1
|
Marton HL, Sagona AP, Kilbride P, Gibson MI. Acidic polymers reversibly deactivate phages due to pH changes. RSC APPLIED POLYMERS 2024; 2:1082-1090. [PMID: 39184364 PMCID: PMC11342163 DOI: 10.1039/d4lp00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Bacteriophages are promising as therapeutics and biotechnological tools, but they also present a problem for routine and commercial bacterial cultures, where contamination must be avoided. Poly(carboxylic acids) have been reported to inhibit phages' ability to infect their bacterial hosts and hence offer an exciting route to discover additives to prevent infection. Their mechanism and limitations have not been explored. Here, we report the role of pH in inactivating phages to determine if the polymers are unique or simply acidic. It is shown that lower pH (=3) triggered by either acidic polymers or similar changes in pH using HCl lead to inhibition. There is no inhibitory activity at higher pHs (in growth media). This was shown across a panel of phages and different molecular weights of commercial and controlled-radical polymerization-derived poly(acrylic acid)s. It is shown that poly(acrylic acid) leads to reversible deactivation of phage, but when the pH is adjusted using HCl alone the phage is irreversibly deactivated. Further experiments using metal binders ruled out ion depletion as the mode of action. These results show that polymeric phage inhibitors may work by unique mechanisms of action and that pH alone cannot explain the observed effects whilst also placing constraints on the practical utility of poly(acrylic acid).
Collapse
Affiliation(s)
- Huba L Marton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
2
|
Oh H, Koo J, An SY, Hong SH, Suh JY, Bae E. Structural and functional investigation of GajB protein in Gabija anti-phage defense. Nucleic Acids Res 2023; 51:11941-11951. [PMID: 37897358 PMCID: PMC10681800 DOI: 10.1093/nar/gkad951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.
Collapse
Affiliation(s)
- Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - So Young An
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Hyun Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Kim T, Cho BK, Kim YH, Min J. Novel peptide identified from viable-cell based phage display technique regulates growth cycle of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121556. [PMID: 37044252 DOI: 10.1016/j.envpol.2023.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Phage display is a widely used technique for selecting specific binding peptides, but presenting antigens in their natural form can be challenging, as protein coating may induce structural changes. In this study, we employed a whole cell-based phage display technique without a coating step to select peptides that bind specifically to Daphnia magna eggs. Boiled eggs were used as a control to ensure that antigens were presented in their natural forms. We identified a peptide, DEP1 (LYALPLSHLKSHGGG), with the highest binding affinity to D. magna eggs. DEP1 did not affect zebrafish eggs, but it inhibited normal hatching and reproductive ability in D. magna eggs, and hindered growth in neonates before their first ecdysis. Morphological analysis revealed that DEP1 caused intestinal damage and tissue abnormalities. Our findings demonstrate that the whole cell-based phage display technique is successful in presenting antigens in their natural form, and that the DEP1 peptide can be applied to regulate the growth cycle of D. magna. These results have implications for the use of phage display in environmental research and the potential use of DEP1 for hazardous organisms in aquatic systems.
Collapse
Affiliation(s)
- Taehwan Kim
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
4
|
Bodie AR, O'Bryan CA, Olson EG, Ricke SC. Natural Antimicrobials for Listeria monocytogenes in Ready-to-Eat Meats: Current Challenges and Future Prospects. Microorganisms 2023; 11:1301. [PMID: 37317275 DOI: 10.3390/microorganisms11051301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Listeria monocytogenes, an intra-cellular, Gram-positive, pathogenic bacterium, is one of the leading agents of foodborne illnesses. The morbidity of human listeriosis is low, but it has a high mortality rate of approximately 20% to 30%. L. monocytogenes is a psychotropic organism, making it a significant threat to ready-to-eat (RTE) meat product food safety. Listeria contamination is associated with the food processing environment or post-cooking cross-contamination events. The potential use of antimicrobials in packaging can reduce foodborne disease risk and spoilage. Novel antimicrobials can be advantageous for limiting Listeria and improving the shelf life of RTE meat. This review will discuss the Listeria occurrence in RTE meat products and potential natural antimicrobial additives for controlling Listeria.
Collapse
Affiliation(s)
- Aaron R Bodie
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Corliss A O'Bryan
- Food Science Department, University of Aransas-Fayetteville, Fayetteville, AR 72701, USA
| | - Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
5
|
Kim T, Lee J, Lee JP, Kim BN, Kim YH, Lee YS, Min J. Screening of novel peptides that specifically interact with vitamin D bound biocomplex proteins. Sci Rep 2023; 13:2116. [PMID: 36746976 PMCID: PMC9901391 DOI: 10.1038/s41598-023-28881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The majority of the vitamin D that is present in the blood binds to vitamin D binding protein (VDBP) and circulates in the form of a complex (VDBP-Complex). Knowing the level of vitamin D in the body is crucial for vitamin D-related treatments so that the right dosage of vitamin D can be given. In other words, it is essential to distinguish between the protein VDBP and the complex form bound to vitamin D. As a novel way for the detection of VDBP-Complex, a more effective phage display methodology was applied in this study along with the addition of two approaches. In order to screen a sequence specific to the target only, the pre-binding method and after-binding method were performed. VDBP-Complex was directly coated on the petri dishes. In order to select phages that specifically bind to the VDBP-Complex, random phages were attached, and selected by 7 times of biopanning. Individual DNA sequences were analyzed for each biopanning to find specific peptide sequences for VDBP-Complex. The affinity of binding phages was verified by ELISA assay using an anti-M13 antibody. The phage having a sequence of SFTKTSTFTWRD (called as M3) has shown the highest binding affinity to VDBP-Complex. As a result of the removal test of VDBP-Complex using magnetic beads conjugated with M3 peptide, it was confirmed that significant decrease of VDBP-Complex. The unique characteristic of the M3 sequence was confirmed through a sequence-modified peptide (SFT motif). That is, it is expected that the M3 peptide may be used to determine the vitamin D levels in the blood.
Collapse
Affiliation(s)
- Taehwan Kim
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jaewoong Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Bit-Na Kim
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Yang-Hoon Kim
- School of Biological Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Youn-Sik Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
6
|
Kowalski J, Górska R, Cieślik M, Górski A, Jończyk-Matysiak E. What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy? Antibiotics (Basel) 2022; 11:antibiotics11040446. [PMID: 35453197 PMCID: PMC9027636 DOI: 10.3390/antibiotics11040446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/16/2023] Open
Abstract
Periodontitis, which may result in tooth loss, constitutes both a serious medical and social problem. This pathology, if not treated, can contribute to the development of, among others, pancreatic cancer, cardiovascular diseases or Alzheimer’s disease. The available treatment methods are expensive but not always fully effective. For this reason, the search for and isolation of bacteriophages specific to bacterial strains causing periodontitis seems to be a great opportunity to target persistent colonization by bacterial pathogens and lower the use of antibiotics consequently limiting further development of antibiotic resistance. Furthermore, antimicrobial resistance (AMR) constitutes a growing challenge in periodontal therapy as resistant pathogens may be isolated from more than 70% of patients with periodontitis. The aim of this review is to present the perspective of phage application in the prevention and/or treatment of periodontitis alongside its complicated multifactorial aetiology and emphasize the challenges connecting composition and application of effective phage preparation.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.K.); (R.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (A.G.)
- Correspondence:
| |
Collapse
|
7
|
Ben Saad M, Ben Said M, Bousselmi L, Ghrabi A. Use of bacteriophage to inactivate pathogenic bacteria from wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:111-116. [PMID: 35129085 DOI: 10.1080/10934529.2022.2036551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to enhance the rhizobacterium potential in horizontal subsurface flow constructed wetland (CW) system planted by Phragmites australis using specific and lytic phages. The bioinoculation of specific bacteriophage for target bacteria; Salmonella typhi, and the monitoring of bacterial inactivation under different conditions showed the effectiveness of this methodology to enhance bacteria reduction and consequentially ameliorate purification performance of this studied biological treatment system. The injection of the phage at a concentration equal to 103 UFP/mL within the rhizosphere of the inoculated filter (F) was allowed 1 U-Log10 of improvement of bacterial inactivation compared to the control filter (T) nearly 1 logarithmic unit thus, a 90% improvement of bacteria reduction. When we increased the phage titer (105 UFP/mL), the bacterial reduction equal to 2.75 U-Log10 (N/N0) was registered that corresponds to a decrease of nearly 99.9%. According to the first-order model, the inactivation coefficient is equal to 2.29 min-1 (0.88 min-1 for the first experiment) and the bacterial reduction rate is 5 times higher than that determined for the control filter. This results show the positive impact of the phage in the bacterial inactivation and the improvement of water treatment of the biofilter C.
Collapse
Affiliation(s)
- Marwa Ben Saad
- Laboratory of wastewater and Environment Water Researches and Technologies Center, CERTE, Soliman, BP, Tunisia
- National Agronomic Institute of Tunisia, University of Carthage, Mahrajène, Tunis, Tunisia
| | - Myriam Ben Said
- Laboratory of wastewater and Environment Water Researches and Technologies Center, CERTE, Soliman, BP, Tunisia
| | - Latifa Bousselmi
- Laboratory of wastewater and Environment Water Researches and Technologies Center, CERTE, Soliman, BP, Tunisia
| | - Ahmed Ghrabi
- Laboratory of wastewater and Environment Water Researches and Technologies Center, CERTE, Soliman, BP, Tunisia
| |
Collapse
|
8
|
Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103645. [PMID: 34914854 PMCID: PMC8811829 DOI: 10.1002/advs.202103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Bacteriophages, also known as phages, are specific antagonists against bacteria. T7 phage has drawn massive attention in precision medicine owing to its distinctive advantages, such as short replication cycle, ease in displaying peptides and proteins, high stability and cloning efficiency, facile manipulation, and convenient storage. By introducing foreign gene into phage DNA, T7 phage can present foreign peptides or proteins site-specifically on its capsid, enabling it to become a nanoparticle that can be genetically engineered to screen and display a peptide or protein capable of recognizing a specific target with high affinity. This review critically introduces the biomedical use of T7 phage, ranging from the detection of serological biomarkers and bacterial pathogens, recognition of cells or tissues with high affinity, design of gene vectors or vaccines, to targeted therapy of different challenging diseases (e.g., bacterial infection, cancer, neurodegenerative disease, inflammatory disease, and foot-mouth disease). It also discusses perspectives and challenges in exploring T7 phage, including the understanding of its interactions with human body, assembly into scaffolds for tissue regeneration, integration with genome editing, and theranostic use in clinics. As a genetically modifiable biological nanoparticle, T7 phage holds promise as biomedical imaging probes, therapeutic agents, drug and gene carriers, and detection tools.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yan Li
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
- Department of Chemistry and BiochemistryStephenson Life Science Research CenterInstitute for Biomedical Engineering, Science and TechnologyUniversity of Oklahoma101 Stephenson ParkwayNormanOklahoma73019‐5251USA
| |
Collapse
|
9
|
Fong K, Wong CW, Wang S, Delaquis P. How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:83-91. [PMID: 36148040 PMCID: PMC9041489 DOI: 10.1089/phage.2020.0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel bacteriophages (phages) possessing a broad host range are consistently and routinely reported, yet there is presently no consensus on the definition of "broad host range." As phages are increasingly being used in the development of methods for the detection and biocontrol of human pathogens, it is important to address the limitations associated with the host range. For instance, unanticipated host range breadth may result in the detection of nonpathogenic targets, thereby increasing the false-positive rate. Moreover, a broad host range is generally favored in biocontrol applications despite the risk of undesirable ancillary effects against nontarget species. Here, we discuss the research progress, applications, and implications of broad host range phages with a focus on tailed broad host range phages infecting human pathogens of concern in the Agri-Food sector.
Collapse
Affiliation(s)
- Karen Fong
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Pascal Delaquis
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| |
Collapse
|
10
|
Ferreira R, Amado R, Padrão J, Ferreira V, Dias NM, Melo LDR, Santos SB, Nicolau A. The first sequenced Sphaerotilus natans bacteriophage- characterization and potential to control its filamentous bacterium host. FEMS Microbiol Ecol 2021; 97:6136272. [PMID: 33587121 DOI: 10.1093/femsec/fiab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteriophages (phages) are ubiquitous entities present in every conceivable habitat as a result of their bacterial parasitism. Their prevalence and impact in the ecology of bacterial communities and their ability to control pathogens make their characterization essential, particularly of new phages, improving knowledge and potential application. The isolation and characterization of a new lytic phage against Sphaerotilus natans strain DSM 6575, named vB_SnaP-R1 (SnaR1), is here described. Besides being the first sequenced genome of a Sphaerotilus natans infecting phage, 99% of its 41507 bp genome lacks homology with any other sequenced phage, revealing its uniqueness and previous lack of knowledge. Moreover, SnaR1 is the first Podoviridae phage described infecting this bacterium. Sphaerotilus natans is an important filamentous bacterium due to its deleterious effect on wastewater treatment plants (WWTP) and thus, phages may play a role as novel biotechnological tools against filamentous overgrowth in WWTP. The lytic spectrum of SnaR1 was restricted to its host strain, infecting only one out of three S. natans strains and infection assays revealed its ability to reduce bacterial loads. Results suggest SnaR1 as the prototype of a new phage genus and demonstrates its potential as a non-chemical alternative to reduce S. natans DSM 6575 cells.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Amado
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge Padrão
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vânia Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nicolina M Dias
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sílvio B Santos
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Nicolau
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Harada LK, Júnior WB, Silva EC, Oliveira TJ, Moreli FC, Júnior JMO, Tubino M, Vila MMDC, Balcão VM. Bacteriophage-Based Biosensing of Pseudomonas aeruginosa: An Integrated Approach for the Putative Real-Time Detection of Multi-Drug-Resistant Strains. BIOSENSORS-BASEL 2021; 11:bios11040124. [PMID: 33921071 PMCID: PMC8071457 DOI: 10.3390/bios11040124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet’s biosphere, killing between 4–50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections linked to healthcare services are widespread, which, when associated with the increasing surge of antibiotic-resistant microorganisms, play a major role in patient morbidity and mortality. In this scenario, Pseudomonas aeruginosa alone is responsible for ca. 13–15% of all hospital-acquired infections. The pathogen P. aeruginosa is an opportunistic one, being endowed with metabolic versatility and high (both intrinsic and acquired) resistance to antibiotics. Bacteriophages (or phages) have been recognized as a tool with high potential for the detection of bacterial infections since these metabolically inert entities specifically attach to, and lyse, bacterial host cells, thus, allowing confirmation of the presence of viable cells. In the research effort described herein, three different phages with broad lytic spectrum capable of infecting P. aeruginosa were isolated from environmental sources. The isolated phages were elected on the basis of their ability to form clear and distinctive plaques, which is a hallmark characteristic of virulent phages. Next, their structural and functional stabilization was achieved via entrapment within the matrix of porous alginate, biopolymeric, and bio-reactive, chromogenic hydrogels aiming at their use as sensitive matrices producing both color changes and/or light emissions evolving from a reaction with (released) cytoplasmic moieties, as a bio-detection kit for P. aeruginosa cells. Full physicochemical and biological characterization of the isolated bacteriophages was the subject of a previous research paper.
Collapse
Affiliation(s)
- Liliam K. Harada
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | | | - Erica C. Silva
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Thais J. Oliveira
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Fernanda C. Moreli
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - José M. Oliveira Júnior
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Matthieu Tubino
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil;
| | - Marta M. D. C. Vila
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
| | - Victor M. Balcão
- PhageLab—Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP 18023-000, Brazil; (L.K.H.); (E.C.S.); (T.J.O.); (F.C.M.); (J.M.O.J.); (M.M.D.C.V.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +55-(15)-2101-7029
| |
Collapse
|
12
|
Isolation and Characterization of Two Virulent Phages to Combat Staphylococcus aureus and Enterococcus faecalis causing Dental Caries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to isolate and characterize bacteriophages, as a biocontrol agent, against certain antibiotic-resistant bacteria causing dental caries. Here, two dental caries-causing bacteria S. aureus and E. faecalis were isolated and characterized biochemically using the automated VITEK® 2 system. Antibiotic sensitivity pattern of the isolated dental caries bacteria was assessed against selection of antibiotics. The two isolates showed resistance against most of the tested antibiotics. To overcome this problem, two lytic phages vB_SauM-EG-AE3 and vB_EfaP-EF01 were isolated, identified, and applied to control the growth of S. aureus and E. faecalis, respectively. Phages were identified morphologically using TEM and showed that vB_SauM-EG-AE3 phage is related to Myoviridae and vB_EfaP-EF01 phage belongs to Podoviridae. The two phages exhibited high lytic activity, high stability, and a narrow host range. The one-step growth curve of phages showed burst sizes of 78.87 and 113.55 PFU/cell with latent periods of 25 and 30 minutes for S. aureus phage and E. faecalis phage respectively. In addition, the two phages showed different structural protein profiles and exhibited different patterns using different restriction enzymes. The genome sizes were estimated to be 13.30 Kb and 15.60 Kb for phages vB_SauM-EGAE3, vB_EfaP-EGAE1, respectively. Complete inhibition of bacterial growth was achieved using phages with MOIs of 103, 102 and 10 after 1, 3, 5, and 24 h of incubation at 37°C. Hence, this study indicates that the isolated bacteriophages are promising biocontrol agents that could challenge antibiotic-resistant dental caries bacteria to announce new successful alternatives to antibiotics.
Collapse
|
13
|
Esmael A, Azab E, Gobouri AA, Nasr-Eldin MA, Moustafa MMA, Mohamed SA, Badr OAM, Abdelatty AM. Isolation and Characterization of Two Lytic Bacteriophages Infecting a Multi-Drug Resistant Salmonella Typhimurium and Their Efficacy to Combat Salmonellosis in Ready-to-Use Foods. Microorganisms 2021; 9:423. [PMID: 33670722 PMCID: PMC7922427 DOI: 10.3390/microorganisms9020423] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Foodborne salmonellosis is a global threat to public health. In the current study, we describe the isolation and characterization of two broad-spectrum, lytic Salmonella phages: SPHG1 and SPHG3 infecting a multidrug-resistant Salmonella Typhimurium EG.SmT3. Electron microscopy and whole genome analysis identified SPHG1 as a Myovirus, while SPHG3 as a new member of the genus "Kuttervirus" within the family Ackermannviridae. SPHG1 and SPHG3 had a lysis time of 60 min. with burst sizes of 104 and 138 PFU/cell, respectively. The two phages were robust at variable temperatures and pH ranges that match the corresponding values of most of the food storage and processing conditions. A phage cocktail containing the two phages was stable in the tested food articles for up to 48 h. The application of the phage cocktail at MOIs of 1000 or 100 resulted in a significant reduction in the viable count of S. Typhimurium by 4.2 log10/sample in milk, water, and on chicken breast. Additionally, the phage cocktail showed a prospective ability to eradicate and reduce the biofilm that formed by S. Typhimurium EG.SmT3. A phage cocktail of SPHG1 and SPHG3 is considered as a promising candidate as a biocontrol agent against foodborne salmonellosis due to its broad host ranges, highly lytic activities, and the absence of any virulence or lysogeny-related genes in their genomes.
Collapse
Affiliation(s)
- Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate 13511, Egypt;
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Nasr-Eldin
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate 13511, Egypt;
| | - Mahmoud M. A. Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt; (M.M.A.M.); (S.A.M.); (O.A.M.B.)
| | - Shereen A. Mohamed
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt; (M.M.A.M.); (S.A.M.); (O.A.M.B.)
| | - Omnia A. M. Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt; (M.M.A.M.); (S.A.M.); (O.A.M.B.)
| | - Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| |
Collapse
|
14
|
Jones HJ, Shield CG, Swift BM. The Application of Bacteriophage Diagnostics for Bacterial Pathogens in the Agricultural Supply Chain: From Farm-to-Fork. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:176-188. [PMID: 36147287 PMCID: PMC9041468 DOI: 10.1089/phage.2020.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriophages (phages) have great potential not only as therapeutics but as diagnostics. Indeed, they have been developed and used to diagnose and detect bacterial infections, primarily in human clinical settings. The ability to rapidly detect and control bacterial pathogens in agriculture is of primary importance to maintain food security, improve animal health, and prevent the passage of zoonotic pathogens into the human population. Culture-based detection methods are often labor-intensive, and require further confirmatory tests, increasing costs and processing times needed for diagnostics. Molecular detection methods such as polymerase chain reaction are commonly used to determine the safety of food, however, a major drawback is their inability to differentiate between viable and nonviable bacterial pathogens in food. Phage diagnostics have been proven to be rapid, capable of identifying viable pathogens and do not require cultivation to detect bacteria. Phage detection takes advantage of the specificity of interaction between phage and their hosts. Furthermore, phage detection is cost effective, which is vitally important in agricultural supply chains where there is a drive to keep costs down to ensure that the cost of food does not increase. The full potential of phage detection/diagnostics is not wholly realized or commercialized. This review explores the current use and potential future scope of phage diagnostics and their application to various bacterial pathogens across agriculture and food supply chains.
Collapse
Affiliation(s)
- Helen J. Jones
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Christopher G. Shield
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Benjamin M.C. Swift
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
15
|
Kim S, Kim S. Bacterial pathogen detection by conventional culture‐based and recent alternative (polymerase chain reaction, isothermal amplification, enzyme linked immunosorbent assay, bacteriophage amplification, and gold nanoparticle aggregation) methods in food samples: A review. J Food Saf 2020. [DOI: 10.1111/jfs.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sang‐Oh Kim
- Department of Plant and Food Sciences Sangmyung University Cheonan Republic of Korea
| | - Sang‐Soon Kim
- Department of Food Engineering Dankook University Cheonan Republic of Korea
| |
Collapse
|
16
|
Lin H, Lee J, Han J, Lee C, Seo S, Tan S, Lee HM, Choi EJ, Strano MS, Yang Y, Maruyama S, Jeon I, Matsuo Y, Oh J. Denatured M13 Bacteriophage-Templated Perovskite Solar Cells Exhibiting High Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000782. [PMID: 33101847 PMCID: PMC7578877 DOI: 10.1002/advs.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Indexed: 06/01/2023]
Abstract
The M13 bacteriophage, a nature-inspired environmentally friendly biomaterial, is used as a perovskite crystal growth template and a grain boundary passivator in perovskite solar cells. The amino groups and carboxyl groups of amino acids on the M13 bacteriophage surface function as Lewis bases, interacting with the perovskite materials. The M13 bacteriophage-added perovskite films show a larger grain size and reduced trap-sites compared with the reference perovskite films. In addition, the existence of the M13 bacteriophage induces light scattering effect, which enhances the light absorption particularly in the long-wavelength region around 825 nm. Both the passivation effect of the M13 bacteriophage coordinating to the perovskite defect sites and the light scattering effect intensify when the M13 virus-added perovskite precursor solution is heated at 90 °C prior to the film formation. Heating the solution denatures the M13 bacteriophage by breaking their inter- and intra-molecular bondings. The denatured M13 bacteriophage-added perovskite solar cells exhibit an efficiency of 20.1% while the reference devices give an efficiency of 17.8%. The great improvement in efficiency comes from all of the three photovoltaic parameters, namely short-circuit current, open-circuit voltage, and fill factor, which correspond to the perovskite grain size, trap-site passivation, and charge transport, respectively.
Collapse
Affiliation(s)
- Hao‐Sheng Lin
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Jong‐Min Lee
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Jiye Han
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Changsoo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seungju Seo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
| | - Shaun Tan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Hyuck Mo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Eun Jung Choi
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Michael S. Strano
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Yang Yang
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Shigeo Maruyama
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Energy NanoEngineering LaboratoryNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8564Japan
| | - Il Jeon
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
- Department of Chemistry EducationGraduate School of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsPusan National University63‐2 Busandaehak‐roBusan46241Republic of Korea
| | - Yutaka Matsuo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Institutes of Innovation for Future SocietyNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Jin‐Woo Oh
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| |
Collapse
|
17
|
Ka D, Oh H, Park E, Kim JH, Bae E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD + degradation. Nat Commun 2020; 11:2816. [PMID: 32499527 PMCID: PMC7272460 DOI: 10.1038/s41467-020-16703-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023] Open
Abstract
The intense arms race between bacteria and phages has led to the development of diverse antiphage defense systems in bacteria. Unlike well-known restriction-modification and CRISPR-Cas systems, recently discovered systems are poorly characterized. One such system is the Thoeris defense system, which consists of two genes, thsA and thsB. Here, we report structural and functional analyses of ThsA and ThsB. ThsA exhibits robust NAD+ cleavage activity and a two-domain architecture containing sirtuin-like and SLOG-like domains. Mutation analysis suggests that NAD+ cleavage is linked to the antiphage function of Thoeris. ThsB exhibits a structural resemblance to TIR domain proteins such as nucleotide hydrolases and Toll-like receptors, but no enzymatic activity is detected in our in vitro assays. These results further our understanding of the molecular mechanism underlying the Thoeris defense system, highlighting a unique strategy for bacterial antiphage resistance via NAD+ degradation. The Thoeris defense system is a recently discovered bacterial defense system that protects bacteria against phage infection and consists of the two genes thsA and thsB. Here, the authors present the crystal structures of Bacillus cereus ThsA and ThsB and show that ThsA is a NAD+ cleaving enzyme.
Collapse
Affiliation(s)
- Donghyun Ka
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.,Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Eunyoung Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
18
|
Understanding and Exploiting Phage-Host Interactions. Viruses 2019; 11:v11060567. [PMID: 31216787 PMCID: PMC6630733 DOI: 10.3390/v11060567] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023] Open
Abstract
Initially described a century ago by William Twort and Felix d’Herelle, bacteriophages are bacterial viruses found ubiquitously in nature, located wherever their host cells are present. Translated literally, bacteriophage (phage) means ‘bacteria eater’. Phages interact and infect specific bacteria while not affecting other bacteria or cell lines of other organisms. Due to the specificity of these phage–host interactions, the relationship between phages and their host cells has been the topic of much research. The advances in phage biology research have led to the exploitation of these phage–host interactions and the application of phages in the agricultural and food industry. Phages may provide an alternative to the use of antibiotics, as it is well known that the emergence of antibiotic-resistant bacterial infections has become an epidemic in clinical settings. In agriculture, pre-harvest and/or post-harvest application of phages to crops may prevent the colonisation of bacteria that are detrimental to plant or human health. In addition, the abundance of data generated from genome sequencing has allowed the development of phage-derived bacterial detection systems of foodborne pathogens. This review aims to outline the specific interactions between phages and their host and how these interactions may be exploited and applied in the food industry.
Collapse
|
19
|
Akhwale JK, Rohde M, Rohde C, Bunk B, Spröer C, Boga HI, Klenk HP, Wittmann J. Isolation, characterization and analysis of bacteriophages from the haloalkaline lake Elmenteita, Kenya. PLoS One 2019; 14:e0215734. [PMID: 31022240 PMCID: PMC6483233 DOI: 10.1371/journal.pone.0215734] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
As a step towards better understanding of diversity and biology of phages and their hosts in haloalkaline Lake Elmenteita, phages were isolated from sediment samples and overlying water using indigenous bacteria as hosts. 17 seemingly different phages of diverse morphotypes with different dimensions and partly exhibiting remarkably unusual ultrastructures were revealed by transmission electron microscopy. 12 clonal phage isolates were further characterized. Infection capability of the phages was optimum at 30-35°C and in alkali condition with optimum at pH 10-12. Structural protein profiles and restriction fragment length polymorphism analyses patterns were distinct for each of the phage type. Complete nucleotide sequences of phages vB-VmeM-32, vB_EauS-123 and vB_BhaS-171 genomes varied in size from 30,926-199,912 bp and G + C content of between 36.25-47.73%. A range of 56-260 potential open reading frames were identified and annotated. The results showed that the 12 phages were distinct from each other and confirmed the presence and diversity of phages in extreme environment of haloalkaline Lake Elmenteita. The phages were deposited at the German Collection of Microorganisms and Cell Cultures and three of their genomes uploaded to NCBI GenBank.
Collapse
Affiliation(s)
- Juliah Khayeli Akhwale
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- * E-mail:
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Christine Rohde
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Johannes Wittmann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
20
|
Fineran PC. Resistance is not futile: bacterial 'innate' and CRISPR-Cas 'adaptive' immune systems. MICROBIOLOGY-SGM 2019; 165:834-841. [PMID: 30958259 DOI: 10.1099/mic.0.000802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria are under a constant pressure from their viruses (phages) and other mobile genetic elements. They protect themselves through a range of defence strategies, which can be broadly classified as 'innate' and 'adaptive'. The bacterial innate immune systems include defences provided by restriction modification and abortive infection, among others. Bacterial adaptive immunity is elicited by a diverse range of CRISPR-Cas systems. Here, I discuss our research on both innate and adaptive phage resistance mechanisms and some of the evasion strategies employed by phages.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
21
|
El-Dougdoug N, Cucic S, Abdelhamid A, Brovko L, Kropinski A, Griffiths M, Anany H. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. Int J Food Microbiol 2019; 293:60-71. [DOI: 10.1016/j.ijfoodmicro.2019.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
|
22
|
Tamariz J, Guevara V, Guerra H. Rapid detection of salmonellosis due to Salmonella enterica serovar Typhimurium in Peruvian commercially bred cavies, using indigenous wild bacteriophages. Germs 2018; 8:178-185. [PMID: 30775336 DOI: 10.18683/germs.2018.1144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022]
Abstract
Introduction The salmonelloses are among the commonest, most widespread human zoonotic infections. They have generated international networks to attempt their control, since they cause a spectrum of ailments, ranging from inapparent carrier states to full-blown, severe, sometimes deadly diarrheal and systemic disease. Rapid diagnosis is needed for a number of reasons. The aim of this study was to standardize and validate a phage amplification test for the identification of salmonellosis to be applied to infections of Cavia porcellus. Methods Native bacteriophages were isolated from infected cavies and environmental residues from commercial cavy-breeding facilities. Salmonella enterica serovar Typhimurium ATCC 14028 was used to detect, isolate and propagate the bacteriophages, and to standardize a phage amplification assay to detect S. Typhimurium from rectal swabs of cavies. The phage amplification assay was tested using 2 antiviral agents, MgSO4·7H2O (MAS) and pomegranate rind extract (PRE) plus ferrous sulfate (PRE-FeSO4). Results The final assay format chosen used PRE-FeSO4 and allowed detection of S. Typhimurium in 90 min from culture, 5 h from clinical samples, with a limit of detection at 103 pfu; sensitivity was 98.2%, specificity 98%, negative predictive value (NPV) 96.1%, and positive predictive value (PPV) 99.1%. Conclusion Bacteriophage amplification is therefore an appropriate, fast procedure for detection of this pathogen in clinical samples.
Collapse
Affiliation(s)
- Jesús Tamariz
- MSc, PhD, Antimicrobial resistance laboratory - Universidad Peruana Cayetano Heredia, Av. Honorio Delgado Nº 430, San Martín de Porras, Lima 31, Lima, Perú
| | - Víctor Guevara
- MT, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado Nº 430, San Martín de Porras, Lima 31, Lima, Perú
| | - Humberto Guerra
- MD, PhD, Dr Med, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado Nº 430, San Martín de Porras, Lima 31, Lima, Perú
| |
Collapse
|
23
|
Bacteriophages Synergize with the Gut Microbial Community To Combat Salmonella. mSystems 2018; 3:mSystems00119-18. [PMID: 30320220 PMCID: PMC6172775 DOI: 10.1128/msystems.00119-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic-resistant bacteria are a global threat. Therefore, alternative approaches for combatting bacteria, especially antibiotic-resistant bacteria, are urgently needed. Using a human gut microbiota model, we demonstrate that bacteriophages (phages) are able to substantially decrease pathogenic Salmonella without perturbing the microbiota. Conversely, antibiotic treatment leads to the eradication of close to all commensal bacteria, leaving only antibiotic-resistant bacteria. An unbalanced microbiota has been linked to many diseases both in the gastrointestinal tract or “nonintestinal” diseases. In our study, we show that the microbiota provides a protective effect against Salmonella. Since phage treatment preserves the healthy gut microbiota, it is a feasible superior alternative to antibiotic treatment. Furthermore, when combating infections caused by pathogenic bacteria, gut microbiota should be considered. Salmonella infection is one of the main causes of food-borne diarrheal diseases worldwide. Although most Salmonella infections can be cleared without treatment, some cause serious illnesses that require antibiotic treatment. In view of the growing emergence of antibiotic-resistant Salmonella strains, novel treatments are increasingly required. Furthermore, there is a striking paucity of data on how a balanced human gut microbiota responds to Salmonella infection. This study aimed to evaluate whether a balanced gut microbiota protects against Salmonella growth and to compare two antimicrobial approaches for managing Salmonella infection: bacteriophage (phage) treatment and antibiotic treatment. Anaerobically cultivated human intestinal microflora (ACHIM) is a feasible model for the human gut microbiota and naturally inhibits Salmonella infection. By mimicking Salmonella infection in vitro using ACHIM, we observed a large reduction of Salmonella growth by the ACHIM itself. Treatments with phage and antibiotic further inhibited Salmonella growth. However, phage treatment had less impact on the nontargeted bacteria in ACHIM than the antibiotic treatment did. Phage treatment has high specificity when combating Salmonella infection and offers a noninvasive alternative to antibiotic treatment. IMPORTANCE Antibiotic-resistant bacteria are a global threat. Therefore, alternative approaches for combatting bacteria, especially antibiotic-resistant bacteria, are urgently needed. Using a human gut microbiota model, we demonstrate that bacteriophages (phages) are able to substantially decrease pathogenic Salmonella without perturbing the microbiota. Conversely, antibiotic treatment leads to the eradication of close to all commensal bacteria, leaving only antibiotic-resistant bacteria. An unbalanced microbiota has been linked to many diseases both in the gastrointestinal tract or “nonintestinal” diseases. In our study, we show that the microbiota provides a protective effect against Salmonella. Since phage treatment preserves the healthy gut microbiota, it is a feasible superior alternative to antibiotic treatment. Furthermore, when combating infections caused by pathogenic bacteria, gut microbiota should be considered. Author Video: An author video summary of this article is available.
Collapse
|
24
|
Isolation and characterization of two lytic bacteriophages against Staphylococcus aureus from India: newer therapeutic agents against Bovine mastitis. Vet Res Commun 2018; 42:289-295. [PMID: 30219981 DOI: 10.1007/s11259-018-9736-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/30/2018] [Indexed: 01/19/2023]
Abstract
Bovine mastitis causes severe economic losses to dairy farmers. Staphylococcus aureus, is one of the most important pathogen implicated in etiology of clinical and subclinical mastitis in bovines. In view of increasing antimicrobial resistance alternatives to antibiotic therapy are much needed. The present decade has witnessed a renewed interest in phage based therapeutics and diagnostics. The present study, describes isolation and characterization of two lytic phages SAJK-IND and MSP against Staphylococcus aureus having a potential to be used in therapy against mastitis. SAJK-IND and MSP phages belonged to Myoviridae and Podoviridae families, respectively. TEM imaging of the two phages revealed an iscosahedral head. MSP phage has a short non contractile tail. SAJK-IND and MSP have a burst size of 44 ± 3 and 25 ± 5 PFU/ infected cell, respectively. SAJK-IND and MSP phages revealed ̴ 12 and ̴16 proteins, respectively on SDS-PAGE analysis. The lytic activity of the phages was specific for Staphylococcus aureus. SAJK-IND revealed 100% lytic activity against several strains of Staphylococcus aureus isolated from mastitis milk samples whereas, MSP had only 40% lytic activity. SAJK-IND phage genome was sequenced, assembled and deposited in Genbank under accession no MG010123.
Collapse
|
25
|
Mido T, Schaffer EM, Dorsey RW, Sozhamannan S, Hofmann ER. Sensitive detection of live Escherichia coli by bacteriophage amplification-coupled immunoassay on the Luminex® MAGPIX instrument. J Microbiol Methods 2018; 152:143-147. [PMID: 30077693 DOI: 10.1016/j.mimet.2018.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Phages are natural predators of bacteria and have been exploited in bacterial detection because of their exquisite specificity to their cognate bacterial hosts. In this study, we present a "proof of concept" bacteriophage amplification-coupled assay as a surrogate for detecting a bacterium present in a sample. The assay entails detection of progeny phage resulting from infection and subsequent growth inside the bacterium present in suspected samples. This approach reduces testing time and enhances sensitivity to identify pathogens compared to traditional overnight plaque assay. Further, the assay has the ability to discriminate between live and dead cells since phages require live host cells to infect and replicate. To demonstrate its utility, phage MS2 amplification-coupled, bead-based sandwich type immunoassay on the Luminex® MAGPIX instrument for Escherichia coli detection was performed. The assay not only showed live cell discrimination ability but also a limit of E. coli detection of 1 × 102 cells/mL of live cells after a 3-h incubation. In addition, the sensitivity of the assay was not impaired in the presence of dead cells. These results demonstrate that bacteriophage amplification-coupled assay can be a rapid live cell detection assay compared to traditional culture methods and a promising tool for quick validation of bacterial inactivation. Combined with the unique multiplex bead chemistry of the Luminex® MAGPIX platform, the phage assay can be expanded to be an ultra-deep multiplex assay for the simultaneous detection of multiple pathogens using specific phages directed against the target pathogens.
Collapse
Affiliation(s)
- Tomotaka Mido
- CBRN Detection Technology Section, CBRN Defense Technology Division, Advanced Defense Technology Center, Acquisition, Technology and Logistics Agency (ATLA), Tokyo, Japan
| | - Eric M Schaffer
- Leidos, Inc., Aberdeen Proving Ground, MD, USA; Biosciences Division, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Grounds, Edgewood, MD, USA
| | - Robert W Dorsey
- Biosciences Division, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Grounds, Edgewood, MD, USA
| | - Shanmuga Sozhamannan
- The Tauri Group, LLC, Alexandria, VA, USA; Defense Biological Product Assurance Office, JPM G, JPEO, Frederick, MD, USA
| | - E Randal Hofmann
- Biosciences Division, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Grounds, Edgewood, MD, USA; EXCET, Inc. Springfield, VA, USA.
| |
Collapse
|
26
|
Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res 2018; 212-213:38-58. [DOI: 10.1016/j.micres.2018.04.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
|
27
|
Anany H, Brovko L, El Dougdoug NK, Sohar J, Fenn H, Alasiri N, Jabrane T, Mangin P, Monsur Ali M, Kannan B, Filipe CDM, Griffiths MW. Print to detect: a rapid and ultrasensitive phage-based dipstick assay for foodborne pathogens. Anal Bioanal Chem 2017; 410:1217-1230. [PMID: 28940009 DOI: 10.1007/s00216-017-0597-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022]
Abstract
Foodborne pathogens are a burden to the economy and a constant threat to public health. The ability to rapidly detect the presence of foodborne pathogens is a vital component of any strategy towards establishing a safe and secure food supply chain. Bacteriophages (phages) are viruses capable of infecting and replicating within bacteria in a strain-specific manner. The ubiquitous and selective nature of phages makes them ideal for the detection and biocontrol of bacteria. Therefore, the objective of this research was to develop and test a phage-based paper dipstick biosensor for the detection of various foodborne pathogens in food matrices. The first step was to identify the best method for immobilizing phages on paper such that their biological activity (infectivity) was preserved. It was found that piezoelectric inkjet printing resulted in lower loss of phage infectivity when compared with other printing methods (namely gravure and blade coating) and that ColorLok paper was ideally suited to create functional sensors. The phage-based bioactive papers developed with use of piezoelectric inkjet printing actively lysed their target bacteria and retained this antibacterial activity for up to 1 week when stored at room temperature and 80% relative humidity. These bioactive paper strips in combination with quantitative real-time PCR were used for quantitative determination of target bacteria in broth and food matrices. A phage dipstick was used to capture and infect Escherichia coli O157:H7, E. coli O45:H2, and Salmonella Newport in spinach, ground beef and chicken homogenates, respectively, and quantitative real-time PCR was used to detect the progeny phages. A detection limit of 10-50 colony-forming units per millilitre was demonstrated with a total assay time of 8 h, which was the duration of a typical work shift in an industrial setting. This detection method is rapid and cost-effective, and may potentially be applied to a broad range of bacterial foodborne pathogens. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Hany Anany
- Agriculture and Agri-Food Canada, Guelph Research and Development Center, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada. .,Canadian Research Institute for Food Safety, Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Lubov Brovko
- Canadian Research Institute for Food Safety, Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Noha K El Dougdoug
- Faculty of Science, Benha University, Fareed Nada Street, Benha, 13511, Egypt
| | - Jennifer Sohar
- Canadian Research Institute for Food Safety, Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Heather Fenn
- Canadian Research Institute for Food Safety, Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Nada Alasiri
- Canadian Research Institute for Food Safety, Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Tarik Jabrane
- Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Patrice Mangin
- Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - M Monsur Ali
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Balamurali Kannan
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Mansel W Griffiths
- Canadian Research Institute for Food Safety, Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
28
|
Abedon ST. Bacteriophage Clinical Use as Antibacterial "Drugs": Utility and Precedent. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0003-2016. [PMID: 28840811 PMCID: PMC11687515 DOI: 10.1128/microbiolspec.bad-0003-2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
For phage therapy-the treatment of bacterial infections using bacterial viruses-a key issue is the conflict between apparent ease of clinical application, on the one hand, and on the other hand, numerous difficulties that can be associated with undertaking preclinical development. These conflicts between achieving efficacy in the real world versus rigorously understanding that efficacy should not be surprising because equivalent conflicts have been observed in applied biology for millennia: exploiting the inherent, holistic tendencies of useful systems, e.g., of dairy cows, inevitably is easier than modeling those systems or maintaining effectiveness while reducing such systems to isolated parts. Trial and error alone, in other words, can be a powerful means toward technological development. Undertaking trial and error-based programs, especially in the clinic, nonetheless is highly dependent on those technologies possessing both inherent safety and intrinsic tendencies toward effectiveness, but in this modern era we tend to forget that ideally there would exist antibacterials which could be thus developed, that is, with tendencies toward both safety and effectiveness, and which are even relatively inexpensive. Consequently, we tend to demand rigor as well as expense of development even to the point of potentially squandering such utility, were it to exist. In this review I lay out evidence that in phage therapy such potential, in fact, does exist. Advancement of phage therapy unquestionably requires effective regulation as well as rigorous demonstration of efficacy, but after nearly 100 years of clinical practice, perhaps not as much emphasis on strictly laboratory-based proof of principle.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906
| |
Collapse
|
29
|
Abramov G, Shaharabani R, Morag O, Avinery R, Haimovich A, Oz I, Beck R, Goldbourt A. Structural Effects of Single Mutations in a Filamentous Viral Capsid Across Multiple Length Scales. Biomacromolecules 2017; 18:2258-2266. [PMID: 28657731 DOI: 10.1021/acs.biomac.7b00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filamentous bacteriophage (phage) are single-stranded DNA viruses that infect bacteria. Single-site mutants of fd phage have been studied by magic-angle spinning nuclear magnetic resonance and by small-angle X-ray scattering. Detailed analysis has been performed that provides insight into structural variations on three length scales. The results, analyzed in conjunction with existing literature data, suggest that a single charge mutation on the capsid surface affects direct interviral interactions but not the structure of individual particles or the macroscale organization. On the other hand, a single hydrophobic mutation located at the hydrophobic interface that stabilizes capsid assembly alters the atomic structure of the phage, mainly affecting intersubunit interactions, affects its macroscale organization, that is, the pitch of the cholesteric liquid crystal formed by the particles, but skips the nanoscale hence does not affect direct interparticle interactions. An X-ray scattering under osmotic pressure assay provides the effective linear charge density of the phage and we obtain values of 0.6 Å-1 and 0.4 Å-1 for fd and M13 phage, respectively. These values agree with a simple consideration of a single cylinder with protein and DNA charges spread according to the most recent atomic-resolution models of the phage.
Collapse
Affiliation(s)
- Gili Abramov
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Rona Shaharabani
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Ram Avinery
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Anat Haimovich
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Inbal Oz
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Roy Beck
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry and ∥School of Physics and Astronomy, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
30
|
The Transmembrane Morphogenesis Protein gp1 of Filamentous Phages Contains Walker A and Walker B Motifs Essential for Phage Assembly. Viruses 2017; 9:v9040073. [PMID: 28397779 PMCID: PMC5408679 DOI: 10.3390/v9040073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/26/2023] Open
Abstract
In contrast to lytic phages, filamentous phages are assembled in the inner membrane and secreted across the bacterial envelope without killing the host. For assembly and extrusion of the phage across the host cell wall, filamentous phages code for membrane-embedded morphogenesis proteins. In the outer membrane of Escherichia coli, the protein gp4 forms a pore-like structure, while gp1 and gp11 form a complex in the inner membrane of the host. By comparing sequences with other filamentous phages, we identified putative Walker A and B motifs in gp1 with a conserved lysine in the Walker A motif (K14), and a glutamic and aspartic acid in the Walker B motif (D88, E89). In this work we demonstrate that both, Walker A and Walker B, are essential for phage production. The crucial role of these key residues suggests that gp1 might be a molecular motor driving phage assembly. We further identified essential residues for the function of the assembly complex. Mutations in three out of six cysteine residues abolish phage production. Similarly, two out of six conserved glycine residues are crucial for gp1 function. We hypothesise that the residues represent molecular hinges allowing domain movement for nucleotide binding and phage assembly.
Collapse
|
31
|
Sunderland KS, Yang M, Mao C. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angew Chem Int Ed Engl 2017; 56:1964-1992. [PMID: 27491926 PMCID: PMC5311110 DOI: 10.1002/anie.201606181] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 01/08/2023]
Abstract
Both lytic and temperate bacteriophages (phages) can be applied in nanomedicine, in particular, as nanoprobes for precise disease diagnosis and nanotherapeutics for targeted disease treatment. Since phages are bacteria-specific viruses, they do not naturally infect eukaryotic cells and are not toxic to them. They can be genetically engineered to target nanoparticles, cells, tissues, and organs, and can also be modified with functional abiotic nanomaterials for disease diagnosis and treatment. This Review will summarize the current use of phage structures in many aspects of precision nanomedicine, including ultrasensitive biomarker detection, enhanced bioimaging for disease diagnosis, targeted drug and gene delivery, directed stem cell differentiation, accelerated tissue formation, effective vaccination, and nanotherapeutics for targeted disease treatment. We will also propose future directions in the area of phage-based nanomedicines, and discuss the state of phage-based clinical trials.
Collapse
Affiliation(s)
- Kegan S Sunderland
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
32
|
Sunderland KS, Yang M, Mao C. Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika für eine Präzisionsmedizin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201606181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kegan S. Sunderland
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Yuhangtang Road 866 Hangzhou Zhejiang 310058 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
33
|
Hoang Minh D, Hoang Minh S, Honjoh KI, Miyamoto T. Isolation and bio-control of Extended Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli contamination in raw chicken meat by using lytic bacteriophages. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Iacumin L, Manzano M, Comi G. Phage Inactivation of Listeria monocytogenes on San Daniele Dry-Cured Ham and Elimination of Biofilms from Equipment and Working Environments. Microorganisms 2016; 4:E4. [PMID: 27681898 PMCID: PMC5029509 DOI: 10.3390/microorganisms4010004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022] Open
Abstract
The anti-listerial activity of generally recognized as safe (GRAS) bacteriophage Listex P100 (phage P100) was demonstrated in broths and on the surface of slices of dry-cured ham against 5 strains or serotypes (i.e., Scott A, 1/2a, 1/2b, and 4b) of Listeria monocytogenes. In a broth model system, phage P100 at a concentration equal to or greater than 7 log PFU/mL completely inhibited 2 log CFU/cm² or 3 log CFU/cm² of L. monocytogenes growth at 30 °C. The temperature (4, 10, 20 °C) seemed to influence P100 activity; the best results were obtained at 4 °C. On dry-cured ham slices, a P100 concentration ranging from 5 to 8 log PFU/cm² was required to obtain a significant reduction in L. monocytogenes. At 4, 10, and 20 °C, an inoculum of 8 log PFU/cm² was required to completely eliminate 2 log L. monocytogenes/cm² and to reach the absence in 25 g product according to USA food law. Conversely, it was impossible to completely eradicate L. monocytogenes with an inoculum of approximately of 3.0 and 4.0 log CFU/cm² and with a P100 inoculum ranging from 1 to 7 log PFU/cm². P100 remained stable on dry-cured ham slices over a 14-day storage period, with only a marginal loss of 0.2 log PFU/cm² from an initial phage treatment of approximately 8 log PFU/cm². Moreover, phage P100 eliminated free L. monocytogenes cells and biofilms on the machinery surfaces used for dry-cured ham production. These findings demonstrate that the GRAS bacteriophage Listex P100 at level of 8 log PFU/cm² is listericidal and useful for reducing the L. monocytogenes concentration or eradicating the bacteria from dry-cured ham.
Collapse
Affiliation(s)
- Lucilla Iacumin
- Department of Food Science, Università degli Studi di Udine, via Sondrio 2/a, 33100 Udine, Italy.
| | - Marisa Manzano
- Department of Food Science, Università degli Studi di Udine, via Sondrio 2/a, 33100 Udine, Italy.
| | - Giuseppe Comi
- Department of Food Science, Università degli Studi di Udine, via Sondrio 2/a, 33100 Udine, Italy.
| |
Collapse
|
35
|
Sagona AP, Grigonyte AM, MacDonald PR, Jaramillo A. Genetically modified bacteriophages. Integr Biol (Camb) 2016; 8:465-74. [DOI: 10.1039/c5ib00267b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Applications of genetically modified bacteriophages.
Collapse
Affiliation(s)
- Antonia P. Sagona
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences
- University of Warwick
- Coventry
- UK
| | - Aurelija M. Grigonyte
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences
- University of Warwick
- Coventry
- UK
- Synthetic Biology Centre for Doctoral Training
| | - Paul R. MacDonald
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences
- University of Warwick
- Coventry
- UK
- MOAC DTC
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences
- University of Warwick
- Coventry
- UK
- iSSB
| |
Collapse
|
36
|
Using a Novel Lysin To Help Control Clostridium difficile Infections. Antimicrob Agents Chemother 2015; 59:7447-57. [PMID: 26392484 DOI: 10.1128/aac.01357-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
As a consequence of excessive antibiotic therapies in hospitalized patients, Clostridium difficile, a Gram-positive anaerobic spore-forming intestinal pathogen, is the leading cause of hospital-acquired diarrhea and colitis. Drug treatments for these diseases are often complicated by antibiotic-resistant strains and a high frequency of treatment failures and relapse; therefore, novel nonantibiotic approaches may prove to be more effective. In this study, we recombinantly expressed a prophage lysin identified from a C. difficile strain, CD630, which we named PlyCD. PlyCD was found to have lytic activity against specific C. difficile strains. However, the recombinantly expressed catalytic domain of this protein, PlyCD1-174, displayed significantly greater lytic activity (>4-log kill) and a broader lytic spectrum against C. difficile strains while still retaining a high degree of specificity toward C. difficile versus commensal clostridia and other bacterial species. Our data also indicated that noneffective doses of vancomycin and PlyCD1-174 when combined in vitro could be significantly more bactericidal against C. difficile. In an ex vivo treatment model of mouse colon infection, we found that PlyCD1-174 functioned in the presence of intestinal contents, significantly decreasing colonizing C. difficile compared to controls. Together, these data suggest that PlyCD1-174 has potential as a novel therapeutic for clinical application against C. difficile infection, either alone or in combination with other preexisting treatments to improve their efficacy.
Collapse
|
37
|
Vipin S, Pranay J, Swati D. Bacteriophage based self-assembled monolayer (SAM) on gold surface used for detection of Escherichia coli by electrochemical analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Isolation and Characterization of Phages Infecting Bacillus subtilis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:179597. [PMID: 26273592 PMCID: PMC4529890 DOI: 10.1155/2015/179597] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 11/29/2022]
Abstract
Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages) or noncontractile (ARπ phage) tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0) and alkaline (9.0 and 10.0) pH.
Collapse
|
39
|
Frampton RA, Acedo EL, Young VL, Chen D, Tong B, Taylor C, Easingwood RA, Pitman AR, Kleffmann T, Bostina M, Fineran PC. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses 2015; 7:3361-79. [PMID: 26114474 PMCID: PMC4517105 DOI: 10.3390/v7072776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.
Collapse
Affiliation(s)
- Rebekah A Frampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand.
| | - Elena Lopez Acedo
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- Departamento de Genetica, Universidad de Extremadura, Badajoz 06080, Spain.
| | - Vivienne L Young
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Danni Chen
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Brian Tong
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Corinda Taylor
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Richard A Easingwood
- Otago Centre for Electron Microscopy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Andrew R Pitman
- New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand.
| | - Torsten Kleffmann
- Centre for Protein Research, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- Otago Centre for Electron Microscopy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
40
|
Prieto-Simón B, Bandaru N, Saint C, Voelcker N. Tailored carbon nanotube immunosensors for the detection of microbial contamination. Biosens Bioelectron 2015; 67:642-8. [DOI: 10.1016/j.bios.2014.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
41
|
Guo T, Zhang C, Liu W, Wang S, Kong J. Functional analysis of the N-terminal region of endolysin Lyb5 encoded by Lactobacillus fermentum bacteriophage φPYB5. Int J Food Microbiol 2015; 203:1-7. [PMID: 25770427 DOI: 10.1016/j.ijfoodmicro.2015.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 02/04/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Lactobacillus fermentum temperate bacteriophage φPYB5 uses endolysin Lyb5 and holin Hyb5 to burst the host cell. Previous results showed that expression of Lyb5 in Escherichia coli caused host cell lysis slowly, leading us to suppose that Lyb5 could pass the cytoplasmic membrane partly. In this work, the function of a putative signal peptide (SPLyb5) at the N-terminal of Lyb5 was investigated. In E. coli, the cell adopted a spherical shape during induction of Lyb5 protein, while morphological changes were not observed during expression of the SPLyb5 truncation, indicating that the SPLyb5 motif may serve as a functional signal peptide. However, SPLyb5 was not proteolytically cleaved at the predicted site during the translocation of Lyb5, and the expressed Lyb5 protein appeared in the cytoplasm, cytoplasmic membrane and periplasm fractions with the same molecular mass. Similar results were obtained using Lactococcus lactis as a host to express Lyb5. These results indicated that SPLyb5 could direct Lyb5 to the periplasm in a membrane-tethered form, and then release it as a soluble active enzyme into the periplasm. In addition, SPLyb5 could also drive the fused NucleaseB protein to the extracytoplasm environment in E. coli as well as in L. lactis. We proposed that in Gram-negative and Gram-positive hosts SPLyb5 acted as a signal-anchor-release domain, which was firstly identified here by experimental evidences in lactic acid bacteria phages. The application of signal-anchor-release domain for endolysin export in bacteriophages infecting Gram-positive and Gram-negative hosts was discussed.
Collapse
Affiliation(s)
- Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China; School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Chenchen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Shaohua Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
42
|
Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 2014; 78:14-27. [PMID: 25450262 DOI: 10.1016/j.addr.2014.10.027] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022]
Abstract
With multidrug resistant bacteria on the rise, new antibiotic approaches are required. Although a number of new small molecule antibiotics are currently in the development pipeline with many more in preclinical development, the clinical options and practices for infection control must be expanded. Biologics and non-antibiotic adjuvants offer this opportunity for expansion. Nevertheless, to avoid known mechanisms of resistance, intelligent combination approaches for multiple simultaneous and complimentary therapies must be designed. Combination approaches should extend beyond biologically active molecules to include smart controlled delivery strategies. Infection control must integrate antimicrobial stewardship, new antibiotic molecules, biologics, and delivery strategies into effective combination therapies designed to 1) fight the infection, 2) avoid resistance, and 3) protect the natural microbiome. This review explores these developing strategies in the context of circumventing current mechanisms of resistance.
Collapse
Affiliation(s)
| | - Amanda E Brooks
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND58108, USA.
| |
Collapse
|
43
|
Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu Rev Virol 2014; 1:307-31. [DOI: 10.1146/annurev-virology-031413-085500] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - George P.C. Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
44
|
Santos SB, Carvalho C, Azeredo J, Ferreira EC. Population dynamics of a Salmonella lytic phage and its host: implications of the host bacterial growth rate in modelling. PLoS One 2014; 9:e102507. [PMID: 25051248 PMCID: PMC4106826 DOI: 10.1371/journal.pone.0102507] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/20/2014] [Indexed: 11/18/2022] Open
Abstract
The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist.
Collapse
Affiliation(s)
- Sílvio B. Santos
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Carla Carvalho
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Joana Azeredo
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | | |
Collapse
|
45
|
Bakhshinejad B, Sadeghizadeh M. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems. Expert Opin Drug Deliv 2014; 11:1561-74. [PMID: 24955860 DOI: 10.1517/17425247.2014.927437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. AREAS COVERED The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. EXPERT OPINION Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.
Collapse
Affiliation(s)
- Babak Bakhshinejad
- Tarbiat Modares University, Department of Genetics, Faculty of Biological Sciences , Tehran , Iran
| | | |
Collapse
|
46
|
Frampton RA, Taylor C, Holguín Moreno AV, Visnovsky SB, Petty NK, Pitman AR, Fineran PC. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl Environ Microbiol 2014; 80:2216-28. [PMID: 24487530 PMCID: PMC3993152 DOI: 10.1128/aem.00062-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/23/2014] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Rebekah A. Frampton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Corinda Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Sandra B. Visnovsky
- New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Nicola K. Petty
- The ithree institute, University of Technology Sydney, Sydney, Australia
| | - Andrew R. Pitman
- New Zealand Institute for Plant and Food Research Limited, Christchurch, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
47
|
Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/382539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The application of bacteriophages for the elimination of pathogenic bacteria has received significantly increased attention world-wide in the past decade. This is borne out by the increasing prevalence of bacteriophage-specific conferences highlighting significant and diverse advances in the exploitation of bacteriophages. While bacteriophage therapy has been associated with the Former Soviet Union historically, since the 1990s, it has been widely and enthusiastically adopted as a research topic in Western countries. This has been justified by the increasing prevalence of antibiotic resistance in many prominent human pathogenic bacteria. Discussion of the therapeutic aspects of bacteriophages in this review will include the uses of whole phages as antibacterials and will also describe studies on the applications of purified phage-derived peptidoglycan hydrolases, which do not have the constraint of limited bacterial host-range often observed with whole phages.
Collapse
|
48
|
Fineran PC, Dy RL. Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 2014; 18:83-9. [PMID: 24637219 DOI: 10.1016/j.mib.2014.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 01/21/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) arrays and their CRISPR associated (Cas) proteins constitute adaptive immune systems in bacteria and archaea that provide protection from bacteriophages, plasmids and other mobile genetic elements (MGEs). Recently, the ability to direct these systems to DNA in a sequence-specific manner has led to the emergence of new technologies for engineered gene regulation in bacteria and eukaryotes. These systems have the potential to enable facile high-throughput functional genomics studies aimed at identifying gene function and will be a crucial tool for synthetic biology. Here, we review the recent engineering of these systems for controlling gene expression.
Collapse
Affiliation(s)
- Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Ron L Dy
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
49
|
Bacteriophage lambda display systems: developments and applications. Appl Microbiol Biotechnol 2014; 98:2853-66. [PMID: 24442507 DOI: 10.1007/s00253-014-5521-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 01/01/2023]
Abstract
Bacteriophage (phage) Lambda (λ) has played a key historic role in driving our understanding of molecular genetics. The lytic nature of λ and the conformation of its major capsid protein gpD in capsid assembly offer several advantages as a phage display candidate. The unique formation of the λ capsid and the potential to exploit gpD in the design of controlled phage decoration will benefit future applications of λ display where steric hindrance and avidity are of great concern. Here, we review the recent developments in phage display technologies with phage λ and explore some key applications of this technology including vaccine delivery, gene transfer, bio-detection, and bio-control.
Collapse
|
50
|
Prieto-Simón B, Saint C, Voelcker NH. Electrochemical Biosensors Featuring Oriented Antibody Immobilization via Electrografted and Self-Assembled Hydrazide Chemistry. Anal Chem 2014; 86:1422-9. [DOI: 10.1021/ac401747j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Beatriz Prieto-Simón
- Mawson
Institute, University of South Australia, Mawson Lakes, South Australia 5001, Australia
| | - Christopher Saint
- SA
Water Centre for Water Management and Re-use, University of South Australia, Mawson Lakes, South Australia 5001, Australia
| | - Nicolas H. Voelcker
- Mawson
Institute, University of South Australia, Mawson Lakes, South Australia 5001, Australia
| |
Collapse
|