TM, Kojetin DJ. Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. ACS Chem Biol 2017; 12:969-978. [PMID: 28165718 DOI: 10.1021/acschembio.6b01015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
GW9662 and T0070907 are widely used commercially available irreversible antagonists of peroxisome proliferator-activated receptor gamma (PPARγ). These antagonists covalently modify Cys285 located in an orthosteric ligand-binding pocket embedded in the PPARγ ligand-binding domain and are used to block binding of other ligands. However, we recently identified an alternate/allosteric ligand-binding site in the PPARγ LBD to which ligand binding is not inhibited by these orthosteric covalent antagonists. Here, we developed a series of analogs based on the orthosteric covalent antagonist scaffold with the goal of inhibiting both orthosteric and allosteric cellular activation of PPARγ by MRL20, an orthosteric agonist that also binds to an allosteric site. Our efforts resulted in the identification of SR16832 (compound 22), which functions as a dual-site covalent inhibitor of PPARγ transcription by PPARγ-binding ligands. Molecular modeling, protein NMR spectroscopy structural analysis, and biochemical assays indicate the inhibition of allosteric activation occurs in part through expansion of the 2-chloro-5-nitrobenzamidyl orthosteric covalent antagonist toward the allosteric site, weakening of allosteric ligand binding affinity, and inducing conformational changes not competent for cellular PPARγ activation. Furthermore, SR16832 better inhibits binding of rosiglitazone, a thiazolidinedione (TZD) that weakly activates PPARγ when cotreated with orthosteric covalent antagonists, and may better inhibit binding of endogenous PPARγ ligands such as docosahexaenoic acid (DHA) compared to orthosteric covalent antagonists. Compounds such as SR16832 may be useful chemical tools to use as a dual-site bitopic orthosteric and allosteric covalent inhibitor of ligand binding to PPARγ.
Collapse
Affiliation(s)
- Richard Brust
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Hua Lin
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Jakob Fuhrmann
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Alice Asteian
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Theodore M. Kamenecka
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Douglas J. Kojetin
- Department of Molecular Therapeutics,
The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| |
Collapse
|
36
|
Malinina L, Patel DJ, Brown RE. How α-Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Annu Rev Biochem 2017; 86:609-636. [PMID: 28375742 DOI: 10.1146/annurev-biochem-061516-044445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-β-strand barrels, to β-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Rhoderick E Brown
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| |
Collapse
|
37
|
Structural basis for differential activities of enantiomeric PPARγ agonists: Binding of S35 to the alternate site. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:674-681. [PMID: 28342850 DOI: 10.1016/j.bbapap.2017.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/11/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte differentiation, type 2 diabetes mellitus, and inflammation. Many PPARγ agonists bind to the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) of the ligand-binding domain (LBD). More recently, an alternate ligand-binding site was identified in PPARγ LBD; it is located beside the Ω loop between the helices H2' and H3. We reported previously that the chirality of two optimized enantiomeric PPARγ ligands (S35 and R35) differentiates their PPARγ transcriptional activity, binding affinity, and inhibitory activity toward Cdk5 (cyclin-dependent kinase 5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). S35 is a PPARγ phosphorylation inhibitor with promising glucose uptake potential, whereas R35 behaves as a potent conventional PPARγ agonist. To provide a structural basis for understanding the differential activities of these enantiomeric ligands, we have determined crystal structures of the PPARγ LBD in complex with either S35 or R35. S35 and R35 bind to the PPARγ LBD in significantly different manners. The partial agonist S35 occupies the alternate site near the Ω loop, whereas the full agonist R35 binds entirely to the canonical LBP. Alternate site binding of S35 affects the PPARγ transactivation and the inhibitory effect on PPARγ Ser245 phosphorylation. This study provides a useful platform for the development of a new generation of PPARγ ligands as anti-diabetic drug candidates.
Collapse
|
38
|
Holzer G, Markov GV, Laudet V. Evolution of Nuclear Receptors and Ligand Signaling. Curr Top Dev Biol 2017; 125:1-38. [DOI: 10.1016/bs.ctdb.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Chen M, Yang F, Yang X, Lai X, Gao Y. Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach. Int J Mol Sci 2016; 17:ijms17122114. [PMID: 27999264 PMCID: PMC5187914 DOI: 10.3390/ijms17122114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS.
Collapse
Affiliation(s)
- Meimei Chen
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Fafu Yang
- College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.
| | - Xuemei Yang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xinmei Lai
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yuxing Gao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
40
|
Abstract
Nuclear receptors (NRs) are master regulators of broad genetic programs in metazoans. These programs are regulated in part by the small-molecule ligands that bind NRs and modulate their interactions with transcriptional coregulatory factors. X-ray crystallography is now delivering more complete pictures of how the multidomain architectures of NR homo- and heterodimers are physically arranged on their DNA elements and how ligands and coactivator peptides act through these complexes. Complementary studies are also pointing to a variety of novel mechanisms by which NRs access their DNA-response elements within chromatin. Here, we review the new structural advances together with proteomic discoveries that shape our understanding of how NRs form a variety of functional interactions with collaborating factors in chromatin.
Collapse
Affiliation(s)
| | - Fraydoon Rastinejad
- Integrative Metabolism Program, SBP Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
41
|
Tice CM, Zheng YJ. Non-canonical modulators of nuclear receptors. Bioorg Med Chem Lett 2016; 26:4157-64. [PMID: 27503683 DOI: 10.1016/j.bmcl.2016.07.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/19/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Like G protein-coupled receptors (GPCRs) and protein kinases, nuclear receptors (NRs) are a rich source of pharmaceutical targets. Over 80 NR-targeting drugs have been approved for 18 NRs. The focus of drug discovery in NRs has hitherto been on identifying ligands that bind to the canonical ligand binding pockets of the C-terminal ligand binding domains (LBDs). Due to the development of drug resistance and selectivity concerns, there has been considerable interest in exploring other, non-canonical ligand binding sites. Unfortunately, the potencies of compounds binding at other sites have generally not been sufficient for clinical development. However, the situation has changed dramatically over the last 3years, as compounds with sufficient potency have been reported for several NR targets. Here we review recent developments in this area from a medicinal chemistry point of view in the hope of stimulating further interest in this area of research.
Collapse
Affiliation(s)
- Colin M Tice
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, PA 19034, United States
| | - Ya-Jun Zheng
- Vitae Pharmaceuticals, Inc., 502 West Office Center Drive, Fort Washington, PA 19034, United States
| |
Collapse
|
42
|
de Vera IMS, Giri PK, Munoz-Tello P, Brust R, Fuhrmann J, Matta-Camacho E, Shang J, Campbell S, Wilson HD, Granados J, Gardner WJ, Creamer TP, Solt LA, Kojetin DJ. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1. ACS Chem Biol 2016; 11:1795-9. [PMID: 27128111 DOI: 10.1021/acschembio.6b00037] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Trevor P. Creamer
- Center
for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | | |
Collapse
|
43
|
Divekar SD, Tiek DM, Fernandez A, Riggins RB. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance? NUCLEAR RECEPTOR SIGNALING 2016; 14:e002. [PMID: 27507929 PMCID: PMC4978380 DOI: 10.1621/nrs.14002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/25/2016] [Indexed: 01/11/2023]
Abstract
Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.
Collapse
Affiliation(s)
- Shailaja D Divekar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| | - Deanna M Tiek
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| | - Aileen Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC (SDD, DMT, AF, RBR)
| |
Collapse
|
44
|
Belorusova A, Osz J, Petoukhov MV, Peluso-Iltis C, Kieffer B, Svergun DI, Rochel N. Solution Behavior of the Intrinsically Disordered N-Terminal Domain of Retinoid X Receptor α in the Context of the Full-Length Protein. Biochemistry 2016; 55:1741-1748. [PMID: 26937780 DOI: 10.1021/acs.biochem.5b01122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinoid X receptors (RXRs) are transcription factors with important functions in embryonic development, metabolic processes, differentiation, and apoptosis. A particular feature of RXRs is their ability to act as obligatory heterodimerization partners of class II nuclear receptors. At the same time, these receptors are also able to form homodimers that bind to direct repeat separated by one nucleotide hormone response elements. Since the discovery of RXRs, most of the studies focused on its ligand binding and DNA binding domains, while its N-terminal domain (NTD) harboring a ligand-independent activation function remained poorly characterized. Here, we investigated the solution properties of the NTD of RXRα alone and in the context of the full-length receptor using small-angle X-ray scattering and nuclear magnetic resonance spectroscopy. We report the solution structure of the full-length homodimeric RXRα on DNA and show that the NTD remains highly flexible within this complex.
Collapse
Affiliation(s)
- Anna Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Judit Osz
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Carole Peluso-Iltis
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Bruno Kieffer
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964 / Centre National de la Recherche Scientifique (CNRS) UMR 7104 / Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
45
|
Abstract
The human genome codes for 48 members of the nuclear receptor superfamily, half of which have known ligands. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins, and prostaglandins. Nuclear receptors regulate gene expression programs controlling development, differentiation, metabolic homeostasis and reproduction, in both a temporal and a tissue-selective manner. Since the original cloning of the cDNAs for the estrogen and glucocorticoid receptors, large strides have been made in our understanding of the structure and function of this family of transcription factors and their role in pathophysiology.
Collapse
Affiliation(s)
- Iain J McEwan
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
46
|
Belorusova AY, Rochel N. Structural Studies of Vitamin D Nuclear Receptor Ligand-Binding Properties. VITAMINS AND HORMONES 2015; 100:83-116. [PMID: 26827949 DOI: 10.1016/bs.vh.2015.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The vitamin D nuclear receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 hormone (1,25(OH)2D3, or calcitriol), classically regulate mineral homeostasis and metabolism but also much broader range of biological functions, such as cell growth, differentiation, antiproliferation, apoptosis, adaptive/innate immune responses. Being widely expressed in various tissues, VDR represents an important therapeutic target in the treatment of diverse disorders. Since ligand binding is a key step in VDR-mediated signaling, numerous 1,25(OH)2D3 analogs have been synthesized in order to selectively modulate the receptor activity. Most of the synthetic analogs have been developed by modification of a parental compound and some of them mimic 1,25(OH)2D3 scaffold without being structurally related to it. The ability of ligands that have different size and conformation to bind to VDR and to demonstrate biological effects is intriguing, and therefore, ligand-binding properties of the receptor have been extensively investigated using a variety of biochemical, biophysical, and computational methods. In this chapter, we describe different aspects of the structure-function relationship of VDR in complex with natural and synthetic ligands coming from structural analysis. With the emphasis on the binding modes of the most promising compounds, such as secosteroidal agonists and 1,25(OH)2D3 mimics, we also highlight the action of VDR antagonists and the evidence for the existence of an alternative ligand-binding site within the receptor. Additionally, we describe the crystal structures of VDR mutants associated with hereditary vitamin D-resistant rickets that display impaired ligand-binding function.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
47
|
Zhi X, Zhou XE, He Y, Searose-Xu K, Zhang CL, Tsai CC, Melcher K, Xu HE. Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Genes Dev 2015; 29:440-50. [PMID: 25691470 PMCID: PMC4335298 DOI: 10.1101/gad.254904.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Zhi et al. report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX. In addition, mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA; Autophagy Research Center,
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Yuanzheng He
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Kelvin Searose-Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Texas 75390, USA
| | - Chih-Cheng Tsai
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, California 92521, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA; Van Andel Research Institute-Shanghai Institute of Materia Medica (VARI/SIMM) Center, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|