1
|
Xia Y, Zhao J, Saeed M, Hussain N, Chen X, Guo Z, Yong Y, Chen H. Molecular Modification Strategies of Nitrilase for Its Potential Application in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15106-15121. [PMID: 38949086 DOI: 10.1021/acs.jafc.4c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.
Collapse
Affiliation(s)
- Yutong Xia
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Jia Zhao
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
- Department of Poultry Science, Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Nazar Hussain
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Xihua Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Zhongjian Guo
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Yangchun Yong
- Biofuels Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| |
Collapse
|
2
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
3
|
Priya, Gogate PR. Ultrasound-Assisted Intensification of β-Glucosidase Enzyme Activity in Free and Immobilized Forms. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priya
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Parag R. Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
4
|
Stradomska D, Coloma J, Hanefeld U, Szymańska K. Continuous flow for enantioselective cyanohydrin synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00054g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantiomerically pure cyanohydrins are of great importance in the chemical and pharmaceutical industries and can be efficiently obtained under flow-through conditions using structured microreactors.
Collapse
Affiliation(s)
- Dominika Stradomska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland
| | - José Coloma
- Department of Biotechnology, Section Biocatalysis, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Universidad Laica Eloy Alfaro de Manabí, Avenida Circunvalación s/n, P.O. Box 13-05-2732, Manta, Ecuador
| | - Ulf Hanefeld
- Department of Biotechnology, Section Biocatalysis, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland
| |
Collapse
|
5
|
Sharma A, Thatai KS, Kuthiala T, Singh G, Arya SK. Employment of polysaccharides in enzyme immobilization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
van Schie MMCH, Spöring JD, Bocola M, Domínguez de María P, Rother D. Applied biocatalysis beyond just buffers - from aqueous to unconventional media. Options and guidelines. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:3191-3206. [PMID: 34093084 PMCID: PMC8111672 DOI: 10.1039/d1gc00561h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 05/09/2023]
Abstract
In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industrially relevant compounds, an aqueous reaction system will often not be able to provide sufficient substrate loadings. A switch to a non-aqueous solvent system can provide a solution, which is already common for lipases, but more challenging for biocatalysts from other enzyme classes. The choices in solvent types and systems, however, can be overwhelming. Furthermore, some engineering of the protein structure of biocatalyst formulation is required. In this review, a guide for those working with biocatalysts, who look for a way to increase their reaction productivity, is presented. Examples reported clearly show that bulk water is not necessarily required for biocatalytic reactions and that clever solvent systems design can support increased product concentrations thereby decreasing waste formation. Additionally, under these conditions, enzymes can also be combined in cascades with other, water-sensitive, chemical catalysts. Finally, we show that the application of non-aqueous solvents in biocatalysis can actually lead to more sustainable processes. At the hand of flowcharts, following simple questions, one can quickly find what solvent systems are viable.
Collapse
Affiliation(s)
- Morten M C H van Schie
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Jan-Dirk Spöring
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
| | - Marco Bocola
- Enzymaster Deutschland GmbH Neusser Str. 39 40219 Düsseldorf Germany
| | | | - Dörte Rother
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
| |
Collapse
|
7
|
Zheng YC, Ding LY, Jia Q, Lin Z, Hong R, Yu HL, Xu JH. A High-Throughput Screening Method for the Directed Evolution of Hydroxynitrile Lyase towards Cyanohydrin Synthesis. Chembiochem 2021; 22:996-1000. [PMID: 33146944 DOI: 10.1002/cbic.202000658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 11/10/2022]
Abstract
Chiral cyanohydrins are useful intermediates in the pharmaceutical and agricultural industries. In nature, hydroxynitrile lyases (HNLs) are a kind of elegant tool for enantioselective hydrocyanation of carbonyl compounds. However, currently available methods for demonstrating hydrocyanation are still stalled at precise, but low-throughput, GC or HPLC analyses. Herein, we report a chromogenic high-throughput screening (HTS) method that is feasible for the cyanohydrin synthesis reaction. This method was highly anti-interference and sensitive, and could be used to directly profile the substrate scope of HNLs either in cell-free extract or fermentation clear broth. This HTS method was also validated by generating new variants of PcHNL5 that presented higher catalytic efficiency and stronger acidic tolerance in variant libraries.
Collapse
Affiliation(s)
- Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Liang-Yi Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Zuming Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), Shanghai, 200032, P. R. China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), Shanghai, 200032, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| |
Collapse
|
8
|
Zheng YC, Li FL, Lin Z, Lin GQ, Hong R, Yu HL, Xu JH. Structure-Guided Tuning of a Hydroxynitrile Lyase to Accept Rigid Pharmaco Aldehydes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Zuming Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Chen BS, Ribeiro de Souza FZ. Enzymatic synthesis of enantiopure alcohols: current state and perspectives. RSC Adv 2019; 9:2102-2115. [PMID: 35516160 PMCID: PMC9059855 DOI: 10.1039/c8ra09004a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Enantiomerically pure alcohols, as key intermediates, play an essential role in the pharmaceutical, agrochemical and chemical industries. Among the methods used for their production, biotechnological approaches are generally considered a green and effective alternative due to their mild reaction conditions and remarkable enantioselectivity. An increasing number of enzymatic strategies for the synthesis of these compounds has been developed over the years, among which seven primary methodologies can be distinguished as follows: (1) enantioselective water addition to alkenes, (2) enantioselective aldol addition, (3) enantioselective coupling of ketones with hydrogen cyanide, (4) asymmetric reduction of carbonyl compounds, (5) (dynamic) kinetic resolution of racemates, (6) enantioselective hydrolysis of epoxides, and (7) stereoselective hydroxylation of unactivated C-H bonds. Some recent reviews have examined these approaches separately; however, to date, no review has included all the above mentioned strategies. The aim of this mini-review is to provide an overview of all seven enzymatic strategies and draw conclusions on the effect of each approach.
Collapse
Affiliation(s)
- Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University Guangzhou 510275 China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University Guangzhou 510275 China
| | | |
Collapse
|
10
|
Yildirim D, Toprak A, Alagöz D, Tukel SS. Protein-coated microcrystals of Prunus armeniaca hydroxynitrile lyase: an effective and recyclable biocatalyst for synthesis of (R)-mandelonitrile. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0577-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Bracco P, Busch H, von Langermann J, Hanefeld U. Enantioselective synthesis of cyanohydrins catalysed by hydroxynitrile lyases - a review. Org Biomol Chem 2018; 14:6375-89. [PMID: 27282284 DOI: 10.1039/c6ob00934d] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The first enantioselective synthesis was the selective addition of cyanide to benzaldehyde catalysed by a hydroxynitrile lyase (HNL). Since then these enzymes have been developed into a reliable tool in organic synthesis. HNLs to prepare either the (R)- or the (S)-enantiomer of the desired cyanohydrin are available and a wide variety of reaction conditions can be applied. As a result of this, numerous applications of these enzymes in organic synthesis have been described. Here the examples of the last decade are summarised, the enzyme catalysed step is discussed and the follow-up chemistry is shown. This proves HNLs to be part of main stream organic synthesis. Additionally the newest approaches via immobilisation and reaction engineering are introduced.
Collapse
Affiliation(s)
- Paula Bracco
- Gebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
| | - Hanna Busch
- Gebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
| | - Jan von Langermann
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Ulf Hanefeld
- Gebouw voor Scheikunde, Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
| |
Collapse
|
12
|
Uhrich D, von Langermann J. Preparation and Characterization of Enzyme Compartments in UV-Cured Polyurethane-Based Materials and Their Application in Enzymatic Reactions. Front Microbiol 2017; 8:2111. [PMID: 29170654 PMCID: PMC5684114 DOI: 10.3389/fmicb.2017.02111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/16/2017] [Indexed: 01/05/2023] Open
Abstract
The preparation and characterization of UV-cured polyurethane-based materials for the mild inclusion immobilization of enzymes was investigated. Full curing of the polymer precursor/enzyme solution mixture was realized by a short irradiation with UV-light at ambient temperatures. The included aqueous enzyme solution remains highly dispersed in the polymer material with an even size distribution throughout the polymer material. The presented concept provides stable enzyme compartments which were applied for an alcohol dehydrogenase-catalyzed reduction reaction in organic solvents. Cofactor regeneration was achieved by a substrate-coupled approach via 2-propanol or an enzyme-coupled approach by a glucose dehydrogenase. This reaction concept can also be used for a simultaneous application of contrary biocatalytic reaction conditions within an enzymatic cascade reaction. Independent polymer-based reaction compartments were provided for two incompatible enzymatic reaction systems (alcohol dehydrogenase and hydroxynitrile lyase), while the relevant reactants diffuse between the applied compartments.
Collapse
Affiliation(s)
- Diana Uhrich
- Biocatalysis Group, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Jan von Langermann
- Biocatalysis Group, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Enantiopure Synthesis of (R)-Mandelonitrile Using Hydroxynitrile Lyase of Wild Apricot (Prunus armeniaca L.) [ParsHNL] in Aqueous/Organic Biphasic System. Catal Letters 2017. [DOI: 10.1007/s10562-017-2025-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Nuylert A, Ishida Y, Asano Y. Effect of Glycosylation on the Biocatalytic Properties of Hydroxynitrile Lyase from the Passion Fruit, Passiflora edulis: A Comparison of Natural and Recombinant Enzymes. Chembiochem 2017; 18:257-265. [PMID: 27914120 DOI: 10.1002/cbic.201600447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/08/2022]
Abstract
A hydroxynitrile lyase from the passion fruit Passiflora edulis (PeHNL) was isolated from the leaves and showed high stability in biphasic co-organic solvent systems for cyanohydrin synthesis. Cyanohydrins are important building blocks for the production of fine chemicals and pharmaceuticals. Thus, to enhance production yields of PeHNL for industrial applications, we cloned and expressed recombinant PeHNL in Escherichia coli BL21(DE3) and Pichia pastoris GS115 cells without a signal peptide sequence. The aim of this study is to determine the effect of N-glycosylation on enzyme stability and catalytic properties in microbial expression systems. PeHNL from leaves (PeHNL-N) and that expressed in P. pastoris (PeHNL-P) were glycosylated, whereas that expressed in E. coli (PeHNL-E) was not. The enzymes PeHNL-N and PeHNL-P showed much better thermostability, pH stability, and organic solvent tolerance than the deglycosylated enzyme PeHNL-E and the deglycosylated mutant N105Q from P. pastoris (PeHNL-P-N105Q). The glycosylated PeHNL-P also efficiently performed transcyanation of (R)-mandelonitrile with a 98 % enantiomeric excess in a biphasic system with diisopropyl ether. These data demonstrate the efficacy of these methods for improving enzyme expression and stability for industrial application through N-glycosylation.
Collapse
Affiliation(s)
- Aem Nuylert
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yuko Ishida
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
15
|
Padhi SK. Modern Approaches to Discovering New Hydroxynitrile Lyases for Biocatalysis. Chembiochem 2016; 18:152-160. [DOI: 10.1002/cbic.201600495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory; Department of Biochemistry; School of Life Sciences; University of Hyderabad; Hyderabad 500 046 India
| |
Collapse
|
16
|
Zhang XF, Yang GY, Zhang Y, Xie Y, Withers SG, Feng Y. A general and efficient strategy for generating the stable enzymes. Sci Rep 2016; 6:33797. [PMID: 27667190 PMCID: PMC5036031 DOI: 10.1038/srep33797] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/31/2016] [Indexed: 11/09/2022] Open
Abstract
The local flexibility of an enzyme's active center plays pivotal roles in catalysis, however, little is known about how the flexibility of these flexible residues affects stability. In this study, we proposed an active center stabilization (ACS) strategy to improve the kinetic thermostability of Candida rugosa lipase1. Based on the B-factor ranking at the region ~10 Å within the catalytic Ser209, 18 residues were selected for site-saturation mutagenesis. Based on three-tier high-throughput screening and ordered recombination mutagenesis, the mutant VarB3 (F344I/F434Y/F133Y/F121Y) was shown to be the most stable, with a 40-fold longer in half-life at 60 °C and a 12.7 °C higher Tm value than that of the wild type, without a decrease in catalytic activity. Further analysis of enzymes with different structural complexities revealed that focusing mutations on the flexible residues within around 10 Å of the catalytic residue might increase the success rate for enzyme stabilization. In summary, this study identifies a panel of flexible residues within the active center that affect enzyme stability. This finding not only provides clues regarding the molecular evolution of enzyme stability but also indicates that ACS is a general and efficient strategy for exploring the functional robustness of enzymes for industrial applications.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Affiliation(s)
- Imran Khan
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, India
| | - Jayati Ray Dutta
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad, Telangana, India
| |
Collapse
|
18
|
Zhao Y, Chen N, Wang C, Cao Z. A Comprehensive Understanding of Enzymatic Catalysis by Hydroxynitrile Lyases with S Stereoselectivity from the α/β-Hydrolase Superfamily: Revised Role of the Active-Site Lysine and Kinetic Behavior of Substrate Delivery and Sequential Product Release. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Zhao
- The Key Laboratory of Natural Medicine
and Immuno-Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine
and Immuno-Engineering, Henan University, Kaifeng 475004, People’s Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and
Fujian Provincial Key Laboratory of Theoretical and Computational
Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| |
Collapse
|
19
|
Chen H, Zhang T, Sun T, Ni Z, Le Y, Tian R, Chen Z, Zhang C. Clostridium thermocellum Nitrilase Expression and Surface Display on Bacillus subtilis Spores. J Mol Microbiol Biotechnol 2015; 25:381-7. [DOI: 10.1159/000441642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
Nitrilases are an important class of industrial enzymes. They require mild reaction conditions and are highly efficient and environmentally friendly, so they are used to catalyze the synthesis of carboxylic acid from nitrile, a process considered superior to conventional chemical syntheses. Nitrilases should be immobilized to overcome difficulties in recovery after the reaction and to stabilize the free enzyme. The nitrilase from<i> Clostridium thermocellum</i> was expressed, identified and displayed on the surface of <i>Bacillus subtilis </i>spores by using the spore coat protein G of <i>B. subtilis </i>as an anchoring motif. In a free state, the recombinant nitrilase catalyzed the conversion of 3-cyanopyridine to niacin and displayed maximum catalytic activity (8.22 units/mg protein) at 40°C and pH 7.4. SDS-PAGE and Western blot were used to confirm nitrilase display. Compared with the free enzyme, the spore-immobilized nitrilase showed a higher tolerance for adverse environmental conditions. After the reaction, recombinant spores were recovered via centrifugation and reused 3 times to catalyze the conversion of 3-cyanopyridine with 75.3% nitrilase activity. This study demonstrates an effective means of nitrilase immobilization via spore surface display, which can be applied in biological processes or conversion.
Collapse
|
20
|
Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability. Sci Rep 2015; 5:14203. [PMID: 26374188 PMCID: PMC4570996 DOI: 10.1038/srep14203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance.
Collapse
|
21
|
Kawahara N, Asano Y. Mutagenesis of an Asn156 Residue in a Surface Region ofS-Selective Hydroxynitrile Lyase fromBaliospermum montanumEnhances Catalytic Efficiency and Enantioselectivity. Chembiochem 2015; 16:1891-1895. [DOI: 10.1002/cbic.201500225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 11/11/2022]
|
22
|
Kopka B, Diener M, Wirtz A, Pohl M, Jaeger KE, Krauss U. Purification and simultaneous immobilization of Arabidopsis thaliana hydroxynitrile lyase using a family 2 carbohydrate-binding module. Biotechnol J 2015; 10:811-9. [PMID: 25755120 DOI: 10.1002/biot.201400786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 11/12/2022]
Abstract
Tedious, time- and labor-intensive protein purification and immobilization procedures still represent a major bottleneck limiting the widespread application of enzymes in synthetic chemistry and industry. We here exemplify a simple strategy for the direct site-specific immobilization of proteins from crude cell extracts by fusion of a family 2 carbohydrate-binding module (CBM) derived from the exoglucanase/xylanase Cex from Cellulomonas fimi to a target enzyme. By employing a tripartite fusion protein consisting of the CBM, a flavin-based fluorescent protein (FbFP), and the Arabidopsis thaliana hydroxynitrile lyase (AtHNL), binding to cellulosic carrier materials can easily be monitored via FbFP fluorescence. Adsorption properties (kinetics and quantities) were studied for commercially available Avicel PH-101 and regenerated amorphous cellulose (RAC) derived from Avicel. The resulting immobilizates showed similar activities as the wild-type enzyme but displayed increased stability in the weakly acidic pH range. Finally, Avicel, RAC and cellulose acetate (CA) preparations were used for the synthesis of (R)-mandelonitrile in micro-aqueous methyl tert-butyl ether (MTBE) demonstrating the applicability and stability of the immobilizates for biotransformations in both aqueous and organic reaction systems.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Wiedner R, Kothbauer B, Pavkov-Keller T, Gruber-Khadjawi M, Gruber K, Schwab H, Steiner K. Improving the Properties of BacterialR-Selective Hydroxynitrile Lyases for Industrial Applications. ChemCatChem 2014. [DOI: 10.1002/cctc.201402742] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Zhu W, Liu Y, Zhang R. A QM/MM study of the reaction mechanism of (R)-hydroxynitrile lyases from Arabidopsis thaliana (AtHNL). Proteins 2014; 83:66-77. [PMID: 25052541 DOI: 10.1002/prot.24648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/07/2014] [Accepted: 07/15/2014] [Indexed: 11/11/2022]
Abstract
Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82.
Collapse
Affiliation(s)
- Wenyou Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | | | | |
Collapse
|
25
|
Ghaffari-Moghaddam M, Eslahi H, Omay D, Zakipour-Rahimabadi E. Industrial applications of enzymes. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079978014040037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
von Langermann J, Wapenhensch S. Hxdroxynitrillyase-katalysierte Synthese von enantiomerenreinen Cyanhydrinen in biokatalytisch aktiven statischen Emulsionen (BASE). CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201450088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
von Langermann J, Nedrud D, Kazlauskas R. Erhöhung der Reaktionsgeschwindigkeit der Hydroxynitrillyase aus Hevea brasiliensisbezüglich Mandelsäurenitril. CHEM-ING-TECH 2014. [DOI: 10.1002/cite.201450085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
von Langermann J, Nedrud DM, Kazlauskas RJ. Increasing the reaction rate of hydroxynitrile lyase from Hevea brasiliensis toward mandelonitrile by copying active site residues from an esterase that accepts aromatic esters. Chembiochem 2014; 15:1931-8. [PMID: 25044660 DOI: 10.1002/cbic.201402081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 11/11/2022]
Abstract
The natural substrate of hydroxynitrile lyase from rubber tree (HbHNL, Hevea brasiliensis) is acetone cyanohydrin, but synthetic applications usually involve aromatic cyanohydrins such as mandelonitrile. To increase the activity of HbHNL toward this unnatural substrate, we replaced active site residues in HbHNL with the corresponding ones from esterase SABP2 (salicylic acid binding protein 2). Although this enzyme catalyzes a different reaction (hydrolysis of esters), its natural substrate (methyl salicylate) contains an aromatic ring. Three of the eleven single-amino-acid-substitution variants of HbHNL reacted more rapidly with mandelonitrile. The best was HbHNL-L121Y, with a kcat 4.2 times higher and high enantioselectivity. Site-saturation mutagenesis at position 121 identified three other improved variants. We hypothesize that the smaller active site orients the aromatic substrate more productively.
Collapse
Affiliation(s)
- Jan von Langermann
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108 (USA); Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3A, 18059 Rostock (Germany)
| | | | | |
Collapse
|
29
|
Wiedner R, Gruber-Khadjawi M, Schwab H, Steiner K. Discovery of a novel (R)-selective bacterial hydroxynitrile lyase from Acidobacterium capsulatum. Comput Struct Biotechnol J 2014; 10:58-62. [PMID: 25210600 PMCID: PMC4151996 DOI: 10.1016/j.csbj.2014.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydroxynitrile lyases (HNLs) are powerful carbon–carbon bond forming enzymes. The reverse of their natural reaction – the stereoselective addition of hydrogen cyanide (HCN) to carbonyls – yields chiral cyanohydrins, versatile building blocks for the pharmaceutical and chemical industry. Recently, bacterial HNLs have been discovered, which represent a completely new type: HNLs with a cupin fold. Due to various benefits of cupins (e.g. high yield recombinant expression in Escherichia coli), the class of cupin HNLs provides a new source for interesting, powerful hydroxynitrile lyases in the ongoing search for HNLs with improved activity, enantioselectivity, stability and substrate scope. In this study, database mining revealed a novel cupin HNL from Acidobacterium capsulatum ATCC 51196 (AcHNL), which was able to catalyse the (R)-selective synthesis of mandelonitrile with significantly better conversion (97%) and enantioselectivity (96.7%) than other cupin HNLs.
Collapse
Affiliation(s)
- Romana Wiedner
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, c/o TU Graz, Petersgasse 14/4, 8010 Graz, Austria
| | - Mandana Gruber-Khadjawi
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, c/o TU Graz, Petersgasse 14/4, 8010 Graz, Austria
| | - Helmut Schwab
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, c/o TU Graz, Petersgasse 14/4, 8010 Graz, Austria ; Institute of Molecular Biotechnology, TU Graz, Petersgasse 14/5, 8010 Graz, Austria
| | - Kerstin Steiner
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, c/o TU Graz, Petersgasse 14/4, 8010 Graz, Austria
| |
Collapse
|
30
|
Hering C, von Langermann J, Schulz A. The Elusive Cyanoformate: An Unusual Cyanide Shuttle. Angew Chem Int Ed Engl 2014; 53:8282-4. [PMID: 24989935 DOI: 10.1002/anie.201405339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Hering
- Universität Rostock, Institut für Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock (Germany) http://www.chemie.uni-rostock.de/ac/schulz; "Leibniz-Institut für Katalyse e.V." an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock (Germany)
| | | | | |
Collapse
|
31
|
Hering C, von Langermann J, Schulz A. Das schwer fassbare Cyanformiat: ein ungewöhnlicher Cyanidtransporter. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
von Langermann J, Wapenhensch S. Hydroxynitrile Lyase-Catalyzed Synthesis of Enantiopure Cyanohydrins in Biocatalytic Active Static Emulsions (BASE) with Suppression of the Non-Enzymatic Side Reaction. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201301149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Diebler J, von Langermann J, Mell A, Hein M, Langer P, Kragl U. Synthesis of Aliphatic and α-Halogenated Ketone Cyanohydrins with the Hydroxynitrile Lyase from Manihot esculenta. ChemCatChem 2014. [DOI: 10.1002/cctc.201300965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
|
35
|
Abstract
Hydroxynitrile lyases are a versatile group of enzymes that are applied both in the laboratory and on an industrial scale. What makes them particularly interesting is that to date five structurally unrelated categories of hydroxynitrile lyases have been discovered. Given their great importance they have often been immobilised utilising many different methodologies. Therefore the hydroxynitrile lyases are ideally suited to compare different immobilisation methods and their dependence on the structural features of the enzyme in question, since the activity is the same in all cases. This review examines all the different immobilisation methods applied to hydroxynitrile lyases and draws conclusions on the effect of the approach.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Gebouw voor Scheikunde, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628BL Delft, The Netherlands.
| |
Collapse
|
36
|
Kassim MA, Rumbold K. HCN production and hydroxynitrile lyase: a natural activity in plants and a renewed biotechnological interest. Biotechnol Lett 2013; 36:223-8. [DOI: 10.1007/s10529-013-1353-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
37
|
Cui JD, Jia SR. Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol 2013; 35:15-28. [DOI: 10.3109/07388551.2013.795516] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
|
39
|
|
40
|
Andexer JN, Staunig N, Eggert T, Kratky C, Pohl M, Gruber K. Hydroxynitrile lyases with α/β-hydrolase fold: two enzymes with almost identical 3D structures but opposite enantioselectivities and different reaction mechanisms. Chembiochem 2012; 13:1932-9. [PMID: 22851196 PMCID: PMC3444685 DOI: 10.1002/cbic.201200239] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Indexed: 11/20/2022]
Abstract
Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins to yield hydrocyanic acid (HCN) and the respective carbonyl compound and are key enzymes in the process of cyanogenesis in plants. In organic syntheses, HNLs are used as biocatalysts for the formation of enantiopure cyanohydrins. We determined the structure of the recently identified, R-selective HNL from Arabidopsis thaliana (AtHNL) at a crystallographic resolution of 2.5 Å. The structure exhibits an α/β-hydrolase fold, very similar to the homologous, but S-selective, HNL from Hevea brasiliensis (HbHNL). The similarities also extend to the active sites of these enzymes, with a Ser-His-Asp catalytic triad present in all three cases. In order to elucidate the mode of substrate binding and to understand the unexpected opposite enantioselectivity of AtHNL, complexes of the enzyme with both (R)- and (S)-mandelonitrile were modeled using molecular docking simulations. Compared to the complex of HbHNL with (S)-mandelonitrile, the calculations produced an approximate mirror image binding mode of the substrate with the phenyl rings located at very similar positions, but with the cyano groups pointing in opposite directions. A catalytic mechanism for AtHNL is proposed, in which His236 from the catalytic triad acts as a general base and the emerging negative charge on the cyano group is stabilized by main-chain amide groups and an α-helix dipole very similar to α/β-hydrolases. This mechanistic proposal is additionally supported by mutagenesis studies.
Collapse
Affiliation(s)
- Jennifer N Andexer
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University FreiburgAlbertstrasse 25, 79104 Freiburg (Germany)
| | - Nicole Staunig
- Institute of Molecular Biosciences, University of GrazHumboldtstrasse 50/3, 8010 Graz (Austria) E-mail:
| | | | - Christoph Kratky
- Institute of Molecular Biosciences, University of GrazHumboldtstrasse 50/3, 8010 Graz (Austria) E-mail:
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH52425 Jülich (Germany)
| | - Karl Gruber
- Institute of Molecular Biosciences, University of GrazHumboldtstrasse 50/3, 8010 Graz (Austria) E-mail:
| |
Collapse
|
41
|
Okrob D, Metzner J, Wiechert W, Gruber K, Pohl M. Tailoring a stabilized variant of hydroxynitrile lyase from Arabidopsis thaliana. Chembiochem 2012; 13:797-802. [PMID: 22378361 DOI: 10.1002/cbic.201100619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Indexed: 11/09/2022]
Abstract
The R-selective hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) cannot be applied for stereoselective cyanohydrin syntheses in aqueous media because of its limited stability at pH<5, which is required in order to suppress the uncatalyzed racemic cyanohydrin formation. To stabilize AtHNL we designed a surface-modified variant incorporating 11 changes in the amino acids on the protein surface. Comparative characterization of the variant and the wild-type enzyme showed a broadened pH optimum towards the acidic range, along with enhancement of activity by up to twofold and significantly increased pH- and thermostabilities. The effect can most probably be explained by a shift of the isoelectic point from pH 5.1 to 4.8. Application of the variant for the synthesis of (R)-cyanohydrins in an aqueous/organic two-phase system at pH 4.5 demonstrated the high stereoselectivity and robustness of the variant relative to the wild-type enzyme, which is immediately inactivated under these conditions.
Collapse
Affiliation(s)
- Daniel Okrob
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
42
|
Fuhshuku KI, Asano Y. Organic Synthesis Catalyzed by Plant Enzyme Hydroxynitrile Lyase. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ken-ichi Fuhshuku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University
- JST, ERATO
| |
Collapse
|
43
|
Okrob D, Paravidino M, Orru RVA, Wiechert W, Hanefeld U, Pohl M. Hydroxynitrile Lyase from Arabidopsis thaliana: Identification of Reaction Parameters for Enantiopure Cyanohydrin Synthesis by Pure and Immobilized Catalyst. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Kourist R, Bornscheuer UT. Biocatalytic synthesis of optically active tertiary alcohols. Appl Microbiol Biotechnol 2011; 91:505-17. [PMID: 21691783 DOI: 10.1007/s00253-011-3418-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/26/2022]
Abstract
The enzymatic preparation of optically pure tertiary alcohols under sustainable conditions has received much attention. The conventional chemical synthesis of these valuable building blocks is still hampered by the use of harmful reagents such as heavy metal catalysts. Successful examples in biocatalysis used esterases, lipases, epoxide hydrolases, halohydrin dehalogenases, thiamine diphosphate-dependent enzymes, terpene cyclases, -acetylases, and -dehydratases. This mini-review provides an overview on recent developments in the discovery of new enzymes, their functional improvement by protein engineering, the design of chemoenzymatic routes leading to tertiary alcohols, and the discovery of entirely new biotransformations.
Collapse
Affiliation(s)
- Robert Kourist
- Institute of Chemistry of Biogenic Resources, Technische Universität München, Schulgasse 16, 94315 Straubing, Germany
| | | |
Collapse
|
45
|
Brovetto M, Gamenara D, Méndez PS, Seoane GA. C-C bond-forming lyases in organic synthesis. Chem Rev 2011; 111:4346-403. [PMID: 21417217 DOI: 10.1021/cr100299p] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Margarita Brovetto
- Grupo de Fisicoquímica Orgánica y Bioprocesos, Departamento de Química Orgánica, DETEMA, Facultad de Química, Universidad de la República (UdelaR), Gral. Flores 2124, 11800 Montevideo, Uruguay
| | | | | | | |
Collapse
|
46
|
Wohlgemuth R. Biocatalysis—key to sustainable industrial chemistry. Curr Opin Biotechnol 2010; 21:713-24. [DOI: 10.1016/j.copbio.2010.09.016] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 12/19/2022]
|
47
|
Paravidino M, Sorgedrager MJ, Orru RVA, Hanefeld U. Activity and enantioselectivity of the hydroxynitrile lyase MeHNL in dry organic solvents. Chemistry 2010; 16:7596-604. [PMID: 20486110 PMCID: PMC2970910 DOI: 10.1002/chem.201000487] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Indexed: 11/23/2022]
Abstract
Water concentration affects both the enantioselectivity and activity of enzymes in dry organic media. Its influence has been investigated using the hydrocyanation of benzaldehyde catalyzed by hydroxynitrile lyase cross-linked enzyme aggregate (MeHNL-CLEA) as a model reaction. The enzyme displayed higher enantioselectivity at higher water concentration, thus suggesting a positive effect of enzyme flexibility on selectivity. The activity increased on reducing the solvent water content, but drastic dehydration of the enzyme resulted in a reversible loss of activity.
Collapse
Affiliation(s)
- Monica Paravidino
- Gebouw voor Scheikunde, Afdeling Biotechnologie, Technische Universiteit Delft, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | | |
Collapse
|
48
|
Martínková L, Křen V. Biotransformations with nitrilases. Curr Opin Chem Biol 2010; 14:130-7. [DOI: 10.1016/j.cbpa.2009.11.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
|
49
|
Ueatrongchit T, Tamura K, Ohmiya T, H-Kittikun A, Asano Y. Hydroxynitrile lyase from Passiflora edulis: Purification, characteristics and application in asymmetric synthesis of (R)-mandelonitrile. Enzyme Microb Technol 2010; 46:456-65. [PMID: 25919621 DOI: 10.1016/j.enzmictec.2010.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/17/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
A hydroxynitrile lyase from leaves of Passiflora edulis (PeHNL) was purified and characterized for the first time. The enzyme is a monomer of 15kDa and 18kDa by SDS-PAGE, and gel filtration, respectively. Asymmetric synthesis of (R)-mandelonitrile from benzaldehyde and acetone cyanohydrin in a biphasic system employing the PeHNL from rinds of P. edulis was carried out. Several parameters influenced the enantiomeric purity of the product and initial velocity of the reaction. Both pH and temperature were important parameters controlling the enantiomeric purity of the product. The optimum pH and temperature were pH 4 and 10°C, respectively. At the optimum pH and temperature, the spontaneous non-enzymatic reaction yielding the racemic mandelonitrile was almost completely suppressed. The PeHNL was stable (more than 80% residual activity after incubation for 12h) in the system of methyl-t-butyl ether (MTBE), dibutyl ether (DBE), hexane (HEX), and diisopropyl ether (DIPE) while diethyl ether (DEE) and ethyl acetate (EA) were not suitable solvents. The initial velocity was markedly affected by the type of organic solvent in the biphasic system, while high enantiomeric purity was obtained when organic solvents having logP lower than 3.5 were used. The highest initial velocity of reaction and enantiomeric purity of (R)-mandelonitrile were obtained in the biphasic system of DBE with the aqueous phase content of 30% (v/v). The optimum substrate concentrations were 250mM for benzaldehyde and 900mM for acetone cyanohydrin, and the optimum enzyme concentration was 26.7units/ml. The highest enantiomeric purity of (R)-mandelonitrile was successfully obtained with conversion and enantiomeric excess of 31.6% and 98.6%, respectively. The enzyme showed considerable reusability in batch reaction with high enantiomeric purity of product. Herein, we reported the characteristics of a unique (R)-PeHNL from leaves of P. edulis. The PeHNL from rinds had been isolated for the first time and the enzyme showed great ability in transcyanation of (R)-mandelonitrile with high e.e. in DBE as the co-organic solvent in a biphasic system.
Collapse
Affiliation(s)
- Techawaree Ueatrongchit
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Ken'ichirou Tamura
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tohru Ohmiya
- Toyama Prefectural Agricultural, Forestry and Fisheries Center, Forestry Research Institute Yoshimine, Tateyama-machi, Toyama 930-1362, Japan
| | - Aran H-Kittikun
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
50
|
Seidel-Morgenstern A, von Langermann J, Tam L, Lorenz H, Seidel-Morgenstern A. Kombination von Biokatalyse und Kristallisation zur Darstellung enantiomerenreiner Mandelsäurederivate. CHEM-ING-TECH 2010. [DOI: 10.1002/cite.200900157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|