1
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Jiang X, Zuo S. Exploring the molecular mechanisms of rice blast resistance and advances in breeding for disease tolerance. Mol Biol Rep 2024; 51:1093. [PMID: 39460780 DOI: 10.1007/s11033-024-10031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae (syn. Pyricularia oryzae), is a major problem in rice cultivation and ranks among the most severe fungal diseases. Cloning and identifying resistance genes in rice, coupled with a comprehensive examination of the interaction between M. oryzae and rice, may provide insights into the mechanisms of rice disease resistance and facilitate the creation of new rice varieties with improved germplasm. These efforts are essential for protecting food security. This review examines the discovery of genes that confer resistance or susceptiblity to M. oryzae in rice over the last decade. It also discusses how knowledge of molecular mechanisms has been used in rice breeding and outlines key strategies for creating rice varieties resistant to this disease. The strategies discussed include gene pyramiding, molecular design breeding, editing susceptibility genes, and increasing expression of resistance genes through pathogen challenge. We address the prospects and challenges in breeding for rice blast resistance, emphasizing the need to fully exploit germplasm resources, employ cutting-edge methods to identify new resistance genes, and develop innovative breeding cultivars. Additionally, we underscore the importance of understanding the molecular basis of rice blast resistance and developing novel cultivars with broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Guo N, An R, Ren Z, Jiang J, Cai B, Hu S, Shao G, Jiao G, Xie L, Wang L, Zhao F, Tang S, Sheng Z, Hu P. Developing super rice varieties resistant to rice blast with enhanced yield and improved quality. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39449161 DOI: 10.1111/pbi.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Naihui Guo
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Ruihu An
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Zongliang Ren
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Jun Jiang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Bonian Cai
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Ling Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Fengli Zhao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| | - Peisong Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/Jiangxi Early-season Rice Research Center/China National Rice Research Institute, Hangzhou, P. R. China
| |
Collapse
|
3
|
Liu X, Hu X, Tu Z, Sun Z, Qin P, Liu Y, Chen X, Li Z, Jiang N, Yang Y. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility. FRONTIERS IN PLANT SCIENCE 2024; 15:1478159. [PMID: 39445147 PMCID: PMC11496149 DOI: 10.3389/fpls.2024.1478159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Phytopathogens represent an ongoing threat to crop production and a significant impediment to global food security. During the infection process, these pathogens spatiotemporally deploy a large array of effectors to sabotage host defense machinery and/or manipulate cellular pathways, thereby facilitating colonization and infection. However, besides their pivotal roles in pathogenesis, certain effectors, known as avirulence (AVR) effectors, can be directly or indirectly perceived by plant resistance (R) proteins, leading to race-specific resistance. An in-depth understanding of the intricate AVR-R interactions is instrumental for genetic improvement of crops and safeguarding them from diseases. Magnaporthe oryzae (M. oryzae), the causative agent of rice blast disease, is an exceptionally virulent and devastating fungal pathogen that induces blast disease on over 50 monocot plant species, including economically important crops. Rice-M. oryzae pathosystem serves as a prime model for functional dissection of AVR effectors and their interactions with R proteins and other target proteins in rice due to its scientific advantages and economic importance. Significant progress has been made in elucidating the potential roles of AVR effectors in the interaction between rice and M. oryzae over the past two decades. This review comprehensively discusses recent advancements in the field of M. oryzae AVR effectors, with a specific focus on their multifaceted roles through interactions with corresponding R/target proteins in rice during infection. Furthermore, we deliberated on the emerging strategies for engineering R proteins by leveraging the structural insights gained from M. oryzae AVR effectors.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Xiaochun Hu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Zhouyi Tu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Zhenbiao Sun
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Peng Qin
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yikang Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Xinwei Chen
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Jiang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Christodoulou MS, Pinna C, Ghosh S, Princiotto S, Sacchi F, Brunetti B, Pizzatti C, Musso L, Cortesi P, Pinto A, Kunova A, Dallavalle S. Natural and Nature-Inspired Catechol Siderophores: A Promising Strategy for Rice Blast Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39365249 DOI: 10.1021/acs.jafc.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The rice-blast fungus Pyricularia oryzae poses a significant threat to rice production worldwide. Ferroptosis, an iron-dependent form of regulated cell death, has recently been reported to be involved in P. oryzae pathogenicity during plant-fungal interactions. Ferroptosis regulates the developmental cell death of conidia necessary for appressorium maturation. In this study, we have established that a series of benzamides containing a chelating catechol moiety suppresses the formation/maturation of appressoria, which are essential for host infection by the rice blast fungus. Moreover, for the most active compounds we have shown that their activity can be at least partially reversed by adding exogenous Fe3+. These results highlight the close association between iron availability and appressorium maturation, opening new avenues for the development of targeted strategies for P. oryzae management.
Collapse
Affiliation(s)
- Michael S Christodoulou
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Sharmila Ghosh
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Francesca Sacchi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Barbara Brunetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Cristina Pizzatti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan 20133, Italy
| |
Collapse
|
5
|
Wang S, Zeng J, Zhang T, Yang L, Yang Y, Lu Z, Jin X, Wang M, Guo S. Ammonium enhances rice resistance to Magnaporthe oryzae through H 2O 2 accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109058. [PMID: 39181086 DOI: 10.1016/j.plaphy.2024.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen (N) is essential for the physiological processes of plants. However, the specific mechanisms by which different nitrogen forms influence rice blast pathogenesis remain poorly understood. This study used hydroponic assays to explore how ammonium (NH4+) and nitrate (NO3-) affect rice after inoculation with Magnaporthe oryzae (M. oryzae). The results showed that NH4+, compared to NO3-, significantly reduced disease severity, fungal growth, fungal hyphae number, the expansion capacity of infectious hyphae, and disease-related loss of photosynthesis. Additionally, NH4+ enhanced the expression of defense-related genes, including OsPBZ1, OsCHT1, OsPR1a, and OsPR10. NH4+-treated rice also exhibited higher hydrogen peroxide (H2O2) accumulation and increased antioxidant enzyme activities. Moreover, susceptibility to rice blast disease increased when H2O2 was scavenged, while a reduction in susceptibility was observed with the application of exogenous H2O2. These results suggest that ammonium enhances rice resistance to M. oryzae, potentially through H2O2 accumulation. The findings provide valuable insights into how different nitrogen forms affect plant immunity in rice, which is crucial for controlling rice blast and ensuring stable food production.
Collapse
Affiliation(s)
- Shiyu Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jixing Zeng
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tianyao Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yating Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhifeng Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Xiang Jin
- Changbaishan Vocational Technical College, Baishan, 134300, China.
| | - Min Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shiwei Guo
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Tang L, Song J, Cui Y, Fan H, Wang J. Detection and Evaluation of Blast Resistance Genes in Backbone Indica Rice Varieties from South China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2134. [PMID: 39124252 PMCID: PMC11314011 DOI: 10.3390/plants13152134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Rice blast caused by the pathogenic fungus Magnaporthe oryzae poses a significant threat to rice cultivation. The identification of robust resistance germplasm is crucial for breeding resistant varieties. In this study, we employed functional molecular markers for 10 rice blast resistance genes, namely Pi1, Pi2, Pi5, Pi9, Pia, Pid2, Pid3, Pigm, Pikh, and Pita, to assess blast resistance across 91 indica rice backbone varieties in South China. The results showed a spectrum of resistance levels ranging from highly resistant (HR) to highly susceptible (HS), with corresponding frequencies of 0, 19, 40, 27, 5, and 0, respectively. Yearly correlations in blast resistance genes among the 91 key indica rice progenitors revealed Pid2 (60.44%), Pia (50.55%), Pita (45.05%), Pi2 (32.97%), Pikh (4.4%), Pigm (2.2%), Pi9 (2.2%), and Pi1 (1.1%). Significant variations were observed in the distribution frequencies of these 10 resistance genes among these progenitors across different provinces. Furthermore, as the number of aggregated resistance genes increased, parental resistance levels correspondingly improved, though the efficacy of different gene combinations varied significantly. This study provides the initial steps toward strategically distributing varieties of resistant indica rice genotypes across South China.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.T.); (J.S.); (Y.C.); (H.F.)
| |
Collapse
|
7
|
Liu X, Sun Y, Liu C, Liu B, Li T, Chen X, Chen Y. Various amino acid substitutions in succinate dehydrogenase complex regulating differential resistance to pydiflumetofen in Magnaporthe oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105990. [PMID: 39084767 DOI: 10.1016/j.pestbp.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 08/02/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a devastating fungal disease worldwide. Pydiflumetofen (Pyd) is a new succinate dehydrogenase inhibitor (SDHI) that exhibited anti-fungal activity against M. oryzae. However, control of rice blast by Pyd and risk of resistance to Pyd are not well studied in this pathogen. The baseline sensitivity of 109 M. oryzae strains to Pyd was determined using mycelial growth rate assay, with EC50 values ranging from 0.291 to 2.1313 μg/mL, and an average EC50 value of 1.1005 ± 0.3727 μg/mL. Totally 28 Pyd-resistant (PydR) mutants with 15 genotypes of point mutations in succinate dehydrogenase (SDH) complex were obtained, and the resistance level could be divided into three categories of very high resistance (VHR), high resistance (HR) and moderate resistance (MR) with the resistance factors (RFs) of >1000, 105.74-986.13 and 81.92-99.48, respectively. Molecular docking revealed that all 15 mutations decreased the binding-force score for the affinity between Pyd and target subunits, which further confirmed that these 15 genotypes of point mutations were responsible for the resistance to Pyd in M. oryzae. There was positive cross resistance between Pyd and other SDHIs, such as fluxapyroxad, penflufen or carboxin, while there was no cross-resistance between Pyd and carbendazim, prochloraz or azoxystrobin in M. oryzae, however, PydR mutants with SdhBP198Q, SdhCL66F or SdhCL66R genotype were still sensitive to the other 3 SDHIs, indicating lack of cross resistance. The results of fitness study revealed that the point mutations in MoSdhB/C/D genes might reduce the hyphae growth and sporulation, but could improve the pathogenicity in M. oryzae. Taken together, the risk of resistance to Pyd might be moderate to high, and it should be used as tank-mixtures with other classes of fungicides to delay resistance development when it is used for the control of rice blast in the field.
Collapse
Affiliation(s)
- Xinyan Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Chuchu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Bing Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Tiantian Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agicultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Qi Z, Meng X, Xu M, Du Y, Yu J, Song T, Pan X, Zhang R, Cao H, Yu M, Telebanco-Yanoria MJ, Lu G, Zhou B, Liu Y. A novel Pik allele confers extended resistance to rice blast. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39087779 DOI: 10.1111/pce.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
In the ongoing arms race between rice and Magnaporthe oryzae, the pathogen employs effectors to evade the immune response, while the host develops resistance genes to recognise these effectors and confer resistance. In this study, we identified a novel Pik allele, Pik-W25, from wild rice WR25 through bulked-segregant analysis, creating the Pik-W25 NIL (Near-isogenic Lines) named G9. Pik-W25 conferred resistance to isolates expressing AvrPik-C/D/E alleles. CRISPR-Cas9 editing was used to generate transgenic lines with a loss of function in Pik-W25-1 and Pik-W25-2, resulting in loss of resistance in G9 to isolates expressing the three alleles, confirming that Pik-W25-induced immunity required both Pik-W25-1 and Pik-W25-2. Yeast two-hybrid (Y2H) and split luciferase complementation assays showed interactions between Pik-W25-1 and the three alleles, while Pik-W25-2 could not interact with AvrPik-C, -D, and -E alleles with Y2H assay, indicating Pik-W25-1 acts as an adaptor and Pik-W25-2 transduces the signal to trigger resistance. The Pik-W25 NIL exhibited enhanced field resistance to leaf and panicle blast without significant changes in morphology or development compared to the parent variety CO39, suggesting its potential for resistance breeding. These findings advance our knowledge of rice blast resistance mechanisms and offer valuable resources for effective and sustainable control strategies.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiuli Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Ming Xu
- High-throughput Genotyping Shared Laboratory, Seed Administration Department of Jiangsu Province, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
| | | | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Bo Zhou
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
- Genetics and Biotechnology Division, International Rice Research Institute, College, Los Banos, Laguna, Philippines
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, China
- IRRI-JAAS Joint Laboratory, Jiangsu Academy of Agricultural Science, Nanjing, China
| |
Collapse
|
9
|
Tian J, Tang Z, Niu R, Zhou Y, Yang D, Chen D, Luo M, Mou R, Yuan M, Xu G. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1715-1726. [PMID: 38679667 DOI: 10.1007/s11427-024-2588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Engineering disease-resistant plants can be a powerful solution to the issue of food security. However, it requires addressing two fundamental questions: what genes to express and how to control their expressions. To find a solution, we screen CRISPR-edited upstream open reading frame (uORF) variants in rice, aiming to optimize translational control of disease-related genes. By switching uORF types of the 5'-leader from Arabidopsis TBF1, we modulate the ribosome accessibility to the downstream firefly luciferase. We assume that by switching uORF types using CRISPR, we could generate uORF variants with alternative translation efficiency (CRISPR-aTrE-uORF). These variants, capable of boosting translation for resistance-associated genes and dampening it for susceptible ones, can help pinpoint previously unidentified genes with optimal expression levels. To test the assumption, we screened edited uORF variants and found that enhanced translational suppression of the plastic glutamine synthetase 2 can provide broad-spectrum disease resistance in rice with minimal fitness costs. This strategy, which involves modifying uORFs from none to some, or from some to none or different ones, demonstrates how translational agriculture can speed up the development of disease-resistant crops. This is vital for tackling the food security challenges we face due to growing populations and changing climates.
Collapse
Affiliation(s)
- Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Dan Yang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
10
|
Ai L, Guo J, Chen H, Hu D, Lu P. Degradation of Isotianil in Water and Soil: Kinetics, Degradation Pathways, Mechanisms, and Ecotoxicity Assessments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39028945 DOI: 10.1021/acs.jafc.4c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Pesticides are transported and transformed in soil and can enter surface water through various pathways. They undergo hydrolysis, oxidation, and photoconversion in surface water. Isotianil is a new fungicide that effectively controls rice blast. However, there are limited reports on its degradation. Herein, the hydrolysis and photolysis of isotianil in water and its degradation in soil samples from five provinces of China were investigated. The degradation products of isotianil were identified using ultrahigh-performance liquid chromatography-Q exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry, and four compounds were discovered for the first time. The degradation pathways of isotianil were inferred, and the reaction active site and degradation mechanism of isotianil were clarified based on density functional theory calculations. The ecotoxicity of the degradation product M118 (aminobenzonitrile) was found to be moderate toward Daphnia magna, which was predicted and confirmed by Ecological Structure Activity Relationships and the experiment, respectively. The results of this study will contribute to a better understanding of the fate of isotianil in the environment.
Collapse
Affiliation(s)
- Lina Ai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Junjiang Guo
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, PR China
| | - Hong Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Roy M, Burragoni SG, Jeon J. Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection. THE PLANT PATHOLOGY JOURNAL 2024; 40:299-309. [PMID: 38835301 PMCID: PMC11162860 DOI: 10.5423/ppj.oa.12.2023.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into hostpathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.
Collapse
Affiliation(s)
- Mehwish Roy
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | | | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Plant Immunity Research Centre, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
Lee SY, Lee G, Han J, Ha SK, Lee CM, Kang K, Jin M, Suh JP, Jeung JU, Mo Y, Lee HS. GWAS analysis reveals the genetic basis of blast resistance associated with heading date in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1412614. [PMID: 38835858 PMCID: PMC11148375 DOI: 10.3389/fpls.2024.1412614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Rice blast is a destructive fungal disease affecting rice plants at various growth stages, significantly threatening global yield stability. Development of resistant rice cultivars stands as a practical means of disease control. Generally, association mapping with a diversity panel powerfully identifies new alleles controlling trait of interest. On the other hand, utilization of a breeding panel has its advantage that can be directly applied in a breeding program. In this study, we conducted a genome-wide association study (GWAS) for blast resistance using 296 commercial rice cultivars with low population structure but large phenotypic diversity. We attempt to answer the genetic basis behind rice blast resistance among early maturing cultivars by subdividing the population based on its Heading date 1 (Hd1) functionality. Subpopulation-specific GWAS using the mixed linear model (MLM) based on blast nursery screening conducted in three years revealed a total of 26 significant signals, including three nucleotide-binding site leucine-rich repeat (NBS-LRR) genes (Os06g0286500, Os06g0286700, and Os06g0287500) located at Piz locus on chromosome 6, and one at the Pi-ta locus (Os12g0281300) on chromosome 12. Haplotype analysis revealed blast resistance associated with Piz locus was exclusively specific to Type 14 hd1 among japonica rice. Our findings provide valuable insights for breeding blast resistant rice and highlight the applicability of our elite cultivar panel to detect superior alleles associated with important agronomic traits.
Collapse
Affiliation(s)
- Seung Young Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Gileung Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jiheon Han
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Su-Kyung Ha
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Chang-Min Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Kyeongmin Kang
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mina Jin
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jung-Pil Suh
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| | - Ji-Ung Jeung
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
- Institute of Agricultural Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
13
|
Whittington C, Sharma A, Hill SG, Iavarone AT, Hoffman BM, Offenbacher AR. Impact of N-Glycosylation on Protein Structure and Dynamics Linked to Enzymatic C-H Activation in the M. oryzae Lipoxygenase. Biochemistry 2024; 63:1335-1346. [PMID: 38690768 DOI: 10.1021/acs.biochem.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.
Collapse
Affiliation(s)
- Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - S Gage Hill
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
14
|
Zhao T, Ma S, Kong Z, Zhang H, Wang Y, Wang J, Liu J, Feng W, Liu T, Liu C, Liang S, Lu S, Li X, Zhao H, Lu C, Latif MZ, Yin Z, Li Y, Ding X. Recognition of the inducible, secretory small protein OsSSP1 by the membrane receptor OsSSR1 and the co-receptor OsBAK1 confers rice resistance to the blast fungus. MOLECULAR PLANT 2024; 17:807-823. [PMID: 38664971 DOI: 10.1016/j.molp.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
The plant apoplast, which serves as the frontline battleground for long-term host-pathogen interactions, harbors a wealth of disease resistance resources. However, the identification of the disease resistance proteins in the apoplast is relatively lacking. In this study, we identified and characterized the rice secretory protein OsSSP1 (Oryza sativa secretory small protein 1). OsSSP1 can be secreted into the plant apoplast, and either in vitro treatment of recombinant OsSSP1 or overexpression of OsSSP1 in rice could trigger plant immune response. The expression of OsSSP1 is suppressed significantly during Magnaporthe oryzae infection in the susceptible rice variety Taibei 309, and OsSSP1-overexpressing lines all show strong resistance to M. oryzae. Combining the knockout and overexpression results, we found that OsSSP1 positively regulates plant immunity in response to fungal infection. Moreover, the recognition and immune response triggered by OsSSP1 depend on an uncharacterized transmembrane OsSSR1 (secretory small protein receptor 1) and the key co-receptor OsBAK1, since most of the induced immune response and resistance are lost in the absence of OsSSR1 or OsBAK1. Intriguingly, the OsSSP1 protein is relatively stable and can still induce plant resistance after 1 week of storage in the open environment, and exogenous OsSSP1 treatment for a 2-week period did not affect rice yield. Collectively, our study reveals that OsSSP1 can be secreted into the apoplast and percepted by OsSSR1 and OsBAK1 during fungal infection, thereby triggering the immune response to enhance plant resistance to M. oryzae. These findings provide novel resources and potential strategies for crop breeding and disease control.
Collapse
Affiliation(s)
- Tianfeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shijie Ma
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziying Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Junzhe Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Wanzhen Feng
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, Hainan, China
| | - Tong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chunyan Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Suochen Liang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shilin Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xinyu Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China.
| |
Collapse
|
15
|
Song L, Yang T, Wang X, Ye W, Lu G. Magnaporthe oryzae Effector AvrPik-D Targets Rice Rubisco Small Subunit OsRBCS4 to Suppress Immunity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1214. [PMID: 38732428 PMCID: PMC11085154 DOI: 10.3390/plants13091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae (M. oryzae), is a highly destructive disease that significantly impacts rice yield and quality. During the infection, M. oryzae secretes effector proteins to subvert the host immune response. However, the interaction between the effector protein AvrPik-D and its target proteins in rice, and the mechanism by which AvrPik-D exacerbates disease severity to facilitate infection, remains poorly understood. In this study, we found that the M. oryzae effector AvrPik-D interacts with the Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) small subunit OsRBCS4. The overexpression of the OsRBCS4 gene in transgenic rice not only enhances resistance to M. oryzae but also induces more reactive oxygen species following chitin treatment. OsRBCS4 localizes to chloroplasts and co-localizes with AvrPik-D within these organelles. AvrPik-D suppresses the transcriptional expression of OsRBCS4 and inhibits Rubisco activity in rice. In conclusion, our results demonstrate that the M. oryzae effector AvrPik-D targets the Rubisco small subunit OsRBCS4 and inhibits its carboxylase and oxygenase activity, thereby suppressing rice innate immunity to facilitate infection. This provides a novel mechanism for the M. oryzae effector to subvert the host immunity to promote infection.
Collapse
Affiliation(s)
- Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| | - Tao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| | - Xinxiao Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (T.Y.); (X.W.)
| |
Collapse
|
16
|
Maeda S, Goto S, Inoue H, Suwazono H, Takatsuji H, Mori M. Improvement of Broad-Spectrum Disease-Resistant Rice by the Overexpression of BSR1 via a Moderate-Strength Constitutive Promoter and a Pathogen-Inducible Promoter. PLANTS (BASEL, SWITZERLAND) 2024; 13:1138. [PMID: 38674547 PMCID: PMC11054640 DOI: 10.3390/plants13081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Conferring crops with resistance to multiple diseases is crucial for stable food production. Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate and a partial darkening of husked rice. Herein, we present a strategy to address these unfavorable phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked rice were similar to those of the wild-type rice.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| | - Shingo Goto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shizuoka 424-0292, Japan
| | - Haruhiko Inoue
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Haruka Suwazono
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Hiroshi Takatsuji
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| | - Masaki Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8634, Japan; (S.G.); (H.I.); (M.M.)
| |
Collapse
|
17
|
Moin AT, Robin TB, Patil RB, Rani NA, Prome AA, Sakif TI, Hossain M, Chowdhury DUS, Rashid SS, Mollah AKMM, Islam S, Uddin MH, Khalequzzaman M, Islam T, Islam NN. Antifungal plant flavonoids identified in silico with potential to control rice blast disease caused by Magnaporthe oryzae. PLoS One 2024; 19:e0301519. [PMID: 38578751 PMCID: PMC10997076 DOI: 10.1371/journal.pone.0301519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tahsin Islam Sakif
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Mohabbat Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Dil Umme Salma Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Shah Samiur Rashid
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram, Bangladesh
| | | | - Saiful Islam
- Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
| | - Mohammad Helal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Nazneen Naher Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
18
|
Liu M, Wang F, He B, Hu J, Dai Y, Chen W, Yi M, Zhang H, Ye Y, Cui Z, Zheng X, Wang P, Xing W, Zhang Z. Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast. NATURE PLANTS 2024; 10:618-632. [PMID: 38409290 PMCID: PMC11162578 DOI: 10.1038/s41477-024-01642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Effector proteins secreted by plant pathogenic fungi are important artilleries against host immunity, but there is no precedent of such effectors being explored as antifungal targets. Here we demonstrate that MoErs1, a species-specific effector protein secreted by the rice blast fungus Magnaporthe oryzae, inhibits the function of rice papain-like cysteine protease OsRD21 involved in rice immunity. Disrupting MoErs1-OsRD21 interaction effectively controls rice blast. In addition, we show that FY21001, a structure-function-based designer compound, specifically binds to and inhibits MoErs1 function. FY21001 significantly and effectively controls rice blast in field tests. Our study revealed a novel concept of targeting pathogen-specific effector proteins to prevent and manage crop diseases.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Fangfang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Ying Dai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Weizhong Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Mingxi Yi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Yonghao Ye
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Zhongli Cui
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China
| | - Ping Wang
- Departments of Microbiology, Immunology and Parasitology, and Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Weiman Xing
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, and Key Laboratory of Plant Immunity, Ministry of Education, Nanjing, China.
| |
Collapse
|
19
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
20
|
Mondal K, Singh RK, Prasad M, Dey N. Newly identified Pijx gene: a weapon against both seedling and panicle blast in rice. PLANT CELL REPORTS 2024; 43:105. [PMID: 38522062 DOI: 10.1007/s00299-024-03198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
KEY MESSAGE A recently reported Pijx gene interacts and promotes the ATPb degradation through 26 proteasomal pathways activate OsRbohC mediated ROS burst, leading to broad-spectrum rice blast resistance in seedling and panicle.
Collapse
Affiliation(s)
- Kongkong Mondal
- Department of Biotechnology, Rice Biotechnology Laboratory, Visva-Bharati, Santiniketan, India
| | | | - Manoj Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Narottam Dey
- Department of Biotechnology, Rice Biotechnology Laboratory, Visva-Bharati, Santiniketan, India.
| |
Collapse
|
21
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
22
|
Zhang Y, Wei Y, Wu M, Liu M, Liang S, Zhu X, Liu X, Lin F. Cand2 inhibits CRL-mediated ubiquitination and suppresses autophagy to facilitate pathogenicity of phytopathogenic fungi. PLANT COMMUNICATIONS 2024; 5:100720. [PMID: 37718510 PMCID: PMC10873881 DOI: 10.1016/j.xplc.2023.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The ubiquitin-proteasome system and the autophagy system are the two primary mechanisms used by eukaryotes to maintain protein homeostasis, and both are closely related to the pathogenicity of the rice blast fungus. In this research, we identified MoCand2 as an inhibitor of ubiquitination in Magnaporthe oryzae. Through this role, MoCand2 participates in the regulation of autophagy and pathogenicity. Specifically, we found that deletion of MoCand2 increased the ubiquitination level in M. oryzae, whereas overexpression of MoCand2 inhibited the accumulation of ubiquitinated proteins. Interaction analyses showed that MoCand2 is a subunit of Cullin-RING ligases (CRLs). It suppresses ubiquitination by blocking the assembly of CRLs and downregulating the expression of key CRL subunits. Further research indicated that MoCand2 regulates autophagy through ubiquitination. MoCand2 knockout led to over-ubiquitination and over-degradation of MoTor, and we confirmed that MoTor content was negatively correlated with autophagy level. In addition, MoCand2 knockout accelerated the K63 ubiquitination of MoAtg6 and strengthened the assembly and activity of the phosphatidylinositol-3-kinase class 3 complex, thus enhancing autophagy. Abnormal ubiquitination and autophagy in ΔMocand2 resulted in defects in growth, conidiation, stress resistance, and pathogenicity. Finally, sequence alignment and functional analyses in other phytopathogenic fungi confirmed the high conservation of fungal Cand2s. Our research thus reveals a novel mechanism by which ubiquitination regulates autophagy and pathogenicity in phytopathogenic fungi.
Collapse
Affiliation(s)
- Yunran Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Yunyun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
23
|
Kim HJ, Jang JW, Pham T, Tuyet V, Kim JH, Park CW, Gho YS, Kim EJ, Kwon SW, Jeon JS, Kim ST, Jung KH, Kim YJ. OsLRR-RLP2 Gene Regulates Immunity to Magnaporthe oryzae in Japonica Rice. Int J Mol Sci 2024; 25:2216. [PMID: 38396893 PMCID: PMC10889788 DOI: 10.3390/ijms25042216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Rice is an important cereal crop worldwide, the growth of which is affected by rice blast disease, caused by the fungal pathogen Magnaporthe oryzae. As climate change increases the diversity of pathogens, the disease resistance genes (R genes) in plants must be identified. The major blast-resistance genes have been identified in indica rice varieties; therefore, japonica rice varieties with R genes now need to be identified. Because leucine-rich repeat (LRR) domain proteins possess R-gene properties, we used bioinformatics analysis to identify the rice candidate LRR domain receptor-like proteins (OsLRR-RLPs). OsLRR-RLP2, which contains six LRR domains, showed differences in the DNA sequence, containing 43 single-nucleotide polymorphisms (SNPs) in indica and japonica subpopulations. The results of the M. oryzae inoculation analysis indicated that indica varieties with partial deletion of OsLRR-RLP2 showed susceptibility, whereas japonica varieties with intact OsLRR-RLP2 showed resistance. The oslrr-rlp2 mutant, generated using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), showed increased pathogen susceptibility, whereas plants overexpressing this gene showed pathogen resistance. These results indicate that OsLRR-RLP2 confers resistance to rice, and OsLRR-RLP2 may be useful for breeding resistant cultivars.
Collapse
Affiliation(s)
- Hyo-Jeong Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (J.W.J.); (S.-W.K.); (S.T.K.)
| | - Thuy Pham
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Van Tuyet
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Ji-Hyun Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| | - Chan Woo Park
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| | - Yun-Shil Gho
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Eui-Jung Kim
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (J.W.J.); (S.-W.K.); (S.T.K.)
| | - Jong-Seong Jeon
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (J.W.J.); (S.-W.K.); (S.T.K.)
| | - Ki-Hong Jung
- Graduate School of Green Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (T.P.); (V.T.); (Y.-S.G.); (E.-J.K.); (J.-S.J.)
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (H.-J.K.); (J.-H.K.); (C.W.P.)
| |
Collapse
|
24
|
Wu Z, Basu S, Kim S, Sorrells M, Beron-Vera FJ, Jung S. Coherent spore dispersion via drop-leaf interaction. SCIENCE ADVANCES 2024; 10:eadj8092. [PMID: 38295175 PMCID: PMC10830116 DOI: 10.1126/sciadv.adj8092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
The dispersion of plant pathogens, such as rust spores, is responsible for more than 20% of global crop yield loss annually. However, the release mechanism of pathogens from flexible plant surfaces into the canopy is not well understood. In this study, we investigated the interplay between leaf elasticity and rainfall, revealing how a flexible leaf structure can generate a lateral flow stream, with embedded coherent structures that enhance transport. We first modeled the linear coupling between drop momentum, leaf vibration, and the stream flux from leaf surfaces. With Lagrangian diagnostics, we further mapped out the nested coherent structures around the fluttering profile, providing a dynamical description for local spore delivery. We hope the mechanistic details extracted here can facilitate the construction of physically informed analytical models for local crop disease management.
Collapse
Affiliation(s)
- Zixuan Wu
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Seungho Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea
| | - Mark Sorrells
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Krishnappa C, Balamurugan A, Velmurugan S, Kumar S, Sampathrajan V, Kundu A, Javed M, Chouhan V, Ganesan P, Kumar A. Rice foliar-adapted Pantoea species: Promising microbial biostimulants enhancing rice resilience against foliar pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Microb Pathog 2024; 186:106445. [PMID: 37956936 DOI: 10.1016/j.micpath.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Foliar fungal blast and bacterial leaf blight have significant impacts on rice production, and their management through host resistance and agrochemicals has proven inadequate. To achieve their sustainable management, innovative approaches like leveraging the foliar microbiome, which collaborates with plants and competes against pathogens, are essential. In our study, we isolated three Pantoea strains (P. agglomerans Os-Ep-PPA-1b, P. vagans Os-Ep-PPA-3b, and P. deleyi Os-Ep-VPA-9a) from the rice phylloplane. These isolates exhibited antimicrobial action through their metabolome and volatilome, while also promoting rice growth. Our analysis, using Gas Chromatography-Mass Spectrometry (GC-MS), revealed the presence of various antimicrobial compounds such as esters and fatty acids produced by these Pantoea isolates. Inoculating rice seedlings with P. agglomerans and P. vagans led to increased root and shoot growth. Additionally, bacterized seedlings displayed enhanced immunocompetence, as evidenced by upregulated expressions of defense genes (OsEDS1, OsFLS2, OsPDF2.2, OsACO4, OsICS OsPR1a, OsNPR1.3, OsPAD4, OsCERK1.1), along with heightened activities of defense enzymes like Polyphenol Oxidase and Peroxidase. These plants also exhibited elevated levels of total phenols. In field trials, the Pantoea isolates contributed to improved plant growth, exemplified by increased flag-leaf length, panicle number, and grains per panicle, while simultaneously reducing the incidence of chaffy grains. Hypersensitivity assays performed on a model plant, tobacco, confirmed the non-pathogenic nature of these Pantoea isolates. In summary, our study underscores the potential of Pantoea bacteria in combatting rice foliar diseases. Coupled with their remarkable growth-promoting and biostimulant capabilities, these findings position Pantoea as promising agents for enhancing rice cultivation.
Collapse
Affiliation(s)
- Charishma Krishnappa
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Alexander Balamurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanmugam Velmurugan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Shanu Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vellaikumar Sampathrajan
- Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, 625104, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Mohammed Javed
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Vinod Chouhan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Prakash Ganesan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
26
|
Chakraborty A, Hussain A, Sabnam N. Uncovering the structural stability of Magnaporthe oryzae effectors: a secretome-wide in silico analysis. J Biomol Struct Dyn 2023:1-22. [PMID: 38109060 DOI: 10.1080/07391102.2023.2292795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Rice blast, caused by the ascomycete fungus Magnaporthe oryzae, is a deadly disease and a major threat to global food security. The pathogen secretes small proteinaceous effectors, virulence factors, inside the host to manipulate and perturb the host immune system, allowing the pathogen to colonize and establish a successful infection. While the molecular functions of several effectors are characterized, very little is known about the structural stability of these effectors. We analyzed a total of 554 small secretory proteins (SSPs) from the M. oryzae secretome to decipher key features of intrinsic disorder (ID) and the structural dynamics of the selected putative effectors through thorough and systematic in silico studies. Our results suggest that out of the total SSPs, 66% were predicted as effector proteins, released either into the apoplast or cytoplasm of the host cell. Of these, 68% were found to be intrinsically disordered effector proteins (IDEPs). Among the six distinct classes of disordered effectors, we observed peculiar relationships between the localization of several effectors in the apoplast or cytoplasm and the degree of disorder. We determined the degree of structural disorder and its impact on protein foldability across all the putative small secretory effector proteins from the blast pathogen, further validated by molecular dynamics simulation studies. This study provides definite clues toward unraveling the mystery behind the importance of structural distortions in effectors and their impact on plant-pathogen interactions. The study of these dynamical segments may help identify new effectors as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
27
|
Song L, Wang F, Liu C, Guan Z, Wang M, Zhong R, Xi H, Zhao Y, Wen C. Isolation and Evaluation of Streptomyces melanogenes YBS22 with Potential Application for Biocontrol of Rice Blast Disease. Microorganisms 2023; 11:2988. [PMID: 38138134 PMCID: PMC10745888 DOI: 10.3390/microorganisms11122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Chuang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Zhengzhe Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Rongrong Zhong
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Huijun Xi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| |
Collapse
|
28
|
Yin R, Xia K, Xu X. Spatial transcriptomics drives a new era in plant research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1571-1581. [PMID: 37651723 DOI: 10.1111/tpj.16437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
SUMMARYThe plant community lags far behind the animal and human fields concerning the application of single‐cell methodologies. This is primarily due to the challenges associated with plant tissue dissection and the limitations of the available technologies. However, recent advances in spatial transcriptomics enable the study of single‐cells derived from plant tissues from a spatial perspective. This technology is already successfully used to identify cell types, reconstruct cell‐fate lineages, and reveal cell‐to‐cell interactions. Future technological advancements will overcome the challenges in sample processing, data analysis, and the integration of multiple‐omics technologies. Thanks to spatial transcriptomics, we anticipate several plant research projects to significantly advance our understanding of critical aspects of plant biology.
Collapse
Affiliation(s)
- Ruilian Yin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- BGI Research, Shenzhen, 518083, China
| | - Keke Xia
- BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518120, China
| |
Collapse
|
29
|
Jing LL, Wei XH, Song Q, Wang F. Study on the movement mechanism of rice stem under the action of canopy-opening device based on explicit dynamics simulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1252247. [PMID: 37954989 PMCID: PMC10635423 DOI: 10.3389/fpls.2023.1252247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023]
Abstract
The dense canopy of rice causes attenuation of droplet dispersion during pesticide application. The canopy-opening device can increase droplet deposition in the middle and lower canopy of rice by causing disturbance to the rice canopy. However, the conditions for use of the canopy-opening device are difficult to determine. Rice morphological structure parameters and material parameters were measured to study the movement mechanism of the rice stems under the action of the canopy-opening device, and the canopy-opening process was then simulated using the explicit dynamic method. The simulation scene of the rice canopy-opening process considered the combination of three different heights and three different driving velocities of the canopy-opening device. The movement mechanism of the rice stems under the operation of the canopy-opening device was investigated, and the entire movement process was separated into two stages: contact and oscillation. The simulation results and high-speed photography experimental results show a strong correlation, with a correlation coefficient of 0.733. The simulation results indicate that when the canopy-opening device is closer to the ground and the driving velocity is higher, the disturbance to the rice stem during the contact stage is stronger. However, for the oscillation stage, there exists a critical value for both the height and driving velocity of the canopy-opening device. During the oscillation stage, there is a critical value for both the height and driving velocity of the canopy-opening device. The numerical-based explicit dynamics approach was employed in this work to investigate the rice canopy motion mechanism, and this study has a definite reference value for the investigation of complicated motion mechanisms in the field crop production process.
Collapse
Affiliation(s)
| | - Xin-hua Wei
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education of the People’s Republic of China, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | | | | |
Collapse
|
30
|
Huang Z, Cao H, Wang H, Huang P, Wang J, Cai Y, Wang Q, Li Y, Wang J, Liu X, Lin F, Lu J. The triglyceride catabolism regulated by a serine/threonine protein phosphatase, Smek1, is required for development and plant infection in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:1256-1272. [PMID: 37357820 PMCID: PMC10502837 DOI: 10.1111/mpp.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Magnaporthe oryzae is a pathogenic fungus that seriously harms rice production. Phosphatases and carbon metabolism play crucial roles in the growth and development of eukaryotes. However, it remains unclear how serine/threonine phosphatases regulate the catabolism of triglycerides, a major form of stored lipids. In this study, we identified a serine/threonine protein phosphatase regulatory subunit, Smek1, which is required for the growth, conidiation, and virulence of M. oryzae. Deletion of SMEK1 led to defects in the utilization of lipids, arabinose, glycerol, and ethanol. In glucose medium, the expression of genes involved in lipolysis, long-chain fatty acid degradation, β-oxidation, and the glyoxylate cycle increased in the Δsmek1 mutant, which is consistent with ΔcreA in which a carbon catabolite repressor CREA was deleted. In lipid medium, the expression of genes involved in long-chain fatty acid degradation, β-oxidation, the glyoxylate cycle, and utilization of arabinose, ethanol, or glycerol decreased in the Δsmek1 mutant, which is consistent with Δcrf1 in which a transcription activator CRF1 required for carbon metabolism was deleted. Lipase activity, however, increased in the Δsmek1 mutant in both glucose and lipid media. Moreover, Smek1 directly interacted with CreA and Crf1, and dephosphorylated CreA and Crf1 in vivo. The phosphatase Smek1 is therefore a dual-function regulator of the lipid and carbohydrate metabolism, and controls fungal development and virulence by coordinating the functions of CreA and Crf1 in carbon catabolite repression (CCR) and derepression (CCDR).
Collapse
Affiliation(s)
- Zhicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | | | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying‐Ying Cai
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiao‐Hong Liu
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Fu‐Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
31
|
Kim M, Lee SH, Jeon J. A Nucleolar Protein, MoRRP8 Is Required for Development and Pathogenicity in the Rice Blast Fungus. MYCOBIOLOGY 2023; 51:273-280. [PMID: 37929010 PMCID: PMC10621250 DOI: 10.1080/12298093.2023.2257996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
The nucleolus is the largest, membrane-less organelle within the nucleus of eukaryotic cell that plays a critical role in rRNA transcription and assembly of ribosomes. Recently, the nucleolus has been shown to be implicated in an array of processes including the formation of signal recognition particles and response to cellular stress. Such diverse functions of nucleolus are mediated by nucleolar proteins. In this study, we characterized a gene coding a putative protein containing a nucleolar localization sequence (NoLS) in the rice blast fungus, Magnaporthe oryzae. Phylogenetic and domain analysis suggested that the protein is orthologous to Rrp8 in Saccharomyces cerevisiae. MoRRP8-GFP (translational fusion of MoRRP8 with green fluorescence protein) co-localizes with a nucleolar marker protein, MoNOP1 fused to red fluorescence protein (RFP), indicating that MoRRP8 is a nucleolar protein. Deletion of the MoRRP8 gene caused a reduction in vegetative growth and impinged largely on asexual sporulation. Although the asexual spores of ΔMorrp8 were morphologically indistinguishable from those of wild-type, they showed delay in germination and reduction in appressorium formation. Our pathogenicity assay revealed that the MoRRP8 is required for full virulence and growth within host plants. Taken together, these results suggest that nucleolar processes mediated by MoRRP8 is pivotal for fungal development and pathogenesis.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Song Hee Lee
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
32
|
Saunders DGO. Fine-tuning fungal effector secretion. Nat Microbiol 2023; 8:1613-1614. [PMID: 37604873 DOI: 10.1038/s41564-023-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
|
33
|
Shan C, Zhang L, Chen L, Li S, Zhang Y, Ye L, Lin Y, Kuang W, Shi X, Ma J, Adnan M, Sun X, Cui R. Interaction of negative regulator OsWD40-193 with OseEF1A1 inhibits Oryza sativa resistance to Hirschmanniella mucronata infection. Int J Biol Macromol 2023; 248:125841. [PMID: 37479204 DOI: 10.1016/j.ijbiomac.2023.125841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Rice is a crucial food crop worldwide, but it is highly susceptible to Hirschmanniella mucronata, a migratory parasitic nematode. No rice variety has been identified that could resist H. mucronata infection. Therefore, it is very important to study the interaction between rice and H. mucronata to breed resistant rice varieties. Here, we demonstrated that protein OsWD40-193 interacted with the extension factor OseEF1A1 and both were negative regulators inhibiting rice resistance to H. mucronata infection. Overexpression of either OsWD40-193 or OseEF1A1 led to enhance susceptibility to H. mucronata, whereas the absence of OsWD40-193 or OseEF1A1 led to resistance. Further transcriptomic analysis showed that OseEF1A1 deletion altered the expression of genes association with salicylic acid, jasmonic acid and abolic acid signaling pathways and increased the accumulation of secondary metabolites to enhance resistance in rice. Our study showed that H. mucronata infection affected the expression of negative regulators in rice and inhibited rice resistance, which was conducive to the infection of nematode. Together, our data showed that H. mucronata affected the expression of negative regulators to facilitate its infection and provided potential target genes to engineering resistance germplasm via gene editing of the negative regulators.
Collapse
Affiliation(s)
- Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Lanlan Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
34
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
35
|
Lu L, Wang Q, Shi Z, Li C, Guo Z, Li J. Emergence of Rice Blast AVR-Pi9 Resistance Breaking Haplotypes in Yunnan Province, China. Life (Basel) 2023; 13:1320. [PMID: 37374103 DOI: 10.3390/life13061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The rice blast disease (caused by Magnaporthe oryzae) is a devastating disease in China. Understanding the molecular mechanisms of interaction for the cognate avirulence (AVR) gene with host resistance (R) genes, as well as their genetic evolution is essential for sustainable rice production. In the present study, we conducted a high-throughput nucleotide sequence polymorphism analysis of the AVR-Pi9 gene that was amplified from the rice-growing regions of the Yunnan Province in China. We detected the presence of seven novel haplotypes from 326 rice samples. In addition, the sequences of AVR-Pi9 were also obtained from two non-rice hosts, Eleusine coracana and Eleusine indica. The sequence analysis revealed the insertions and deletions in the coding and non-coding regions of the gene. The pathogenicity experiments of these haplotypes on previously characterized monogenic lines showed that the newly identified haplotypes are virulent in nature. The breakdown of resistance was attributed to the development of new haplotypes. Our results suggest that the mutation in the AVR-Pi9 gene is an alarming situation in the Yunnan province and thus needs attention.
Collapse
Affiliation(s)
- Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qun Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Zhufeng Shi
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming 650200, China
| | - Zhixiang Guo
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jinbin Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
36
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
37
|
Cai Y, Ren Z, Li C, Cai T, Yu C, Zeng Q, He S, Li J, Wan H. The insecticidal activity and mechanism of tebuconazole on Nilaparvata lugens (Stål). PEST MANAGEMENT SCIENCE 2023. [PMID: 37013938 DOI: 10.1002/ps.7493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Previous studies have shown that fungicides have insecticidal activity that can potentially be used as an insecticide resistance management strategy in the brown planthopper Nilaparvata lugens (Stål). However, the mechanism that induces mortality of N. lugens remains elusive. RESULTS In the present study, the insecticidal activities of 14 fungicides against N. lugens were determined, of which tebuconazole had the highest insecticidal activity compared with the other fungicides. Furthermore, tebuconazole significantly inhibited the expression of the chitin synthase gene NlCHS1; the chitinase genes NlCht1, NlCht5, NlCht7, NlCht9, and NlCht10; and the β-N-acetylhexosaminidase genes NlHex3, NlHex4, NlHex5 and NlHex6; it significantly suppressed the expression of ecdysteroid biosynthetic genes as well, including SDR, CYP307A2, CYP307B1, CYP306A2, CYP302A1, CYP315A1 and CYP314A1 of N. lugens. Additionally, tebuconazole affected the diversity, structure, composition, and function of the symbiotic fungi of N. lugens, as well as the relative abundance of saprophytes and pathogens, suggesting that tebuconazole reshapes the diversity and function of symbiotic fungi of N. lugens. CONCLUSION Our findings illustrate the insecticidal mechanism of tebuconazole, possibly by inhibiting normal molting or disrupting microbial homeostasis in N. lugens, and provide an important rationale for developing novel insect management strategies to delay escalating insecticide resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfeng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijie Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengyue Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinghong Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Zhang L, Li S, Shan C, Liu Y, Zhang Y, Ye L, Lin Y, Xiong G, Ma J, Adnan M, Shi X, Sun X, Kuang W, Cui R. Integrated transcriptome and metabolome analysis revealed that flavonoids enhanced the resistance of Oryza sativa against Meloidogyne graminicola. FRONTIERS IN PLANT SCIENCE 2023; 14:1137299. [PMID: 37063174 PMCID: PMC10102519 DOI: 10.3389/fpls.2023.1137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Rice is a crucial food crop worldwide, but its yield and quality are significantly affected by Meloidogyne graminicola is a root knot nematode. No rice variety is entirely immune to this nematode disease in agricultural production. Thus, the fundamental strategy to combat this disease is to utilize rice resistance genes. In this study, we conducted transcriptome and metabolome analyses on two rice varieties, ZH11 and IR64. The results indicated that ZH11 showed stronger resistance than IR64. Transcriptome analysis revealed that the change in gene expression in ZH11 was more substantial than that in IR64 after M. graminicola infection. Moreover, GO and KEGG enrichment analysis of the upregulated genes in ZH11 showed that they were primarily associated with rice cell wall construction, carbohydrate metabolism, and secondary metabolism relating to disease resistance, which effectively enhanced the resistance of ZH11. However, in rice IR64, the number of genes enriched in disease resistance pathways was significantly lower than that in ZH11, which further explained susceptibility to IR64. Metabolome analysis revealed that the metabolites detected in ZH11 were enriched in flavonoid metabolism and the pentose phosphate pathway, compared to IR64, after M. graminicola infection. The comprehensive analysis of transcriptome and metabolome data indicated that flavonoid metabolism plays a crucial role in rice resistance to M. graminicola infection. The content of kaempferin, apigenin, and quercetin in ZH11 significantly increased after M. graminicola infection, and the expression of genes involved in the synthetic pathway of flavonoids also significantly increased in ZH11. Our study provides theoretical guidance for the precise analysis of rice resistance and disease resistance breeding in further research.
Collapse
Affiliation(s)
- Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Songyan Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yankun Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Guihong Xiong
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
39
|
Fardella PA, Clarke BB, Belanger FC. The Epichloë festucae Antifungal Protein Efe-AfpA Has Activity against Numerous Plant Pathogens. Microorganisms 2023; 11:microorganisms11040828. [PMID: 37110250 PMCID: PMC10145699 DOI: 10.3390/microorganisms11040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal plant pathogens can present major problems for most crop species. Currently, control of fungal diseases relies heavily on the use of fungicides. However, there are problems associated with fungicide use, including potential toxicity to non-target organisms and the development of resistance in the target fungus. New strategies are being sought to reduce fungicide use. One area of active research is the potential use of antifungal proteins from various fungal species as alternatives or complements to traditional fungicides. An antifungal protein, Efe-AfpA, from the fungal endophyte Epichloë festucae was previously found to protect plants from the pathogen Clarireedia jacksonii, the causal agent of dollar spot disease. Here we report that Efe-AfpA also has inhibitory activity against other important plant pathogens. These results suggest that it may be possible to develop Efe-AfpA as a biofungicide to target a broad range of destructive plant pathogens.
Collapse
Affiliation(s)
- Patrick A Fardella
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bruce B Clarke
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Faith C Belanger
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
40
|
Peng P, Jiang H, Luo L, Ye C, Xiao Y. Pyramiding of Multiple Genes to Improve Rice Blast Resistance of Photo-Thermo Sensitive Male Sterile Line, without Yield Penalty in Hybrid Rice Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:1389. [PMID: 36987076 PMCID: PMC10058063 DOI: 10.3390/plants12061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Rice blast caused by pathogenic fungus Magnaporthe oryzae is one of the most serious diseases in rice. The pyramiding of effective resistance genes into rice varieties is a potential approach to reduce the damage of blast disease. In this study, combinations of three resistance genes, Pigm, Pi48 and Pi49, were introduced into a thermo-sensitive genic male sterile (PTGMS) line Chuang5S through marker-assisted selection. The results showed that the blast resistance of improved lines increased significantly compared with Chuang5S, and the three gene pyramiding lines (Pigm + Pi48 + Pi49) had higher rice blast resistance level than monogenic line and digenic lines (Pigm +Pi48, Pigm + Pi49). The genetic backgrounds of the improved lines were highly similar (>90%) to the recurrent parent Chuang5S by using the RICE10K SNP chip. In addition, agronomic traits evaluation also showed pyramiding lines with two or three genes similar to Chuang5S. The yields of the hybrids developed from improved PTGMS lines and Chuang5S are not significantly different. The newly developed PTGMS lines can be practically used for the breeding of parental lines and hybrid varieties with broad spectrum blast resistance.
Collapse
Affiliation(s)
- Pei Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Haoyu Jiang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Lihua Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Changrong Ye
- Huazhi Biotech Co., Ltd., Changsha 410125, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
41
|
Approaches to Reduce Rice Blast Disease Using Knowledge from Host Resistance and Pathogen Pathogenicity. Int J Mol Sci 2023; 24:ijms24054985. [PMID: 36902415 PMCID: PMC10003181 DOI: 10.3390/ijms24054985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.
Collapse
|
42
|
Xiao G, Wang W, Liu M, Li Y, Liu J, Franceschetti M, Yi Z, Zhu X, Zhang Z, Lu G, Banfield MJ, Wu J, Zhou B. The Piks allele of the NLR immune receptor Pik breaks the recognition of AvrPik effectors of rice blast fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:810-824. [PMID: 36178632 DOI: 10.1111/jipb.13375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins. Like other Pik alleles, both Piks-1 and Piks-2 are necessary and sufficient for mediating resistance. However, unlike other Pik alleles, Piks does not recognize any known AvrPik variants of Magnaporthe oryzae. Sequence analysis of the genome of an avirulent isolate V86010 further revealed that its cognate avirulence (Avr) gene most likely has no significant sequence similarity to known AvrPik variants. Piks-1 and Pikm-1 have only two amino acid differences within the integrated heavy metal-associated (HMA) domain. Pikm-HMA interacts with AvrPik-A, -D, and -E in vitro and in vivo, whereas Piks-HMA does not bind any AvrPik variants. Characterization of two amino acid residues differing Piks-1 from Pikm-1 reveal that Piks-E229Q derived from the exchange of Glu229 to Gln229 in Piks-1 gains recognition specificity against AvrPik-D but not AvrPik-A or -E, indicating that Piks-E229Q partially restores the Pikm spectrum. By contrast, Piks-A261V derived from the exchange of Ala261 to Val261 in Piks-1 retains Piks recognition specificity. We conclude that Glu229 in Piks-1 is critical for Piks breaking the canonical Pik/AvrPik recognition pattern. Intriguingly, binding activity and ectopic cell death induction is maintained between Piks-A261V and AvrPik-D, implying that positive outcomes from ectopic assays might be insufficient to deduce its immune activity against the relevant effectors in rice and rice blast interaction.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
- International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianbin Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Marina Franceschetti
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhaofeng Yi
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Bo Zhou
- International Rice Research Institute, Metro Manila, 1301, Philippines
| |
Collapse
|
43
|
Yang L, Liu X, Wang J, Li L, Feng W, Ji Z. Pyridoxine biosynthesis protein MoPdx1 affects the development and pathogenicity of Magnaporthe oryzae. Front Cell Infect Microbiol 2023; 13:1099967. [PMID: 36824685 PMCID: PMC9941553 DOI: 10.3389/fcimb.2023.1099967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
B vitamins are essential micro-organic compounds for the development of humans and animals. Vitamin B6 comprises a group of components including pyridoxine, pyridoxal, and pyridoxamine. In addition, vitamin B6 acts as the coenzymes in amino acid biosynthesis, decarboxylation, racemic reactions, and other biological processes. In this study, we found that the expressions of a gene encoding pyridoxine biosynthesis protein (PDX1) were significantly upregulated in the early infectious stages in M. oryzae. Furthermore, deletion of MoPDX1 slowed vegetative growth on different media, especially on MM media, and the growth defect was rescued when MoPdx1-protein was expressed in mutants strains and when commercial VB6 (pyridoxine) was added exogenously. However, VB6 content in different strains cultured in CM media has no significant difference, suggested that MoPdx1 was involved in de novo VB6 biosynthesis not in uptake process, and VB6 regulates the vegetative growth of M. oryzae. The ΔMopdx1 mutants presented abnormal appressorium turgor, slowed invasive growth and reduced virulence on rice seedlings and sheath cells. MoPdx1 was located in the cytoplasm and present in spore and germ tubes at 14 hours post inoculation (hpi) and then transferred into the appressorium at 24 hpi. Addition of VB6 in the conidial suspentions could rescue the defects of appressorium turgor pressure at 14 hpi or 24 hpi, invasive growth and pathogenicity of the MoPDX1 deletion mutants. Indicated that MoPdx1 affected the appressorium turgor pressure, invasive growth and virulence mainly depended on de novo VB6, and VB6 was biosynthesized in conidia, then transported into the appressorium, which play important roles in substances transportation from conidia to appressorium thus to regulate the appressorium turgor pressure. However, deletion of MoPDX1 did not affect the ability that scavenge ROS produced by rice cells, and the mutant strains were unable to activate host defense responses. In addition, co-immunoprecipitation (Co-IP) assays investigating potential MoPdx1-interacting proteins suggested that MoPdx1 might take part in multiple pathways, especially in the ribosome and in biosynthesis of some substances. These results indicate that vitamins are involved in the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Lina Yang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohong Liu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wanzhen Feng
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Zhaolin Ji,
| |
Collapse
|
44
|
Mmbando GS, Ando S, Takahashi H, Hidema J. High ultraviolet-B sensitivity due to lower CPD photolyase activity is needed for biotic stress response to the rice blast fungus, Magnaporthe oryzae. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00379-4. [PMID: 36729358 DOI: 10.1007/s43630-023-00379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Sensitivity to ultraviolet-B (UVB, 280-315 nm) radiation varies widely among rice (Oryza sativa) cultivars due to differences in the activity of cyclobutane pyrimidines dimer (CPD) photolyase. Interestingly, cultivars with high UVB sensitivity and low CPD photolyase activity have been domesticated in tropical areas with high UVB radiation. Here, we investigated how differences in CPD photolyase activity affect plant resistance to the rice blast fungus, Magnaporthe oryzae, which is one of the other major stresses. We used Asian and African rice cultivars and transgenic lines with different CPD photolyase activities to evaluate the interaction effects of CPD photolyase activity on resistance to M. oryzae. In UVB-resistant rice plants overexpressing CPD photolyase, 12 h of low-dose UVB (0.4 W m-2) pretreatment enhanced sensitivity to M. oryzae. In contrast, UVB-sensitive rice (transgenic rice with antisense CPD photolyase, A-S; and rice cultivars with low CPD photolyase activity) showed resistance to M. oryzae. Several defense-related genes were upregulated in UVB-sensitive rice compared to UVB-resistant rice. UVB-pretreated A-S plants showed decreased multicellular infection and robust accumulation of reactive oxygen species. High UVB-induced CPD accumulation promoted defense responses and cross-protection mechanisms against rice blast disease. This may indicate a trade-off between high UVB sensitivity and biotic stress tolerance in tropical rice cultivars.
Collapse
Affiliation(s)
- Gideon S Mmbando
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.,Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, P. O. Box 256, Dodoma, Tanzania
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
45
|
B J, Hosahatti R, Koti PS, Devappa VH, Ngangkham U, Devanna P, Yadav MK, Mishra KK, Aditya JP, Boraiah PK, Gaber A, Hossain A. Phenotypic and Genotypic screening of fifty-two rice (Oryza sativa L.) genotypes for desirable cultivars against blast disease. PLoS One 2023; 18:e0280762. [PMID: 36897889 PMCID: PMC10004593 DOI: 10.1371/journal.pone.0280762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/08/2023] [Indexed: 03/11/2023] Open
Abstract
Magnaporthe oryzae, the rice blast fungus, is one of the most dangerous rice pathogens, causing considerable crop losses around the world. In order to explore the rice blast-resistant sources, initially performed a large-scale screening of 277 rice accessions. In parallel with field evaluations, fifty-two rice accessions were genotyped for 25 major blast resistance genes utilizing functional/gene-based markers based on their reactivity against rice blast disease. According to the phenotypic examination, 29 (58%) and 22 (42%) entries were found to be highly resistant, 18 (36%) and 29 (57%) showed moderate resistance, and 05 (6%) and 01 (1%), respectively, were highly susceptible to leaf and neck blast. The genetic frequency of 25 major blast resistance genes ranged from 32 to 60%, with two genotypes having a maximum of 16 R-genes each. The 52 rice accessions were divided into two groups based on cluster and population structure analysis. The highly resistant and moderately resistant accessions are divided into different groups using the principal coordinate analysis. According to the analysis of molecular variance, the maximum diversity was found within the population, while the minimum diversity was found between the populations. Two markers (RM5647 and K39512), which correspond to the blast-resistant genes Pi36 and Pik, respectively, showed a significant association to the neck blast disease, whereas three markers (Pi2-i, Pita3, and k2167), which correspond to the blast-resistant genes Pi2, Pita/Pita2, and Pikm, respectively, showed a significant association to the leaf blast disease. The associated R-genes might be utilized in rice breeding programmes through marker-assisted breeding, and the identified resistant rice accessions could be used as prospective donors for the production of new resistant varieties in India and around the world.
Collapse
Affiliation(s)
- Jeevan B
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | | | - Prasanna S Koti
- The University of Trans-Disciplinary Health Sciences and Technology, Jarakabande Kaval, Bengaluru, Karnataka, India
| | | | - Umakanta Ngangkham
- ICAR- Research Complex for North- Eastern Hill Region, Manipur centre, Imphal, Manipur, India
| | - Pramesh Devanna
- Rice Pathology Laboratory, AICRIP, Gangavathi, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Manoj Kumar Yadav
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India
| | - Krishna Kant Mishra
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Jay Prakash Aditya
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Palanna Kaki Boraiah
- Project Coordinating Unit, ICAR-AICRP on Small Millets, UAS, GKVK, Bengaluru, Karnataka, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
46
|
Patel A, Sahu KP, Mehta S, Balamurugan A, Kumar M, Sheoran N, Kumar S, Krishnappa C, Ashajyothi M, Kundu A, Goyal T, Narayanasamy P, Kumar A. Rice leaf endophytic Microbacterium testaceum: Antifungal actinobacterium confers immunocompetence against rice blast disease. Front Microbiol 2022; 13:1035602. [PMID: 36619990 PMCID: PMC9810758 DOI: 10.3389/fmicb.2022.1035602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic and functional characteristics of rice leaf endophytic actinobacterial member, Microbacterium are described. Morphotyping, multilocus sequence analysis and transmission electron microscopy indicated the species identity of the endophytic bacterium, OsEnb-ALM-D18, as Microbacterium testaceum. The endophytic Microbacterium showed probiotic solubilization of plant nutrients/minerals, produced hydrolytic enzyme/phytohormones, and showed endophytism in rice seedlings. Further, the endophytic colonization by M. testaceum OsEnb-ALM-D18 was confirmed using reporter gene coding for green fluorescence protein. Microbacterium OsEnb-ALM-D18 showed volatilome-mediated antibiosis (95.5% mycelial inhibition) on Magnaporthe oryzae. Chemical profiling of M. testaceum OsEnb-ALM-D18 volatilome revealed the abundance of 9-Octadecenoic acid, Hexadecanoic acid, 4-Methyl-2-pentanol, and 2,5-Dihydro-thiophene. Upon endobacterization of rice seedlings, M. testaceum altered shoot and root phenotype suggestive of activated defense. Over 80.0% blast disease severity reduction was observed on the susceptible rice cultivar Pusa Basmati-1 upon foliar spray with M. testaceum. qPCR-based gene expression analysis showed induction of OsCERK1, OsPAD4, OsNPR1.3, and OsFMO1 suggestive of endophytic immunocompetence against blast disease. Moreover, M. testaceum OsEnb-ALM-D18 conferred immunocompetence, and antifungal antibiosis can be the future integrated blast management strategy.
Collapse
Affiliation(s)
- Asharani Patel
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Sahil Mehta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mukesh Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shanu Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Aditi Kundu
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tushar Goyal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Aundy Kumar, ; ; orcid.org/0000-0002-7401-9885
| |
Collapse
|
47
|
Zhang L, Shan C, Zhang Y, Miao W, Bing X, Kuang W, Wang Z, Cui R, Olsson S. Transcriptome Analysis of Protein Kinase MoCK2, which Affects Acetyl-CoA Metabolism and Import of CK2-Interacting Mitochondrial Proteins into Mitochondria in the Rice Blast Fungus Magnaporthe oryzae. Microbiol Spectr 2022; 10:e0304222. [PMID: 36255296 PMCID: PMC9769659 DOI: 10.1128/spectrum.03042-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 01/09/2023] Open
Abstract
The rice pathogen Magnaporthe oryzae causes severe losses to rice production. Previous studies have shown that the protein kinase MoCK2 is essential for pathogenesis, and this ubiquitous eukaryotic protein kinase might affect several processes in the fungus that are needed for infection. To better understand which cellular processes are affected by MoCK2 activity, we performed a detailed transcriptome sequencing analysis of deletions of the MoCK2 b1 and b2 components in relation to the background strain Ku80 and connected this analysis with the abundance of substrates for proteins in a previous pulldown of the essential CKa subunit of CK2 to estimate the effects on proteins directly interacting with CK2. The results showed that MoCK2 seriously affected carbohydrate metabolism, fatty acid metabolism, amino acid metabolism, and the related transporters and reduced acetyl-CoA production. CK2 phosphorylation can affect the folding of proteins and especially the effective formation of protein complexes by intrinsically disordered or mitochondrial import by destabilizing soluble alpha helices. The upregulated genes found in the pulldown of the b1 and b2 mutants indicate that proteins directly interacting with CK2 are compensatorily upregulated depending on their pulldown. A similar correlation was found for mitochondrial proteins. Taken together, the classes of proteins and the changes in regulation in the b1 and b2 mutants suggest that CK2 has a central role in mitochondrial metabolism, secondary metabolism, and reactive oxygen species (ROS) resistance, in addition to its previously suggested role in the formation of new ribosomes, all of which are processes central to efficient nonself responses as innate immunity. IMPORTANCE The protein kinase CK2 is highly expressed and essential for plants, animals, and fungi, affecting fatty acid-related metabolism. In addition, it directly affects the import of essential mitochondrial proteins into mitochondria. These effects mean that CK2 is essential for lipid metabolism and mitochondrial function and, as shown previously, is crucial for making new translation machinery proteins. Taken together, our new results combined with previously reported results indicate that CK2 is an essential protein necessary for the capacities to launch efficient innate immunity responses and withstand the negative effects of such responses necessary for general resistance against invading bacteria and viruses as well as to interact with plants, withstand plant immunity responses, and kill plant cells.
Collapse
Affiliation(s)
- Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chonglei Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yifan Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Miao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoli Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Stefan Olsson
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
48
|
Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1044896. [PMID: 36578344 PMCID: PMC9790997 DOI: 10.3389/fpls.2022.1044896] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global environment is dominated by various small exotic substances, known as secondary metabolites, produced by plants and microorganisms. Plants and fungi are particularly plentiful sources of these molecules, whose physiological functions, in many cases, remain a mystery. Fungal secondary metabolites (SM) are a diverse group of substances that exhibit a wide range of chemical properties and generally fall into one of four main family groups: Terpenoids, polyketides, non-ribosomal peptides, or a combination of the latter two. They are incredibly varied in their functions and are often related to the increased fitness of the respective fungus in its environment, often competing with other microbes or interacting with plant species. Several of these metabolites have essential roles in the biological control of plant diseases by various beneficial microorganisms used for crop protection and biofertilization worldwide. Besides direct toxic effects against phytopathogens, natural metabolites can promote root and shoot development and/or disease resistance by activating host systemic defenses. The ability of these microorganisms to synthesize and store biologically active metabolites that are a potent source of novel natural compounds beneficial for agriculture is becoming a top priority for SM fungi research. In this review, we will discuss fungal-plant secondary metabolites with antifungal properties and the role of signaling molecules in induced and acquired systemic resistance activities. Additionally, fungal secondary metabolites mimic plant promotion molecules such as auxins, gibberellins, and abscisic acid, which modulate plant growth under biotic stress. Moreover, we will present a new trend regarding phytoremediation applications using fungal secondary metabolites to achieve sustainable food production and microbial diversity in an eco-friendly environment.
Collapse
Affiliation(s)
- Neveen Atta Elhamouly
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Angelica Miraples
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Omnia T. Elshorbagy
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzan Hussien
- Botany Department Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Ma L, Yu Y, Li C, Wang P, Liu K, Ma W, Wang W, Fan Y, Xiong Z, Jiang T, Zhang J, Wang Z, Wang J, Zhang H, Bao Y. Genome-Wide Association Study Identifies a Rice Panicle Blast Resistance Gene Pb3 Encoding NLR Protein. Int J Mol Sci 2022; 23:ijms232214032. [PMID: 36430507 PMCID: PMC9698523 DOI: 10.3390/ijms232214032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rice blast is a worldwide fungal disease that seriously affects the yield and quality of rice. Identification of resistance genes against rice blast disease is one of the effective ways to control this disease. However, panicle blast resistance genes, which are useful in the fields, have rarely been studied due to the difficulty in phenotypic identification and the environmental influences. Here, panicle blast resistance-3 (Pb3) was identified by a genome-wide association study (GWAS) based on the panicle blast resistance phenotypes of 230 Rice Diversity Panel I (RDP-I) accessions with 700,000 single-nucleotide polymorphism (SNP) markers. A total of 16 panicle blast resistance loci (PBRLs) within three years including one repeated locus PBRL3 located in chromosome 11 were identified. In addition, 7 genes in PBRL3 were identified as candidate genes by haplotype analysis, which showed significant differences between resistant and susceptible varieties. Among them, one nucleotide-binding domain and Leucine-rich Repeat (NLR) gene Pb3 was highly conserved in multiple resistant rice cultivars, and its expression was significantly induced after rice blast inoculation. Evolutionary analysis showed that Pb3 was a typical disease resistance gene containing coiled-coil, NB-ARC, and LRR domains. T-DNA insertion mutants and CRISPR lines of Pb3 showed significantly reduced panicle blast resistance. These results indicate that Pb3 is a panicle blast resistance gene and GWAS is a rapid method for identifying panicle blast resistance in rice.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changqing Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Panting Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunquan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxin Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingran Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongmei Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Cyrus Tang Innovation Center for Crop Seed Industry, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
50
|
Xu Y, Miao Y, Cai B, Yi Q, Tian X, Wang Q, Ma D, Luo Q, Tan F, Hu Y. A histone deacetylase inhibitor enhances rice immunity by derepressing the expression of defense-related genes. FRONTIERS IN PLANT SCIENCE 2022; 13:1041095. [PMID: 36407628 PMCID: PMC9667192 DOI: 10.3389/fpls.2022.1041095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely used in plants to investigate the role of histone acetylation, particularly the function of HDACs, in the regulation of development and stress response. However, how histone acetylation is involved in rice (Oryza sativa L.) disease resistance has hardly been studied. In this paper, four HDACis including Sodium butyrate (NaBT), Suberoylanilide Hydroxamic Acid (SAHA), LBH-589 and Trichostatin A (TSA) were used to treat rice seedlings at different concentrations before inoculation of Magnaporthe oryzae. We found that only 10mM NaBT treatment can significantly enhanced rice blast resistance. However, treatment of the four HDACis all increased global histone acetylation but at different sites, suggesting that the inhibition selectivity of these HDACis is different. Notably, the global H3K9ac level was dramatically elevated after both NaBT and LBH589 treatment although LBH589 could not enhance rice blast resistance. This indicates that the HDACs they inhibit target different genes. In accordance with the phenotype, transcriptomic analysis showed that many defense-related genes were up-regulated by NaBT treatment. Up-regulation of the four genes bsr-d1, PR10B, OsNAC4, OsKS4 were confirmed by RT-qPCR. ChIP-qPCR results revealed that H3K9ac level on these genes was increased after NaBT treatment, suggesting that these defense-related genes were repressed by HDACs. In addition, by promoter motif analysis of the genes that induced by both NaBT treatment and rice blast infection, we found that the motifs bound by ERF and AHL transcription factors (TFs) were the most abundant, which demonstrates that ERF and AHL proteins may act as the candidate TFs that recruit HDACs to defense-related genes to repress their expression when plants are not infected by rice blast.
Collapse
Affiliation(s)
- Yan Xu
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yuanxin Miao
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Botao Cai
- Center for Science Popularization Jingmen, Science and Technology Museum, Jingmen, China
| | - Qingping Yi
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Xuejun Tian
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Qihai Wang
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Dan Ma
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding/College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan/Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, Yunnan Agricultural University, Kunming, China
| | - Feng Tan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, China
| |
Collapse
|