1
|
Vishnivetskiy SA, Gurevich EV, Gurevich VV. The role of arrestin-1 N-edge in rhodopsin binding. Cell Signal 2025; 134:111935. [PMID: 40505845 DOI: 10.1016/j.cellsig.2025.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2025] [Revised: 06/03/2025] [Accepted: 06/08/2025] [Indexed: 06/16/2025]
Abstract
Arrestin-1, in contrast to other subtypes, demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The loop between β-strands IX and X, termed N-edge because it is located on the distal tip of the N-domain in the folded arrestin molecule, was implicated in the binding of arrestin-1 and -2 to their cognate receptors. We performed alanine scanning and charge reversal mutagenesis of all twelve residues in this element of bovine arrestin-1. The mutants were tested for the binding to phosphorylated and unphosphorylated light-activated rhodopsin in the context of wild type and "enhanced" in terms of receptor binding C-terminally truncated arrestin-1-(1-378). The data identified two phosphate-binding lysines and seven other residues enhancing arrestin-1 preference for phosphorylated rhodopsin over unphosphorylated. We deleted three of these that are absent in the other mammalian arrestins and found that this insert is generally important for rhodopsin binding, not for enhanced selectivity. Eleven out of nineteen mutations differentially affected the binding of wild type arrestin-1 and its enhanced mutant, suggesting that the prevalent form of the complex of these two arrstin-1 variants with rhodopsin is different.
Collapse
Affiliation(s)
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Kurt H, Akyol A, Son CD, Zheng C, Gado I, Meli M, Ferrandi EE, Bassanini I, Vasile F, Gurevich VV, Nebol A, Cagavi E, Morra G, Sensoy O. A small molecule enhances arrestin-3 binding to the β 2-adrenergic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628161. [PMID: 39713392 PMCID: PMC11661165 DOI: 10.1101/2024.12.12.628161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
G protein-coupled receptor (GPCR) signaling is terminated by arrestin binding to a phosphorylated receptor. Binding propensity has been shown to be modulated by stabilizing the pre-activated state of arrestin through point mutations or C-tail truncation. Here, we hypothesize that pre-activated rotated states can be stabilized by small molecules, and this can promote binding to phosphorylation-deficient receptors, which underly a variety of human disorders. We performed virtual screening on druggable pockets identified on pre-activated conformations in Molecular Dynamics trajectories of arrestin-3, and found a compound targeting an activation switch, the back loop at the inter-domain interface. According to our model, consistent with available biochemical and structural data, the compound destabilized the ionic lock between the finger and the back loop, and enabled transition of the `gate loop` towards the pre-activated state, which stabilizes pre-activated inter-domain rotation. The predicted binding pocket is consistent with saturation-transfer difference NMR data indicating close contact between the piperazine moiety of the compound and C/finger loops. The compound increases in-cell arrestin-3 binding to phosphorylation-deficient and wild-type β2-adrenergic receptor, but not to muscarinic M2 receptor, as verified by FRET and NanoBiT. This study demonstrates that the back loop can be targeted to modulate interaction of arrestin with phosphorylation-deficient GPCRs in a receptor-specific manner.
Collapse
Affiliation(s)
- Han Kurt
- Istanbul Medipol University, Graduate School of Engineering and Natural Sciences, 34810, Istanbul, Turkey
- present address: University of Cagliari, Department of Physics, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Ali Akyol
- The Middle East Technical University, Department of Biological Sciences, Ankara 06800, Turkey
| | - Cagdas Devrim Son
- The Middle East Technical University, Department of Biological Sciences, Ankara 06800, Turkey
| | - Chen Zheng
- Vanderbilt University, Department of Pharmacology, 37232, Nashville, TN, USA
| | - Irene Gado
- University of Milano, Department of Chemistry, via Golgi 19, 20131 Milano, Italy
| | - Massimiliano Meli
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Erica Elisa Ferrandi
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Ivan Bassanini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Francesca Vasile
- University of Milano, Department of Chemistry, via Golgi 19, 20131 Milano, Italy
| | | | - Aylin Nebol
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
- Istanbul Medipol University, Institute for Health Sciences, Medical Biology and Genetics Program, 34810, Istanbul, Turkey
- Istanbul Medipol University, School of Medicine, Department of Medical Biology, 34810, Istanbul, Turkey
| | - Esra Cagavi
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
- Istanbul Medipol University, Institute for Health Sciences, Medical Biology and Genetics Program, 34810, Istanbul, Turkey
- Istanbul Medipol University, School of Medicine, Department of Medical Biology, 34810, Istanbul, Turkey
| | - Giulia Morra
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “G. Natta” SCITEC, via Mario Bianco 9, 20131, Milano, Italy
| | - Ozge Sensoy
- Istanbul Medipol University, School of Engineering and Natural Sciences, Department of Biomedical Engineering, 34810, Istanbul, Turkey
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medical Research Center (REMER), 34810, Istanbul, Turkey
| |
Collapse
|
3
|
Lou F, Zhou W, Tunc-Ozdemir M, Yang J, Velazhahan V, Tate CG, Jones AM. VPS26 Moonlights as a β-Arrestin-like Adapter for a 7-Transmembrane RGS Protein in Arabidopsis thaliana. Biochemistry 2024; 63:2990-2999. [PMID: 39467170 PMCID: PMC11580166 DOI: 10.1021/acs.biochem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Extracellular signals perceived by 7-transmembrane (7TM)-spanning receptors initiate desensitization that involves the removal of these receptors from the plasma membrane. Agonist binding often evokes phosphorylation in the flexible C-terminal region and/or intracellular loop 3 of many 7TM G-protein-coupled receptors in animal cells, which consequently recruits a cytoplasmic intermediate adaptor, β-arrestin, resulting in clathrin-mediated endocytosis (CME) and downstream signaling such as transcriptional changes. Some 7TM receptors undergo CME without recruiting β-arrestin, but it is not clear how. Arrestins are not encoded in the Arabidopsis thaliana genome, yet Arabidopsis cells have a well-characterized signal-induced CME of a 7TM protein, designated Regulator of G Signaling 1 (AtRGS1). Here we show that a component of the retromer complex, Vacuolar Protein Sorting-Associated 26 (VPS26), binds the phosphorylated C-terminal region of AtRGS1 as a VPS26A/B heterodimer to form a complex that is required for downstream signaling. We propose that VPS26 moonlights as an arrestin-like adaptor in the CME of AtRGS1.
Collapse
Affiliation(s)
- Fei Lou
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Wenbin Zhou
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Meral Tunc-Ozdemir
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jing Yang
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Vaithish Velazhahan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
- Gonville
and Caius College, University of Cambridge, Cambridge CB2 1TA, U.K.
| | - Christopher G. Tate
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| | - Alan M. Jones
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Pharmacology, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
5
|
Pham U, Chundi A, Stępniewski TM, Darbha S, Eiger DS, Gazula S, Gardner J, Hicks C, Selent J, Rajagopal S. Location-biased β-arrestin conformations direct GPCR signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614742. [PMID: 39386521 PMCID: PMC11463559 DOI: 10.1101/2024.09.24.614742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners1,2. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias"3,4. Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the β-arrestin-biased agonist TRV023, β-arrestin 1 and β-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated β-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of β-arrestins beyond traditional G protein pathways.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | | | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Sonia Gazula
- Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Gardner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chloe Hicks
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Qi M, Chen TT, Li L, Gao PP, Li N, Zhang SH, Wei W, Sun WY. Insight into the regulatory mechanism of β-arrestin2 and its emerging role in diseases. Br J Pharmacol 2024; 181:3019-3038. [PMID: 38961617 DOI: 10.1111/bph.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
β-arrestin2, a member of the arrestin family, mediates the desensitization and internalization of most G protein-coupled receptors (GPCRs) and functions as a scaffold protein in signalling pathways. Previous studies have demonstrated that β-arrestin2 expression is dysregulated in malignant tumours, fibrotic diseases, cardiovascular diseases and metabolic diseases, suggesting its pathological roles. Transcription and post-transcriptional modifications can affect the expression of β-arrestin2. Furthermore, post-translational modifications, such as phosphorylation, ubiquitination, SUMOylation and S-nitrosylation affect the cellular localization of β-arrestin2 and its interaction with downstream signalling molecules, which further regulate the activity of β-arrestin2. This review summarizes the structure and function of β-arrestin2 and reveals the mechanisms involved in the regulation of β-arrestin2 at multiple levels. Additionally, recent studies on the role of β-arrestin2 in some major diseases and its therapeutic prospects have been discussed to provide a reference for the development of drugs targeting β-arrestin2.
Collapse
Affiliation(s)
- Meng Qi
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ting-Ting Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ling Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Ping-Ping Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Nan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Shi-Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| | - Wu-Yi Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anhui-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
7
|
Gupta PK, Das A, Singh A, Rana S. Ternary model structural complex of C5a, C5aR2, and β-arrestin1. J Biomol Struct Dyn 2024; 42:7190-7206. [PMID: 37493401 DOI: 10.1080/07391102.2023.2239927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/15/2023] [Indexed: 07/27/2023]
Abstract
Complement component fragment 5a (C5a) is one of the potent proinflammatory modulators of the complement system. C5a recruits two genomically related G protein-coupled receptors (GPCRs), like C5aR1 and C5aR2, constituting a binary complex. The C5a-C5aR1/C5aR2 binary complexes involve other transducer proteins like heterotrimeric G-proteins and β-arrestins to generate the fully active ternary complexes that trigger intracellular signaling through downstream effector molecules in tissues. In the absence of structural data, we had recently developed highly refined model structures of C5aR2 in its inactive (free), meta-active (complexed to the CT-peptide of C5a), and active (complexed to C5a) state embedded to a model palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. Compared to C5aR1, C5aR2 is established as a noncanonical GPCR, as it recruits and signals through β-arrestins rather than G-proteins. Notably, structural understanding of the ternary complex involving C5a-C5aR2-β-arrestin is currently unknown. The current study has attempted to fill the gap by generating a highly refined, fully active ternary model structural complex of the C5a-C5aR2-β-arrestin1 embedded in a model POPC bilayer. The computational modeling, 500 ns molecular dynamics (MD) studies, and the principal component analysis (PCA), including the molecular mechanics Poisson-Boltzmann surface area (MM PBSA) based data presented in this study, provide an experimentally testable hypothesis about C5a-C5aR2-β-arrestin1 extendable to other such ternary systems. The model ternary complex of C5a-C5aR2-β-arrestin1 will further enrich the current structural understanding related to the interaction of β-arrestins with the C5a-C5aR2 system.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Aurosikha Das
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Maaliki D, Jaffa AA, Nasser S, Sahebkar A, Eid AH. Adrenoceptor Desensitization: Current Understanding of Mechanisms. Pharmacol Rev 2024; 76:358-387. [PMID: 38697858 PMCID: PMC12164723 DOI: 10.1124/pharmrev.123.000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 05/05/2024] Open
Abstract
G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of β-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, β-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, β-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the β adrenoceptors and highlights the role of β-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Aneese A Jaffa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Suzanne Nasser
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Amirhossein Sahebkar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon (D.M.); School of Medicine, University of South Carolina, Columbia, South Carolina (A.A.J.); Keele University, Staffordshire, United Kingdom (S.N.); Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran (A.S.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
9
|
Liao YY, Zhang H, Shen Q, Cai C, Ding Y, Shen DD, Guo J, Qin J, Dong Y, Zhang Y, Li XM. Snapshot of the cannabinoid receptor 1-arrestin complex unravels the biased signaling mechanism. Cell 2023; 186:5784-5797.e17. [PMID: 38101408 DOI: 10.1016/j.cell.2023.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/08/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and β-arrestin signaling pathways. However, the lack of understanding of the mechanism of β-arrestin-1 (βarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-βarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. βarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.
Collapse
Affiliation(s)
- Yu-Ying Liao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Chenxi Cai
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Yu Ding
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Yingjun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Yan Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou 310058, China; Lingang Laboratory, Shanghai 200031, China.
| |
Collapse
|
10
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
11
|
Chen Q, Schafer CT, Mukherjee S, Gustavsson M, Agrawal P, Yao XQ, Kossiakoff AA, Handel TM, Tesmer JJG. ACKR3-arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549504. [PMID: 37502840 PMCID: PMC10370059 DOI: 10.1101/2023.07.18.549504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| | - Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Parth Agrawal
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL60637, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-2054, USA
| |
Collapse
|
12
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Differential regulation of histamine H 1 receptor-mediated ERK phosphorylation by G q proteins and arrestins. Biochem Pharmacol 2023; 213:115595. [PMID: 37201878 DOI: 10.1016/j.bcp.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Gq protein-coupled histamine H1 receptors play crucial roles in allergic and inflammatory reactions, in which the phosphorylation of extracellular signal-regulated kinase (ERK) appears to mediate the production of inflammatory cytokines. ERK phosphorylation is regulated by G protein- and arrestin-mediated signal transduction pathways. Here, we aimed to explore how H1 receptor-mediated processes of ERK phosphorylation might be differentially regulated by Gq proteins and arrestins. For this purpose, we evaluated the regulatory mechanism(s) of H1 receptor-mediated ERK phosphorylation in Chinese hamster ovary cells expressing Gq protein- and arrestin-biased mutants of human H1 receptors, S487TR and S487A, in which the Ser487 residue in the C-terminal was truncated and mutated to alanine, respectively. Immunoblotting analysis indicated that histamine-induced ERK phosphorylation was prompt and transient in cells expressing Gq protein-biased S487TR, whereas it was slow and sustained in cells expressing arrestin-biased S487A. Inhibitors of Gq proteins (YM-254890) and protein kinase C (PKC) (GF109203X), and an intracellular Ca2+ chelator (BAPTA-AM) suppressed histamine-induced ERK phosphorylation in cells expressing S487TR, but not those expressing S487A. Conversely, inhibitors of G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), clathrin (hypertonic sucrose), Raf (LY3009120), and MEK (U0126) suppressed histamine-induced ERK phosphorylation in cells expressing S487A, but not those expressing S487TR. These results suggest that H1 receptor-mediated ERK phosphorylation might be differentially regulated by the Gq protein/Ca2+/PKC and GRK/arrestin/clathrin/Raf/MEK pathways to potentially determine the early and late phases of histamine-induced allergic and inflammatory responses, respectively.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ayaka Nagata
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ryosuke Ogami
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
13
|
Vilardaga JP, Clark LJ, White AD, Sutkeviciute I, Lee JY, Bahar I. Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocr Rev 2023; 44:474-491. [PMID: 36503956 PMCID: PMC10461325 DOI: 10.1210/endrev/bnac032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling. These include transient signaling at the plasma membrane and sustained signaling from internalized PTH1R within early endosomes mediated by PTH. Here we discuss recent structural, cell signaling, and in vivo studies that unveil potential pharmacological outputs of the spatial versus temporal dimension of PTH1R signaling via cAMP. Notably, the combination of molecular dynamics simulations and elastic network model-based methods revealed how precise modulation of PTH signaling responses is achieved through structure-encoded allosteric coupling within the receptor and between the peptide hormone binding site and the G protein coupling interface. The implications of recent findings are now being explored for addressing key questions on how location bias in receptor signaling contributes to pharmacological functions, and how to drug a difficult target such as the PTH1R toward discovering nonpeptidic small molecule candidates for the treatment of metabolic bone and mineral diseases.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lisa J Clark
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alex D White
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
14
|
Moritz AE, Madaras NS, Rankin ML, Inbody LR, Sibley DR. Delineation of G Protein-Coupled Receptor Kinase Phosphorylation Sites within the D 1 Dopamine Receptor and Their Roles in Modulating β-Arrestin Binding and Activation. Int J Mol Sci 2023; 24:6599. [PMID: 37047571 PMCID: PMC10095280 DOI: 10.3390/ijms24076599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The D1 dopamine receptor (D1R) is a G protein-coupled receptor that signals through activating adenylyl cyclase and raising intracellular cAMP levels. When activated, the D1R also recruits the scaffolding protein β-arrestin, which promotes receptor desensitization and internalization, as well as additional downstream signaling pathways. These processes are triggered through receptor phosphorylation by G protein-coupled receptor kinases (GRKs), although the precise phosphorylation sites and their role in recruiting β-arrestin to the D1R remains incompletely described. In this study, we have used detailed mutational and in situ phosphorylation analyses to completely identify the GRK-mediated phosphorylation sites on the D1R. Our results indicate that GRKs can phosphorylate 14 serine and threonine residues within the C-terminus and the third intracellular loop (ICL3) of the receptor, and that this occurs in a hierarchical fashion, where phosphorylation of the C-terminus precedes that of the ICL3. Using β-arrestin recruitment assays, we identified a cluster of phosphorylation sites in the proximal region of the C-terminus that drive β-arrestin binding to the D1R. We further provide evidence that phosphorylation sites in the ICL3 are responsible for β-arrestin activation, leading to receptor internalization. Our results suggest that distinct D1R GRK phosphorylation sites are involved in β-arrestin binding and activation.
Collapse
Affiliation(s)
| | | | | | | | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Wang Y, Zhu CL, Li P, Liu Q, Li HR, Yu CM, Deng XM, Wang JF. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1112196. [PMID: 36891309 PMCID: PMC9986442 DOI: 10.3389/fimmu.2023.1112196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sepsis is defined as a life-threatening dysfunction due to a dysregulated host response to infection. It is a common and complex syndrome and is the leading cause of death in intensive care units. The lungs are most vulnerable to the challenge of sepsis, and the incidence of respiratory dysfunction has been reported to be up to 70%, in which neutrophils play a major role. Neutrophils are the first line of defense against infection, and they are regarded as the most responsive cells in sepsis. Normally, neutrophils recognize chemokines including the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine ligand 8 (CXCL8), and enter the site of infection through mobilization, rolling, adhesion, migration, and chemotaxis. However, numerous studies have confirmed that despite the high levels of chemokines in septic patients and mice at the site of infection, the neutrophils cannot migrate to the proper target location, but instead they accumulate in the lungs, releasing histones, DNA, and proteases that mediate tissue damage and induce acute respiratory distress syndrome (ARDS). This is closely related to impaired neutrophil migration in sepsis, but the mechanism involved is still unclear. Many studies have shown that chemokine receptor dysregulation is an important cause of impaired neutrophil migration, and the vast majority of these chemokine receptors belong to the G protein-coupled receptors (GPCRs). In this review, we summarize the signaling pathways by which neutrophil GPCR regulates chemotaxis and the mechanisms by which abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis, which can further cause ARDS. Several potential targets for intervention are proposed to improve neutrophil chemotaxis, and we hope that this review may provide insights for clinical practitioners.
Collapse
Affiliation(s)
- Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui-ru Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Chang-meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Faculty of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Shiraki A, Shimizu S. The molecular associations in clathrin-coated pit regulate β-arrestin-mediated MAPK signaling downstream of μ-opioid receptor. Biochem Biophys Res Commun 2023; 640:64-72. [PMID: 36502633 DOI: 10.1016/j.bbrc.2022.11.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
It has been thought that μ-opioid receptors (MOPs) activate the G protein-mediated analgesic pathway and β-arrestin 2-mediated side effect pathway; however, ligands that only minimally recruit β-arrestin 2 to MOPs may also cause opioid side effects. Moreover, such side effects have been induced in mutant mice lacking β-arrestin 2 or expressing phosphorylation-deficient MOPs that do not recruit β-arrestin 2. These findings raise the critical question of whether β-arrestin 2 recruitment to MOP triggers side effects. Here, we show that β-arrestin 1 and 2 are essential in the efficient activation of the Gi/o-mediated MAPK signaling at MOP. Moreover, the magnitude of β-arrestin-mediated signals is not correlated with the magnitude of phosphorylation of the carboxyl-terminal of MOP, which is used to evaluate the β-arrestin bias of a ligand. Instead, the molecular association with β2-adaptin and clathrin heavy chain in the formation of clathrin-coated pits is essential for β-arrestin to activate MAPK signaling. Our findings provide insights into G protein-coupled receptor-mediated signaling and further highlight a concept that the accumulation of molecules required for endocytosis is critical for activating intracellular signaling.
Collapse
Affiliation(s)
- Atsuko Shiraki
- Department of Anesthesia, Kyoto University Hospital, Kyoto City, Japan
| | - Satoshi Shimizu
- Department of Anesthesia, Kyoto University Hospital, Kyoto City, Japan.
| |
Collapse
|
17
|
Gurevich VV. Do arrestin oligomers have specific functions? CELL SIGNALING 2023; 1:42-46. [PMID: 37664541 PMCID: PMC10473880 DOI: 10.46439/signaling.1.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Arrestins are a small family of versatile regulators of cell signaling. Arrestins regulate signaling and trafficking of G protein-coupled receptors, regulate and direct to particular subcellular compartments numerous protein kinases, ubiquitin ligases, etc. Three out of four arrestin subtypes expressed in vertebrates self-associate, each forming oligomers of a distinct size and shape. While the structures of the solution oligomers of arrestin-1, -2, and -3 have been elucidated, no function specific for the oligomeric form of either of these three subtypes has been identified thus far. Considering how multi-functional average-sized (~45 kDa) arrestin proteins were found to be, it appears likely that certain functions are predominantly or exclusively fulfilled by monomeric and oligomeric forms of each subtype.
Collapse
|
18
|
Benkel T, Zimmermann M, Zeiner J, Bravo S, Merten N, Lim VJY, Matthees ESF, Drube J, Miess-Tanneberg E, Malan D, Szpakowska M, Monteleone S, Grimes J, Koszegi Z, Lanoiselée Y, O'Brien S, Pavlaki N, Dobberstein N, Inoue A, Nikolaev V, Calebiro D, Chevigné A, Sasse P, Schulz S, Hoffmann C, Kolb P, Waldhoer M, Simon K, Gomeza J, Kostenis E. How Carvedilol activates β 2-adrenoceptors. Nat Commun 2022; 13:7109. [PMID: 36402762 PMCID: PMC9675828 DOI: 10.1038/s41467-022-34765-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022] Open
Abstract
Carvedilol is among the most effective β-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of β1-adrenoceptors, arrestin-biased signalling via β2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through β2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the β-adrenoceptor system.
Collapse
Affiliation(s)
- Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127, Bonn, Germany
| | | | - Julian Zeiner
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Sergi Bravo
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Victor Jun Yu Lim
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Edda Sofie Fabienne Matthees
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Julia Drube
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Elke Miess-Tanneberg
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University of Jena, 07747, Jena, Germany
| | - Daniela Malan
- Institute of Physiology I, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354, Esch-sur-Alzette, Luxembourg
| | - Stefania Monteleone
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Jak Grimes
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | | | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, 980-8578, Japan
| | - Viacheslav Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, UK
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354, Esch-sur-Alzette, Luxembourg
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, 53115, Bonn, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University of Jena, 07747, Jena, Germany
- 7TM Antibodies GmbH, 07745, Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, Jena University Hospital, Friedrich Schiller University of Jena, 07745, Jena, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Maria Waldhoer
- InterAx Biotech AG, 5234, Villigen, Switzerland
- Ikherma Consulting Ltd, Hitchin, SG4 0TY, UK
| | - Katharina Simon
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Jesus Gomeza
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
19
|
Dahlgren C, Lind S, Mårtensson J, Björkman L, Wu Y, Sundqvist M, Forsman H. G
protein coupled pattern recognition receptors expressed in neutrophils
: Recognition, activation/modulation, signaling and receptor regulated functions. Immunol Rev 2022; 314:69-92. [PMID: 36285739 DOI: 10.1111/imr.13151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| |
Collapse
|
20
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Kirchner S, Hicks C, Choi I, Pham U, Zheng K, Warman A, Smith JS, Zhang JY, Rajagopal S. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat Commun 2022; 13:5846. [PMID: 36195635 PMCID: PMC9532441 DOI: 10.1038/s41467-022-33569-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023] Open
Abstract
Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.
Collapse
Affiliation(s)
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Stephen Kirchner
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27707, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA, 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S Smith
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
21
|
Chen Q, Tesmer JJG. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. J Biol Chem 2022; 298:102279. [PMID: 35863432 PMCID: PMC9418498 DOI: 10.1016/j.jbc.2022.102279] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the "phosphorylation barcodes" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.
Collapse
Affiliation(s)
- Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
22
|
Gurevich VV, Gurevich EV. Solo vs. Chorus: Monomers and Oligomers of Arrestin Proteins. Int J Mol Sci 2022; 23:7253. [PMID: 35806256 PMCID: PMC9266314 DOI: 10.3390/ijms23137253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
Three out of four subtypes of arrestin proteins expressed in mammals self-associate, each forming oligomers of a distinct kind. Monomers and oligomers have different subcellular localization and distinct biological functions. Here we summarize existing evidence regarding arrestin oligomerization and discuss specific functions of monomeric and oligomeric forms, although too few of the latter are known. The data on arrestins highlight biological importance of oligomerization of signaling proteins. Distinct modes of oligomerization might be an important contributing factor to the functional differences among highly homologous members of the arrestin protein family.
Collapse
|
23
|
Abstract
Agonist-induced interaction of β-arrestins with GPCRs is critically involved in downstream signaling and regulation. This interaction is associated with activation and major conformational changes in β-arrestins. Although there are some assays available to monitor the conformational changes in β-arrestins in cellular context, additional sensors to report β-arrestin activation, preferably with high-throughput capability, are likely to be useful considering the structural and functional diversity in GPCR-β-arrestin complexes. We have recently developed an intrabody-based sensor as an integrated approach to monitor GPCR-β-arrestin interaction and conformational change, and generated a luminescence-based reporter using NanoBiT complementation technology. This sensor is derived from a synthetic antibody fragment referred to as Fab30 that selectively recognizes activated and receptor-bound conformation of β-arrestin1. Here, we present a step-by-step protocol to employ this intrabody sensor to measure the interaction and conformational activation of β-arrestin1 upon agonist-stimulation of a prototypical GPCR, the complement C5a receptor (C5aR1). This protocol is potentially applicable to other GPCRs and may also be leveraged to deduce qualitative differences in β-arrestin1 conformations induced by different ligands and receptor mutants.
Collapse
|
24
|
Perez I, Berndt S, Agarwal R, Castro MA, Vishnivetskiy SA, Smith JC, Sanders CR, Gurevich VV, Iverson TM. A Model for the Signal Initiation Complex Between Arrestin-3 and the Src Family Kinase Fgr. J Mol Biol 2022; 434:167400. [PMID: 34902430 PMCID: PMC8752512 DOI: 10.1016/j.jmb.2021.167400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023]
Abstract
Arrestins regulate a wide range of signaling events, most notably when bound to active G protein-coupled receptors (GPCRs). Among the known effectors recruited by GPCR-bound arrestins are Src family kinases, which regulate cellular growth and proliferation. Here, we focus on arrestin-3 interactions with Fgr kinase, a member of the Src family. Previous reports demonstrated that Fgr exhibits high constitutive activity, but can be further activated by both arrestin-dependent and arrestin-independent pathways. We report that arrestin-3 modulates Fgr activity with a hallmark bell-shaped concentration-dependence, consistent with a role as a signaling scaffold. We further demonstrate using NMR spectroscopy that a polyproline motif within arrestin-3 interacts directly with the SH3 domain of Fgr. To provide a framework for this interaction, we determined the crystal structure of the Fgr SH3 domain at 1.9 Å resolution and developed a model for the GPCR-arrestin-3-Fgr complex that is supported by mutagenesis. This model suggests that Fgr interacts with arrestin-3 at multiple sites and is consistent with the locations of disease-associated Fgr mutations. Collectively, these studies provide a structural framework for arrestin-dependent activation of Fgr.
Collapse
Affiliation(s)
- Ivette Perez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Manuel A Castro
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | | | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA.
| | - T M Iverson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA; Center for Structural Biology, Nashville, TN 37232-0146, USA; Vanderbilt Institute of Chemical Biology, Nashville, TN 37232-0146, USA.
| |
Collapse
|
25
|
Karnam PC, Vishnivetskiy SA, Gurevich VV. Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:12481. [PMID: 34830362 PMCID: PMC8621391 DOI: 10.3390/ijms222212481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.
Collapse
Affiliation(s)
| | | | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; (P.C.K.); (S.A.V.)
| |
Collapse
|
26
|
Geraghty S, Koutsouveli V, Hall C, Chang L, Sacristan-Soriano O, Hill M, Riesgo A, Hill A. Establishment of Host-Algal Endosymbioses: Genetic Response to Symbiont Versus Prey in a Sponge Host. Genome Biol Evol 2021; 13:6427630. [PMID: 34791195 PMCID: PMC8633732 DOI: 10.1093/gbe/evab252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The freshwater sponge Ephydatia muelleri and its Chlorella-like algal partner is an emerging model for studying animal: algal endosymbiosis. The sponge host is a tractable laboratory organism, and the symbiotic algae are easily cultured. We took advantage of these traits to interrogate questions about mechanisms that govern the establishment of durable intracellular partnerships between hosts and symbionts in facultative symbioses. We modified a classical experimental approach to discern the phagocytotic mechanisms that might be co-opted to permit persistent infections, and identified genes differentially expressed in sponges early in the establishment of endosymbiosis. We exposed algal-free E. muelleri to live native algal symbionts and potential food items (bacteria and native heat-killed algae), and performed RNA-Seq to compare patterns of gene expression among treatments. We found a relatively small but interesting suite of genes that are differentially expressed in the host exposed to live algal symbionts, and a larger number of genes triggered by host exposure to heat-killed algae. The upregulated genes in sponges exposed to live algal symbionts were mostly involved in endocytosis, ion transport, metabolic processes, vesicle-mediated transport, and oxidation–reduction. One of the host genes, an ATP-Binding Cassette transporter that is downregulated in response to live algal symbionts, was further evaluated for its possible role in the establishment of the symbiosis. We discuss the gene expression profiles associated with host responses to living algal cells in the context of conditions necessary for long-term residency within host cells by phototrophic symbionts as well as the genetic responses to sponge phagocytosis and immune-driven pathways.
Collapse
Affiliation(s)
- Sara Geraghty
- Department of Biology, University of Richmond, Virginia, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, New Jersey, USA
| | - Vasiliki Koutsouveli
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Chelsea Hall
- Department of Biology, University of Richmond, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lillian Chang
- Department of Biology, Bates College, Lewiston, Maine, USA
| | - Oriol Sacristan-Soriano
- Department of Biology, University of Richmond, Virginia, USA.,Centro de Estudios Avanzados de Blanes (CEAB, CSIC), Blanes, Spain
| | - Malcolm Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Madrid, Spain
| | - April Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| |
Collapse
|
27
|
New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation. Int J Mol Sci 2021; 22:ijms22126489. [PMID: 34204297 PMCID: PMC8233884 DOI: 10.3390/ijms22126489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target. The activation of SFKs can occur via multiple signaling pathways, yet many of them are poorly understood. Here, we summarize the current knowledge on G protein-coupled receptor (GPCR)-mediated regulation of SFKs, which is of considerable interest because GPCRs are among the most widely used pharmaceutical targets. This type of activation can occur through a direct interaction between the two proteins or be allosterically regulated by arrestins and G proteins. We postulate that a rearrangement of binding motifs within the active conformation of arrestin-3 mediates Src regulation by comparison of available crystal structures. Therefore, we hypothesize a potentially different activation mechanism compared to arrestin-2. Furthermore, we discuss the probable direct regulation of SFK by GPCRs and investigate the intracellular domains of exemplary GPCRs with conserved polyproline binding motifs that might serve as scaffolding domains to allow such a direct interaction. Large intracellular domains in GPCRs are often understudied and, in general, not much is known of their contribution to different signaling pathways. The suggested direct interaction between a GPCR and a SFK could allow for a potential immediate allosteric regulation of SFKs by GPCRs and thereby unravel a novel mechanism of SFK signaling. This overview will help to identify new GPCR-SFK interactions, which could serve to explain biological functions or be used to modulate downstream effectors.
Collapse
|
28
|
Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021; 403:133-149. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 01/14/2023]
Abstract
The internalization of G protein-coupled receptors (GPCRs) is an important mechanism regulating the signal strength and limiting the opportunity of receptor activation. Based on the importance of GPCRs, the detailed knowledge about the regulation of signal transduction is crucial. Here, current knowledge about the agonist-induced, arrestin-dependent internalization process of rhodopsin-like GPCRs is reviewed. Arrestins are conserved molecules that act as key players within the internalization process of many GPCRs. Based on highly conserved structural characteristics within the rhodopsin-like GPCRs, the identification of arrestin interaction sites in model systems can be compared and used for the investigation of internalization processes of other receptors. The increasing understanding of this essential regulation mechanism of receptors can be used for drug development targeting rhodopsin-like GPCRs. Here, we focus on the neuropeptide Y receptor family, as these receptors transmit various physiological processes such as food intake, energy homeostasis, and regulation of emotional behavior, and are further involved in pathophysiological processes like cancer, obesity and mood disorders. Hence, this receptor family represents an interesting target for the development of novel therapeutics requiring the understanding of the regulatory mechanisms influencing receptor mediated signaling.
Collapse
Affiliation(s)
- Lizzy Wanka
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103Leipzig, Germany
| |
Collapse
|
29
|
Vishnivetskiy SA, Huh EK, Gurevich EV, Gurevich VV. The finger loop as an activation sensor in arrestin. J Neurochem 2021; 157:1138-1152. [PMID: 33159335 PMCID: PMC8099931 DOI: 10.1111/jnc.15232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
The finger loop in the central crest of the receptor-binding site of arrestins engages the cavity between the transmembrane helices of activated G-protein-coupled receptors. Therefore, it was hypothesized to serve as the sensor that detects the activation state of the receptor. We performed comprehensive mutagenesis of the finger loop in bovine visual arrestin-1, generated mutant radiolabeled proteins by cell-free translation, and determined the effects of mutations on the in vitro binding of arrestin-1 to purified phosphorylated light-activated rhodopsin. This interaction is driven by two factors, rhodopsin activation and rhodopsin-attached phosphates. Therefore, the binding of arrestin-1 to light-activated unphosphorylated rhodopsin is low. To evaluate the role of the finger loop specifically in the recognition of the active receptor conformation, we tested the effects of these mutations in the context of truncated arrestin-1 that demonstrates much higher binding to unphosphorylated activated and phosphorylated inactive rhodopsin. The majority of finger loop residues proved important for arrestin-1 binding to light-activated rhodopsin, with six mutations affecting the binding exclusively to this form. Thus, the finger loop is the key element of arrestin-1 activation sensor. The data also suggest that arrestin-1 and its enhanced mutant bind various functional forms of rhodopsin differently.
Collapse
Affiliation(s)
| | - Elizabeth K Huh
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
30
|
Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. J Mol Biol 2021; 433:166790. [PMID: 33387531 PMCID: PMC7870585 DOI: 10.1016/j.jmb.2020.166790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
G protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ya Zhuo
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ivette Perez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Derek J Francis
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | - Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Susan M Hanson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Evan K Brooks
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Wayne L Hubbell
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; The Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
31
|
Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin-GPCR interactions has been extensively studied and discussed from the "arrestin perspective", focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the "receptor perspective", focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter's transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran;
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48167-75952, Iran
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA;
| | | |
Collapse
|
32
|
Vishnivetskiy SA, Zheng C, May MB, Karnam PC, Gurevich EV, Gurevich VV. Lysine in the lariat loop of arrestins does not serve as phosphate sensor. J Neurochem 2021; 156:435-444. [PMID: 32594524 PMCID: PMC7765740 DOI: 10.1111/jnc.15110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Arrestins demonstrate strong preference for phosphorylated over unphosphorylated receptors, but how arrestins "sense" receptor phosphorylation is unclear. A conserved lysine in the lariat loop of arrestins directly binds the phosphate in crystal structures of activated arrestin-1, -2, and -3. The lariat loop supplies two negative charges to the central polar core, which must be disrupted for arrestin activation and high-affinity receptor binding. Therefore, we hypothesized that receptor-attached phosphates pull the lariat loop via this lysine, thus removing the negative charges and destabilizing the polar core. We tested the role of this lysine by introducing charge elimination (Lys->Ala) and reversal (Lys->Glu) mutations in arrestin-1, -2, and -3. These mutations in arrestin-1 only moderately reduced phospho-rhodopsin binding and had no detectable effect on arrestin-2 and -3 binding to cognate non-visual receptors in cells. The mutations of Lys300 in bovine and homologous Lys301 in mouse arrestin-1 on the background of pre-activated mutants had variable effects on the binding to light-activated phosphorylated rhodopsin, while affecting the binding to unphosphorylated rhodopsin to a greater extent. Thus, conserved lysine in the lariat loop participates in receptor binding, but does not play a critical role in phosphate-induced arrestin activation.
Collapse
Affiliation(s)
| | - Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Preethi C. Karnam
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
33
|
Kahlhofer J, Leon S, Teis D, Schmidt O. The α-arrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis. Biol Cell 2021; 113:183-219. [PMID: 33314196 DOI: 10.1111/boc.202000137] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
The regulation of nutrient uptake into cells is important, as it allows to either increase biomass for cell growth or to preserve homoeostasis. A key strategy to adjust cellular nutrient uptake is the reconfiguration of the nutrient transporter repertoire at the plasma membrane by the addition of nutrient transporters through the secretory pathway and by their endocytic removal. In this review, we focus on the mechanisms that regulate selective nutrient transporter endocytosis, which is mediated by the α-arrestin protein family. In the budding yeast Saccharomyces cerevisiae, 14 different α-arrestins (also named arrestin-related trafficking adaptors, ARTs) function as adaptors for the ubiquitin ligase Rsp5. They instruct Rsp5 to ubiquitinate subsets of nutrient transporters to orchestrate their endocytosis. The ART proteins are under multilevel control of the major nutrient sensing systems, including amino acid sensing by the general amino acid control and target of rapamycin pathways, and energy sensing by 5'-adenosine-monophosphate-dependent kinase. The function of the six human α-arrestins is comparably under-characterised. Here, we summarise the current knowledge about the function, regulation and substrates of yeast ARTs and human α-arrestins, and highlight emerging communalities and general principles.
Collapse
Affiliation(s)
- Jennifer Kahlhofer
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastien Leon
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - David Teis
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Oliver Schmidt
- Institute for Cell Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
35
|
Zhuo Y, Gurevich VV, Vishnivetskiy SA, Klug CS, Marchese A. A non-GPCR-binding partner interacts with a novel surface on β-arrestin1 to mediate GPCR signaling. J Biol Chem 2020; 295:14111-14124. [PMID: 32753481 PMCID: PMC7549033 DOI: 10.1074/jbc.ra120.015074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
The multifaceted adaptor protein β-arr1 (β-arrestin1) promotes activation of focal adhesion kinase (FAK) by the chemokine receptor CXCR4, facilitating chemotaxis. This function of β-arr1 requires the assistance of the adaptor protein STAM1 (signal-transducing adaptor molecule 1) because disruption of the interaction between STAM1 and β-arr1 reduces CXCR4-mediated activation of FAK and chemotaxis. To begin to understand the mechanism by which β-arr1 together with STAM1 activates FAK, we used site-directed spin-labeling EPR spectroscopy-based studies coupled with bioluminescence resonance energy transfer-based cellular studies to show that STAM1 is recruited to activated β-arr1 by binding to a novel surface on β-arr1 at the base of the finger loop, at a site that is distinct from the receptor-binding site. Expression of a STAM1-deficient binding β-arr1 mutant that is still able to bind to CXCR4 significantly reduced CXCL12-induced activation of FAK but had no impact on ERK-1/2 activation. We provide evidence of a novel surface at the base of the finger loop that dictates non-GPCR interactions specifying β-arrestin-dependent signaling by a GPCR. This surface might represent a previously unidentified switch region that engages with effector molecules to drive β-arrestin signaling.
Collapse
Affiliation(s)
- Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
36
|
Many faces of the GPCR-arrestin interaction. Arch Pharm Res 2020; 43:890-899. [DOI: 10.1007/s12272-020-01263-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 01/14/2023]
|
37
|
Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Chaturvedi M, Stepniewski TM, Kawakami K, Cao Y, Laporte SA, Selent J, Inoue A, Shukla AK. Key phosphorylation sites in GPCRs orchestrate the contribution of β-Arrestin 1 in ERK1/2 activation. EMBO Rep 2020; 21:e49886. [PMID: 32715625 DOI: 10.15252/embr.201949886] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
β-arrestins (βarrs) are key regulators of G protein-coupled receptor (GPCR) signaling and trafficking, and their knockdown typically leads to a decrease in agonist-induced ERK1/2 MAP kinase activation. Interestingly, for some GPCRs, knockdown of βarr1 augments agonist-induced ERK1/2 phosphorylation although a mechanistic basis for this intriguing phenomenon is unclear. Here, we use selected GPCRs to explore a possible correlation between the spatial positioning of receptor phosphorylation sites and the contribution of βarr1 in ERK1/2 activation. We discover that engineering a spatially positioned double-phosphorylation-site cluster in the bradykinin receptor (B2 R), analogous to that present in the vasopressin receptor (V2 R), reverses the contribution of βarr1 in ERK1/2 activation from inhibitory to promotive. An intrabody sensor suggests a conformational mechanism for this role reversal of βarr1, and molecular dynamics simulation reveals a bifurcated salt bridge between this double-phosphorylation site cluster and Lys294 in the lariat loop of βarr1, which directs the orientation of the lariat loop. Our findings provide novel insights into the opposite roles of βarr1 in ERK1/2 activation for different GPCRs with a direct relevance to biased agonism and novel therapeutics.
Collapse
Affiliation(s)
- Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | - Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Department of Medicine, McGill University Health Center, McGill University, Montréal, QC, Canada
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
38
|
Min K, Yoon HJ, Park JY, Baidya M, Dwivedi-Agnihotri H, Maharana J, Chaturvedi M, Chung KY, Shukla AK, Lee HH. Crystal Structure of β-Arrestin 2 in Complex with CXCR7 Phosphopeptide. Structure 2020; 28:1014-1023.e4. [PMID: 32579945 DOI: 10.1016/j.str.2020.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/02/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
Abstract
β-Arrestins (βarrs) critically regulate G-protein-coupled receptor (GPCR) signaling and trafficking. βarrs have two isoforms, βarr1 and βarr2. Receptor phosphorylation is a key determinant for the binding of βarrs, and understanding the intricate details of receptor-βarr interaction is the next frontier in GPCR structural biology. The high-resolution structure of active βarr1 in complex with a phosphopeptide derived from GPCR has been revealed, but that of βarr2 remains elusive. Here, we present a 2.3-Å crystal structure of βarr2 in complex with a phosphopeptide (C7pp) derived from the carboxyl terminus of CXCR7. The structural analysis of C7pp-bound βarr2 reveals key differences from the previously determined active conformation of βarr1. One of the key differences is that C7pp-bound βarr2 shows a relatively small inter-domain rotation. Antibody-fragment-based conformational sensor and hydrogen/deuterium exchange experiments further corroborated the structural features of βarr2 and suggested that βarr2 adopts a range of inter-domain rotations.
Collapse
Affiliation(s)
- Kyungjin Min
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Young Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mithu Baidya
- Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | - Jagannath Maharana
- Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Madhu Chaturvedi
- Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Arun K Shukla
- Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
39
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
40
|
Dahlgren C, Holdfeldt A, Lind S, Mårtensson J, Gabl M, Björkman L, Sundqvist M, Forsman H. Neutrophil Signaling That Challenges Dogmata of G Protein-Coupled Receptor Regulated Functions. ACS Pharmacol Transl Sci 2020; 3:203-220. [PMID: 32296763 DOI: 10.1021/acsptsci.0c00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| |
Collapse
|
41
|
Sanchez-Soto M, Verma RK, Willette BKA, Gonye EC, Moore AM, Moritz AE, Boateng CA, Yano H, Free RB, Shi L, Sibley DR. A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Sci Signal 2020; 13:13/617/eaaw5885. [PMID: 32019899 DOI: 10.1126/scisignal.aaw5885] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Signaling bias is the propensity for some agonists to preferentially stimulate G protein-coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein-biased agonist of the D2 dopamine receptor (D2R) that results in impaired β-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with β-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired β-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the β2-adrenergic receptor (β2R) to build β2R-WT and β2R-Y1995.38A models in complex with the full β2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in β2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in β2R-Y1995.38A, which is predicted to affect its interactions with β-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.
Collapse
Affiliation(s)
- Marta Sanchez-Soto
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Ravi Kumar Verma
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - Blair K A Willette
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Elizabeth C Gonye
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Annah M Moore
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Amy E Moritz
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Comfort A Boateng
- Basic Pharmaceutical Sciences, High Point University, One University Parkway, High Point, NC 27268, USA
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - R Benjamin Free
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA.
| | - David R Sibley
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Staus DP, Hu H, Robertson MJ, Kleinhenz ALW, Wingler LM, Capel WD, Latorraca NR, Lefkowitz RJ, Skiniotis G. Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc. Nature 2020; 579:297-302. [PMID: 31945772 PMCID: PMC7367492 DOI: 10.1038/s41586-020-1954-0] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Following agonist activation, G protein-coupled receptors (GPCRs) recruit β-arrestin, which desensitizes heterotrimeric G protein signaling and promotes receptor endocytosis1. Additionally, β-arrestin directly regulates many cell signaling pathways that can induce cellular responses distinct from that of G proteins2. Here we present a cryo-electron microscopy (cryoEM) structure of β-arrestin1 (βarr1) in complex with muscarinic acetylcholine-2-receptor (M2R) reconstituted in lipid nanodiscs. The M2R-βarr1 structure shows a multimodal network of flexible interactions, including binding of the βarr1 N-domain to phosphorylated receptor residues and βarr1 finger loop insertion into the M2R seven-transmembrane bundle, which adopts a conformation similar to that in the M2R-heterotrimeric Go protein structure3. Moreover, the cryoEM map reveals that the βarr1 C-domain edge engages the lipid bilayer. Through atomistic simulations, biophysical, biochemical, and cellular assays, we show that the C-edge is critical for stable complex formation, βarr1 recruitment, receptor internalization, and desensitization of G protein activation. Taken together, these data suggest the cooperative interactions of β-arrestin with both the receptor and phospholipid bilayer contribute to its functional versatility.
Collapse
Affiliation(s)
- Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Hongli Hu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, The Chinese University of Hong Kong, Shenzhen, China
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alissa L W Kleinhenz
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA.,School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Laura M Wingler
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - William D Capel
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Naomi R Latorraca
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA.,Biophysics Program, Stanford University, Stanford, CA, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC, USA. .,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
43
|
Wang D, Liu X, Liu J, Song C. Phosphorylation-dependent conformational changes of arrestin in the rhodopsin–arrestin complex. Phys Chem Chem Phys 2020; 22:9330-9338. [DOI: 10.1039/d0cp00473a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conformations of GPCR-bound arrestin depend on the phosphorylation patterns of the GPCR C-loop.
Collapse
Affiliation(s)
- Dali Wang
- School of Physics
- Shandong University
- Jinan 250100
- China
- Center for Quantitative Biology
| | - Xiangdong Liu
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Jianqiang Liu
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Chen Song
- Center for Quantitative Biology
- Academy for Advanced Interdisciplinary Studies
- Peking University
- Beijing 100871
- China
| |
Collapse
|
44
|
Site-directed labeling of β-arrestin with monobromobimane for measuring their interaction with G protein-coupled receptors. Methods Enzymol 2020; 633:271-280. [PMID: 32046850 PMCID: PMC7217711 DOI: 10.1016/bs.mie.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
β-arrestins (βarrs) are multifunctional proteins that interact with activated and phosphorylated G protein-coupled receptors (GPCRs) to regulate their signaling and trafficking. Understanding the intricate details of GPCR-βarr interaction continues to be a key research area in the field of GPCR biology. Bimane fluorescence spectroscopy has been one of the key approaches among a broad range of methods employed to study GPCR-βarr interaction using purified and reconstituted system. Here, we present a step-by-step protocol for labeling βarrs with monobromobimane (mBBr) in a site-directed fashion for measuring their interaction with GPCRs and the resulting conformational changes. This simple protocol can be directly applied to other protein-protein interaction modules as well for measuring interactions and conformational changes in reconstituted systems in vitro.
Collapse
|
45
|
Gurevich VV, Gurevich EV. Targeting arrestin interactions with its partners for therapeutic purposes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:169-197. [PMID: 32312421 PMCID: PMC7977737 DOI: 10.1016/bs.apcsb.2019.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most vertebrates express four arrestin subtypes: two visual ones in photoreceptor cells and two non-visuals expressed ubiquitously. The latter two interact with hundreds of G protein-coupled receptors, certain receptors of other types, and numerous non-receptor partners. Arrestins have no enzymatic activity and work by interacting with other proteins, often assembling multi-protein signaling complexes. Arrestin binding to every partner affects cell signaling, including pathways regulating cell survival, proliferation, and death. Thus, targeting individual arrestin interactions has therapeutic potential. This requires precise identification of protein-protein interaction sites of both participants and the choice of the side of each interaction which would be most advantageous to target. The interfaces involved in each interaction can be disrupted by small molecule therapeutics, as well as by carefully selected peptides of the other partner that do not participate in the interactions that should not be targeted.
Collapse
Affiliation(s)
| | - Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
46
|
Hutchinson JL, Zhao X, Hill R, Mundell SJ. Arrestin-3 differentially regulates platelet GPCR subsets. Platelets 2019; 31:641-645. [PMID: 31684789 DOI: 10.1080/09537104.2019.1686754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The principal demonstrated role of the nonvisual arrestins in vivo is to limit G protein-coupled receptor (GPCR) signaling. Nonetheless, a direct demonstration of this fundamental ability in platelets remains lacking, despite the prominent role played by GPCRs in platelet activation. This paper describes the basic characterization of the activatory responses of platelets from mice lacking arrestin-3 (arr3-/-), revealing pleiotropic roles dependent on GPCR ligand. Functionally, arrestin-3 acts as a brake on platelet aggregation regardless of ligand tested. Downstream of P2Y receptors, arr3-/- mice show increased secretion and integrin activation mirrored by enhanced intracellular calcium signaling and global PKC-dependent phosphorylation. Furthermore, P2Y12 receptor (P2Y12R) activity as assessed by ADP-mediated reduction of VASP phosphorylation is enhanced in arr3-/-mice. Downstream of PAR receptors there are similar increases in secretion and integrin activation in arr3-/- mice, together with enhanced PKC activity. Last, in arr3-/- mice the TP receptor displays unaltered PKC activity but markedly reduced calcium responses, which together with the kinetics of the aggregation response suggested a unique positive regulatory role for arrestin-3 in TP signaling. Overall, this paper reveals pleiotropic roles for arrestin-3 dependent on GPCR ligand describing for the first time a negative regulatory function for arrestin-3 in platelets.
Collapse
Affiliation(s)
- James L Hutchinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK, BS8 1TD
| | - Xiaojuan Zhao
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK, BS8 1TD
| | - Rob Hill
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK, BS8 1TD
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol, UK, BS8 1TD
| |
Collapse
|
47
|
Gurevich VV, Gurevich EV. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell Mol Life Sci 2019; 76:4413-4421. [PMID: 31422444 PMCID: PMC11105767 DOI: 10.1007/s00018-019-03272-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Mammalian arrestins are a family of four highly homologous relatively small ~ 45 kDa proteins with surprisingly diverse functions. The most striking feature is that each of the two non-visual subtypes can bind hundreds of diverse G protein-coupled receptors (GPCRs) and dozens of non-receptor partners. Through these interactions, arrestins regulate the G protein-dependent signaling by the desensitization mechanisms as well as control numerous signaling pathways in the G protein-dependent or independent manner via scaffolding. Some partners prefer receptor-bound arrestins, some bind better to the free arrestins in the cytoplasm, whereas several show no apparent preference for either conformation. Thus, arrestins are a perfect example of a multi-functional signaling regulator. The result of this multi-functionality is that reduction (by knockdown) or elimination (by knockout) of any of these two non-visual arrestins can affect so many pathways that the results are hard to interpret. The other difficulty is that the non-visual subtypes can in many cases compensate for each other, which explains relatively mild phenotypes of single knockouts, whereas double knockout is lethal in vivo, although cultured cells lacking both arrestins are viable. Thus, deciphering the role of arrestins in cell biology requires the identification of specific signaling function(s) of arrestins involved in a particular phenotype. This endeavor should be greatly assisted by identification of structural elements of the arrestin molecule critical for individual functions and by the creation of mutants where only one function is affected. Reintroduction of these biased mutants, or introduction of monofunctional stand-alone arrestin elements, which have been identified in some cases, into double arrestin-2/3 knockout cultured cells, is the most straightforward way to study arrestin functions. This is a laborious and technically challenging task, but the upside is that specific function of arrestins, their timing, subcellular specificity, and relations to one another could be investigated with precision.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
48
|
Gurevich VV, Gurevich EV. The structural basis of the arrestin binding to GPCRs. Mol Cell Endocrinol 2019; 484:34-41. [PMID: 30703488 PMCID: PMC6377262 DOI: 10.1016/j.mce.2019.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins targeted by more clinically used drugs than any other protein family. GPCR signaling via G proteins is quenched (desensitized) by the phosphorylation of the active receptor by specific GPCR kinases (GRKs) followed by tight binding of arrestins to active phosphorylated receptors. Thus, arrestins engage two types of receptor elements: those that contain GRK-added phosphates and those that change conformation upon activation. GRKs attach phosphates to serines and threonines in the GPCR C-terminus or any one of the cytoplasmic loops. In addition to these phosphates, arrestins engage the cavity that appears between trans-membrane helices upon receptor activation and several other non-phosphorylated elements. The residues that bind GPCRs are localized on the concave side of both arrestin domains. Arrestins undergo a global conformational change upon receptor binding (become activated). Arrestins serve as important hubs of cellular signaling, emanating from activated GPCRs and receptor-independent.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
49
|
Marioni G, Nicolè L, Cappellesso R, Marchese-Ragona R, Fasanaro E, Di Carlo R, La Torre FB, Nardello E, Sanavia T, Ottaviano G, Fassina A. β-Arrestin-1 expression and epithelial-to-mesenchymal transition in laryngeal carcinoma. Int J Biol Markers 2019; 34:33-40. [PMID: 30854928 DOI: 10.1177/1724600818813621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The novel primary end-point of the present study was to ascertain β-arrestin-1 expression in a cohort of consecutive patients with laryngeal squamous cell carcinoma (LSCC) with information available on their cigarette-smoking habits. A secondary end-point was to conduct a preliminary clinical and pathological investigation into the possible role of β-arrestin-1 in the epithelial-to-mesenchymal transition (EMT), identified by testing for E-cadherin, Zeb1, and Zeb2 expression, in the setting of LSCC. METHODS The expression of β-arrestin-1, E-cadherin, zeb1, and zeb2 was ascertained in 20 consecutive LSCCs. RESULTS Statistical analysis showed no significant associations between β-arrestin-1 and EMT (based on the expression of E-cadherin, Zeb1, and Zeb2). The combined effect of nicotine and β-arrestin-1 was significantly associated with a shorter disease-free survival ( P=0.01) in our series of LSCC. This latter result was also confirmed in an independent, publicly available LSCC cohort ( P=0.047). CONCLUSIONS Further investigations on larger series (ideally in prospective settings) are needed before we can consider closer follow-up protocols and/or more aggressive treatments for patients with LSCC and a combination of nicotine exposure and β-arrestin-1 positivity in tumor cells at the time of their diagnosis. Further studies on how β-arrestin functions in cancer via different signaling pathways might reveal potential targets for the treatment of even advanced laryngeal malignancies.
Collapse
Affiliation(s)
- Gino Marioni
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Lorenzo Nicolè
- 2 Department of Medicine DIMED, University of Padova, Italy
| | | | | | - Elena Fasanaro
- 3 Radiotherapy Unit, Istituto Oncologico Veneto, IOV-IRCSS, Padova, Italy
| | - Roberto Di Carlo
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Fabio Biagio La Torre
- 4 Otolaryngology Unit, Azienda Ospedaliera "S. Maria degli Angeli," Pordenone, Italy
| | - Ennio Nardello
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Tiziana Sanavia
- 5 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Giancarlo Ottaviano
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | |
Collapse
|
50
|
Bond RA, Lucero Garcia-Rojas EY, Hegde A, Walker JKL. Therapeutic Potential of Targeting ß-Arrestin. Front Pharmacol 2019; 10:124. [PMID: 30894814 PMCID: PMC6414794 DOI: 10.3389/fphar.2019.00124] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
ß-arrestins are multifunctional proteins that modulate heptahelical 7 transmembrane receptors, also known as G protein-coupled receptors (GPCRs), a superfamily of receptors that regulate most physiological processes. ß-arrestin modulation of GPCR function includes termination of G protein-dependent signaling, initiation of ß-arrestin-dependent signaling, receptor trafficking to degradative or recycling pathways, receptor transactivation, transcriptional regulation, and localization of second messenger regulators. The pleiotropic influence ß-arrestins exert on these receptors regulates a breadth of physiological functions, and additionally, ß-arrestins are involved in the pathophysiology of numerous and wide-ranging diseases, making them prime therapeutic targets. In this review, we briefly describe the mechanisms by which ß-arrestins regulate GPCR signaling, including the functional cellular mechanisms modulated by ß-arrestins and relate this to observed pathophysiological responses associated with ß-arrestins. We focus on the role for ß-arrestins in transducing cell signaling; a pathway that is complementary to the classical G protein-coupling pathway. The existence of these GPCR dual signaling pathways offers an immense therapeutic opportunity through selective targeting of one signaling pathway over the other. Finally, we will consider several mechanisms by which the potential of dual signaling pathway regulation can be harnessed and the implications for improved disease treatments.
Collapse
Affiliation(s)
- Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Emilio Y Lucero Garcia-Rojas
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, United States
| | | |
Collapse
|