1
|
Bahun M, Poklar Ulrih N. A novel simple fluorometric protease assay for monitoring hydrolysis of proteins in real time. Anal Biochem 2024; 696:115688. [PMID: 39419197 DOI: 10.1016/j.ab.2024.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Measuring the activity of proteases is essential for investigating both the physiological functions and commercial applications of these enzymes. In contrast to the numerous protease assays that are based on chromogenic or fluorogenic peptide substrates, there is a lack of approaches to monitor degradation of proteins in real time. Here we report a protease assay where SYPRO Orange is employed as a fluorogenic probe to follow proteolysis. The functionality of the assay was demonstrated with the two subtilases of varying thermostability, using four different protein substrates. The assay is compatible with a real-time PCR instrument which allows continuous fluorescence measurements in low-volume samples even at high temperatures. This makes the assay especially suitable for high-throughput characterization of thermostable proteases.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova 39, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Oliveira-Silva R, Wang Y, Nooteboom SW, Prazeres DMF, Paulo PMR, Zijlstra P. Single-Particle Plasmon Sensor to Monitor Proteolytic Activity in Real Time. ACS APPLIED OPTICAL MATERIALS 2023; 1:1661-1669. [PMID: 37915971 PMCID: PMC10616847 DOI: 10.1021/acsaom.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 11/03/2023]
Abstract
We have established a label-free plasmonic platform that monitors proteolytic activity in real time. The sensor consists of a random array of gold nanorods that are functionalized with a design peptide that is specifically cleaved by thrombin, resulting in a blueshift of the longitudinal plasmon. By monitoring the plasmon of many individual nanorods, we determined thrombin's proteolytic activity in real time and inferred relevant kinetic parameters. Furthermore, a comparison to a kinetic model revealed that the plasmon shift is dictated by a competition between peptide cleavage and thrombin binding, which have opposing effects on the measured plasmon shift. The dynamic range of the sensor is greater than two orders of magnitude, and it is capable of detecting physiologically relevant levels of active thrombin down to 3 nM in buffered conditions. We expect these plasmon-mediated label-free sensors to open the window to a range of applications stretching from the diagnostic and characterization of bleeding disorders to fundamental proteolytic and pharmacological studies.
Collapse
Affiliation(s)
- Rui Oliveira-Silva
- MBx
Molecular Biosensing, Department of Applied Physics and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- iBB
− Institute for Biotechnology and Bioengineering, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001 Lisboa, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001 Lisboa, Portugal
| | - Yuyang Wang
- MBx
Molecular Biosensing, Department of Applied Physics and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sjoerd W. Nooteboom
- MBx
Molecular Biosensing, Department of Applied Physics and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Duarte M. F. Prazeres
- iBB
− Institute for Biotechnology and Bioengineering, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001 Lisboa, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, Instituto
Superior Técnico, Universidade de
Lisboa, 1049-001 Lisboa, Portugal
| | - Pedro M. R. Paulo
- CQE—Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto
Superior Técnico, Universidade de
Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Peter Zijlstra
- MBx
Molecular Biosensing, Department of Applied Physics and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Suresh V, Sheik DA, Detomasi TC, Zhao T, Zepeda T, Saladi S, Rajesh UC, Byers K, Craik CS, Davisson VJ. A Prototype Assay Multiplexing SARS-CoV-2 3CL-Protease and Angiotensin-Converting Enzyme 2 for Saliva-Based Diagnostics in COVID-19. BIOSENSORS 2023; 13:682. [PMID: 37504081 PMCID: PMC10377347 DOI: 10.3390/bios13070682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
With the current state of COVID-19 changing from a pandemic to being more endemic, the priorities of diagnostics will likely vary from rapid detection to stratification for the treatment of the most vulnerable patients. Such patient stratification can be facilitated using multiple markers, including SARS-CoV-2-specific viral enzymes, like the 3CL protease, and viral-life-cycle-associated host proteins, such as ACE2. To enable future explorations, we have developed a fluorescent and Raman spectroscopic SARS-CoV-2 3CL protease assay that can be run sequentially with a fluorescent ACE2 activity measurement within the same sample. Our prototype assay functions well in saliva, enabling non-invasive sampling. ACE2 and 3CL protease activity can be run with minimal sample volumes in 30 min. To test the prototype, a small initial cohort of eight clinical samples was used to check if the assay could differentiate COVID-19-positive and -negative samples. Though these small clinical cohort samples did not reach statistical significance, results trended as expected. The high sensitivity of the assay also allowed the detection of a low-activity 3CL protease mutant.
Collapse
Affiliation(s)
- Vallabh Suresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA
| | | | - Tyler C Detomasi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Tianqi Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA
| | | | | | | | - Kaleb Byers
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, USA
- Amplified Sciences, Inc., West Lafayette, IN 47906, USA
| |
Collapse
|
4
|
Park HJ, Kim Y, Lee KW, Gwon M, Yoon HC, Yoo TH. Coupling hCG-based protease sensors with a commercial pregnancy test strip for simple analyses of protease activities. Biosens Bioelectron 2023; 235:115364. [PMID: 37207580 DOI: 10.1016/j.bios.2023.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023]
Abstract
Proteases play an essential role in many cellular processes, and consequently, abnormalities in their activities are related to various diseases. Methods have been developed to measure the activity of these enzymes, but most involve sophisticated instruments or complicated procedures, which hampers the development of a point-of-care test (POCT). Here, we propose a strategy for developing simple and sensitive methods to analyze protease activity using commercial pregnancy test strips that detect human chorionic gonadotropin (hCG). hCG was engineered to have site-specific conjugated biotin and a peptide sequence, which can be cleaved by a target protease, between hCG and biotin. hCG protein was immobilized on streptavidin-coated beads, resulting in a protease sensor. The hCG-immobilized beads were too large to flow through the membrane of the hCG test strip and yielded only one band in the control line. When the peptide linker was hydrolyzed by the target protease, hCG was released from the beads, and the signal appeared in both the control and test lines. Three protease sensors for matrix metalloproteinase-2, caspase-3, and thrombin were constructed by replacing the protease-cleavable peptide linker. The combination of the protease sensors and a commercial pregnancy strip enabled the specific detection of each protease in the picomolar range, with a 30-min incubation of the hCG-immobilized beads and samples. The modular design of the protease sensor and simple assay procedure will facilitate the development of POCTs for various protease disease markers.
Collapse
Affiliation(s)
- Hyeon Ji Park
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Yuseon Kim
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Kyung Won Lee
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Minji Gwon
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea
| | - Hyun C Yoon
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea.
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea; Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon, 16499, South Korea.
| |
Collapse
|
5
|
Choi JH. Proteolytic Biosensors with Functional Nanomaterials: Current Approaches and Future Challenges. BIOSENSORS 2023; 13:171. [PMID: 36831937 PMCID: PMC9953628 DOI: 10.3390/bios13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Proteolytic enzymes are one of the important biomarkers that enable the early diagnosis of several diseases, such as cancers. A specific proteolytic enzyme selectively degrades a certain sequence of a polypeptide. Therefore, a particular proteolytic enzyme can be selectively quantified by changing detectable signals causing degradation of the peptide chain. In addition, by combining polypeptides with various functional nanomaterials, proteolytic enzymes can be measured more sensitively and rapidly. In this paper, proteolytic enzymes that can be measured using a polypeptide degradation method are reviewed and recently studied functional nanomaterials-based proteolytic biosensors are discussed. We anticipate that the proteolytic nanobiosensors addressed in this review will provide valuable information on physiological changes from a cellular level for individual and early diagnosis.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
6
|
Gao F, Liu G, Qiao M, Li Y, Yi X. Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission. BIOSENSORS 2022; 12:bios12110953. [PMID: 36354464 PMCID: PMC9688369 DOI: 10.3390/bios12110953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/14/2023]
Abstract
Enzymes play a critical role in most complex biochemical processes. Some of them can be regarded as biomarkers for disease diagnosis. Taking advantage of aggregation-induced emission (AIE)-based biosensors, a series of fluorogens with AIE characteristics (AIEgens) have been designed and synthesized for the detection and imaging of enzymes. In this work, we summarized the advances in AIEgens-based probes and sensing platforms for the fluorescent detection of enzymes, including proteases, phosphatases, glycosidases, cholinesterases, telomerase and others. The AIEgens involve organic dyes and metal nanoclusters. This work provides valuable references for the design of novel AIE-based sensing platforms.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence:
| |
Collapse
|
7
|
Selective targeting of metastatic ovarian cancer using an engineered anthrax prodrug activated by membrane-anchored serine proteases. Proc Natl Acad Sci U S A 2022; 119:e2201423119. [PMID: 35867758 PMCID: PMC9282395 DOI: 10.1073/pnas.2201423119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.
Collapse
|
8
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
9
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
10
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
11
|
Pawar S, Duadi H, Fleger Y, Fixler D. Carbon Dots-Based Logic Gates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:232. [PMID: 33477327 PMCID: PMC7830989 DOI: 10.3390/nano11010232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Carbon dots (CDs)-based logic gates are smart nanoprobes that can respond to various analytes such as metal cations, anions, amino acids, pesticides, antioxidants, etc. Most of these logic gates are based on fluorescence techniques because they are inexpensive, give an instant response, and highly sensitive. Computations based on molecular logic can lead to advancement in modern science. This review focuses on different logic functions based on the sensing abilities of CDs and their synthesis. We also discuss the sensing mechanism of these logic gates and bring different types of possible logic operations. This review envisions that CDs-based logic gates have a promising future in computing nanodevices. In addition, we cover the advancement in CDs-based logic gates with the focus of understanding the fundamentals of how CDs have the potential for performing various logic functions depending upon their different categories.
Collapse
Affiliation(s)
- Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| | - Yafit Fleger
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (S.P.); (H.D.)
| |
Collapse
|